CUBO A Mathematical Journal Vol.19, No¯ 03, (43–55). October 2017 Weak homoclinic solutions to discrete nonlinear problems of Kirchhoff type with variable exponents Aboudramane Guiro, Idrissa Ibrango and Stanislas Ouaro LAboratoire de Mathématiques et Informatique (LAMI) 1 UFR, Sciences et Techniques, Universit Nazi BONI 01 BP 1091 Bobo-Dioulasso, 01 Bobo Dioulasso, Burkina Faso 2 UFR. Sciences Exactes et Appliques, Universit Ouaga I Pr Joseph KI-ZERBO, 03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso abouguiro@yahoo.fr, ibrango2006@yahoo.fr, ibrango2006@yahoo.fr, ouaro@yahoo.fr ABSTRACT In this paper, we prove the existence of weak homoclinic solutions for discrete nonlinear problems of Kirchhoff type. The proof of the main result is based on a minimization method. As extension, we prove the existence result of weak homoclinic solutions for more general data depending on the solutions. RESUMEN En este art́ıculo, probamos la existencia de soluciones homocĺınicas débiles para prob- lemas discretos no-lineales de tipo Kirchhoff. La demostración del resultado principal está basado en un método de minimización. Como extensión, probamos la existencia de soluciones homocĺınicas débiles para datos más generales dependiendo de las soluciones. 2010 AMS Mathematics Subject Classification: 47A75, 35B38, 35P30, 34L05, 34L30. 44 Aboudramane Guiro, Idrissa Ibrango and Stanislas Ouaro CUBO 19, 3 (2017) 1 Introduction In this paper, we study the following nonlinear discrete anisotropic problem (P)    −M(A(k − 1, ∆u(k − 1)))∆(a(k − 1, ∆u(k − 1))) + |u(k)|p(k)−2u(k) = f(k), k ∈ Z lim |k|→∞ u(k) = 0, (1.1) where ∆u(k) = u(k + 1) − u(k) is the forward difference operator. Note that difference equations can be seen as a discrete counterpart of partial difference equa- tions and are usually studied in connection with numerical analysis. In this way, the operator in problem (1.1) ∆(a(k − 1, ∆u(k − 1))) can be seen as a discrete counterpart of the anisotropic operator N∑ i=1 ∂ ∂xi a ( x, ∂ ∂xi u ) . The first study in that direction for constant exponents was done by Cabada et al. [2] and for variable exponent by Mihailescu et al. [10] (see also [3]). In [3], the authors studied the following problem    −∆ ( a ( k − 1, ∆u(k − 1) )) + |u(k)|p(k)−2u(k) = f(k), k ∈ Z lim |k|→+∞ u(k) = 0. (1.2) They proved an existence result of weak homoclinic solution of (1.2). In this paper we consider the same boundary conditions as in [3], but the function M(A(k − 1, ∆u(k − 1))) which appear in the left-hand side of problem (1.1) is more general than the one which appear in [3]. Indeed, if we take M(t) = 1 in the problem (1.1), we obtain the probem studied by Guiro et als in [3]. To prove an existence result of problem (1.1), we define other new spaces and new associated norms and we adapt the classical minimization methods used for the study of anisotropic PDEs. The idea is to transfer the problem of the existence of solutions for (1.1) into the problem of the existence of a minimizer for some associated energy functional. The remaining part of this paper is organized as follows: section 2 is devoted to mathematical preliminaries. The main existence result is stated and proved in section 3. Finally, in section 4, we discuss some extensions. CUBO 19, 3 (2017) Weak homoclinic solutions to discrete nonlinear problems . . . 45 2 Preliminaries We