((JUllm Jl J\foth r:rno hool Jool'1W I Fo/ H, /\"' 2, ('1 · 51} . . ·tu91u t IJQ(J{i. Global Solutions of Yang-Mili Equat ion Qike n g Lu 1 l11 stit.nlt' oí ~ l uthl'lllHtk:-;, A<·1Hll'll\Y uf t<.lill.il1 •1m1ti1'.S 1utcl )"'-lt•m Sril'llrt· hirn .. '!'<.· J\mdemy oí Sdcnccs, l3ciji11 g 1000 O. hinn 11 1qik@public .btn .11c t. c11 ABSTfu\ C T :loba! nnd explicil sol utions of Ynn g-t-.füls cquntions are gi,·en in the M in kowski spacc, coníormnl spncc nnd t hc dc-S ittcr spnccs of arbitrnry cosmology rons tnnt s. Thc m<'lhod uscd is ro ndudcd i11lo o p,cncrnl th co rcm. R ESUMEN Solu cione:. explici t as y globo les de lo e<:uacio ncs de Yang-Mills son dadns c r1 et es pacio dc Minkowski, eu cs pnclos co nfo rm es y en los cspaci06 de De- iUc r co n co ns tnnl CB C'0'-1nológkns 11rbi 1 rnrlns. l~ l mótodo usado oo ndu)"'l' en un tcorc rnu gcncrnl . Kcy word~ um l phro 11 u111 \~M cquullon. hornOft'rieow hme-1pacc l\loth. S ubj. C ln1111.: 10515 lt. i1:1 k11ow11ll tlmt onc of th c Oirnc'i;t2J co nfomml i;;pare .,.VI i!i' equh'tllc nt. to th c u 11 i- tu ry group (2), which is cquivu[ cut. t.o thc om1>nc tcd spnCt' l\t OÍ all 2 X 2 Hcnui t.ion ml\I ri ces, nnd nn <"'.'olutlo u o f th Ynng-~lill~ ('Qunlion wns co nsLru cL in . 111 thb nrlick w'(' nt firsl co nstrucl o tlwr 'iOluti 11s írom difforcnt Lorcntz mc tri cs dt"fi11cd 011 .\lf 1 Porlillll) UPf" rtf'Cf hy Nlllimml Nnlurnl &knC'(' h111ndA1K1n of China, Projt:<:t 102!t\050/AOIOI09 Qike11g: Lu \\ºe nrrnngc the coordi riatcs :1: = (:1;0, :i; 1, .1;2, x 3) of u poi11t in 1hc f\ li11kowski l'iJlllt'C f\ 1 into n 2 x 2 lforrnitinn nu1 tri x whcrc \Ve are to prove tlmt 3 HL = :1,Joj = L x1a1 , j=O is n su(2) gnuge potentinl(con11ecLio11 ), whcre the Creck indice; nm from 1 lo 3, ru1d Sl\li.'lfics thc Yang·. lills cqna t.ion F11;.1:!/1 (88~~1k+[A1 , Fj1,] - { ; , }Frk- { {1 }F1 r) = O, (2) where (3) nnd { ;, } is t he C hristoffel symbol of a 1netric ds2 = 9Jkd:i:Jdxl· wh ich i11 the pr~nt case we choosell J (4) \\'e shoulcl provc t hnt. AJ is ncl,unlly n au(2)·co nncction. As t.hc firs t stcp wc ron~truct n sl(2, C )·co1111 cct.ion(a 2-cotnponcnt. spino r conncction ) fron1 tbc tensor (4) ru1d rOOure it 10 11 t1u.(2)-comu.:cLio11. In fnct, M nnc\ d • .,2 nrc i1wnrilrnt m1rlcr thl' trru.i.-.for11mtio n 1-1, = (A + 1-1,8)- ' (- 8+1-1, A). (5) whc rc A. B are 2 x 2 co111plcx urnlric~ 11ml satis fy the couditio n A 1 A + 131 IJ = 1, A 1 IJ - 8 1 A = O (G) with A' . B' d enotcd the co r11 ple x conj ugute n nd transpose: matrices of A,8 respcc· 1iw ly Associnled lo the t.rn nsfo ri nnLion (5) thcrc is l.\ L(2. C ) matrix 'll.,.(.") = dcL( A + H,8)1(A + 11, 8 )- 1 • (7) inl't' Ki .._,. crnmsltlvc undcr lhc group {i formcd from the 1r1\1ts formntions (5). lh•' rom':'ponding {IJlr(.r) }re.Q urc thc trnn~ition func tions o f thc ll{lt11ral principnl b11ndl1 ri l . L(2, )). \Ve opply t)I(' following thcorcm(c r IJJ Throrcm 2..t.2) Clobnl Sol11t.io11 s o í Ynng- Mills Ec1111u.io11 •19 Thoor e m A. lf 9)1 l.'l o .{-rlm11•11sfo1"'l f~orr:u t.z ·"11¡,, mmufold. the n (fl~ = '72if,.17V i~ a !11(2. C )-t:o11ncc t1on 011 thc principal bmulle P(~Ul , SL(2 , C )), whcrc fl.111l d s 2 = .'Ji k1J:r.i tl:é = 1¡111,w" wb i.~ lh c !~ore.ni;. rnctrft· wit11 w" = e.Y' )rl!1;i tmd "fu) 1ml:isfyi,1g ~ .. )e~b) = ág. S i11cc u¿ = oo n11d o~ = - 0 0 (0· = l , 2, 3), Tl1c !1l(2, C )-conncction in Thcornm A cnri b u wril,tcn into (8) w! wru t.hu Grcck iud icCii run fr0t 11 1t.o31.111d {a 0 ,'i.a 0 } 0 ::::i1 , 2 ,:i is l\ bnsiil oí t he Lic ulgubrn lil(2, C ) oí S J..,(2, C ) nud {'ia0 }c,.=1,2,:J is t.lmt. o í t.he Lie nlgcbrn s u(2) oí SU(2). Siuce {Uauu- 1 } 0 .1,2.3 íor nny U E SU(2) is sWl n bns is oí lhc vcclor spnce geuern t.ed by {u0 } 0 = 1•2 ,3 , nccordin g l,o Lhe red uct.io 11 t.heore m o í con necLio ns, (Y) is/\ o·n(2 )-co1111cc io n on t hc rcd 11ced p rit icitnil bumlle P 1 (9Jt. SU(2)) or P (9Jt, S /_,(2 , C}) . In cnsc t !Lnt. 9Jl = Af nnd d.~2 is dofincd by (4 ), AJ is cxnctly cxprcssed by ( 1). !!~ ru111 uit1s l:o provc t hot. such A 1 sllt.isflcs tfo,: Y11 11g-ivlilh; CQ\UlLion (2). In fnct., lll:corcl- i11t1. t.o ( ! ) t ite •lc mcnt.s o í t.hc nial.rices AJ(j = O, l , 2, 3) m e llll odd íunct.ions o f ~,) . Ohvio 11s ly [AJ(.t))r=o =O. Hc11 ec itll olmucuts oí F J.1: nrc cvcu fonclions oí :JJ. T hcrc- foru 11 11 d 1::mcuts o í F, .1::/ nrc odd fu11ct io11s o f :r,J und con$1.-quc11Lly jF (r)Jk:il.r.=O = O. S i11ce Mis Lntns.ili,·efl l uuder 1.lie g ro up Q, for uuy poi nl :r0 of :1 t here is t\I. JcosL n Lrnnsformnt.ion (5) which cmries t lie poi11 t. :t = xo to t.he poi nl y= O. Sincc bot.h !}jl· 011d F jA·:I nre C0\'8.til\nL ullder t.he Lhe Lro.ns fo rm otio n (5), O= [ f}.r,P {J:r,q fJ:r.rl (y),. ,,J •• o = ~lr(")F('"),,.,,..'llr{r)- 1 8yo 8y' 8y' z~z,' whi uh im pl k-s thnt jF (.:r)1111,r].r.m:r.u = O. Siucu :ro c1m be 1111 l\rbitrnry point o f M, wc lnwu F(:i.:)~1 =O nnd obvious ly iL s1.1l. ii! liCs t.hc Yung-~ l ills cquotion gt·l p jl·:I = O. Since M is Lhe compncted Minkowski spucc M nnd Lhc Yru1g·~lills eq uut.ion is confo r111 nl inV8.Tinnt, the i:.11 (2)-co1111ect.io 11 AJ dcfüicd by{! ) nlso satis fles 1.hc Yn 11g- J\i!il ls cqu ntion "( O F F ) '1 f).r.1 ' 11;+ A 1 · Jk- F ,.1,. A 1 = O i11 l1hu Mi ukow"Ski s pucc M . Q ikcug: Lu Ano thc r :.0lu1io n o f 11bc Y1111g-t-.11i lls eq1 mt.io11 on M cnu be d<.'(lucc in cuse thut. ds2 is d e f111ccl by {11 ). This is n tat ic solut ion bec:lu1se A ; tu·e noL dep e nd 011 x 0 . O ur mc thod cn n nlso be appl ierl to cons truct. ::;olutions of t hc Yung- Mills L'flllB· tion on 1hc d c-Sit.t.c r s p11ccs d eli11orl by Oirnc15J. Thc d c-Sittc r spnc of cosmology con.:;tntll ;\ is demote t-1IDC'e el ( A) b, iuvmiu nL 11wlor Lhu trnnsforumtion ' = a{u)~~/Y. 11 l - A111,,,fJl'a'' k ' (15) bnou.o¡Jy .. whcn a = O, {15) is 11 1,orcntz trnnsformntio n. The me1ric ds~ is in\lnrinnt u ndrr tll<' 1mn. .. for111uLio11 {15) 11ud dS( A) is trnm1lti\'C und r thc g·rou p of 1111 s11ch trul."fonnntmlL'l. In fncL t his is thc group 50(2, 3)(in ca.«e A < O) o r t.hc group ~Ot l. -l)(m C".(L.'<' A > O) 1lm1, uc1s · o11 r/S(A) . ~loroovcr 1hc mc lril' el.¡~ undc.r llw coordillftt c 1nuu.fo r111nt io11 (16) .~pl . lolml 'e>lu tio us o í Y1 11 1g-~ l il\~ E:q untion 51 i ~ d1u11 gcd to bl• ( 17) wlii cl 1 is n co u~ rmal flnt. me t ric. Th nt th e d e-Sitt r s pnc nre s pi n urn nifolds is imp lied in tht> Dirnc' oonstru c Ll on or th c '¡Ji,,4 wnve l"ql1Ation15J. App ly ing T heorcm A nncl the theorem of recl uct io11 of coiincc ti o ns, wc obl ai n t. hc !lll(2)-co n ncc ti on A ,= -~1\ ( I - t\~111u1 11 1'11.'1 ) - 1 (&~ 11 ti - 6:u°')6!}'1o1 , ( 18) wh k h im ti s fi th '{nng-1\ lills cqu nt io n bcc nu se t. hc el mcnts oí , 8ít' odd fun ct.i oua of " ' · W(• co 11 cl11 cil' in gc nr rnl 1 l111t. T li coro m B. /f 9)1 1.~ fl 4·tfimtmsimwl .~pi 1 l maiujoltl anti pDA"l('.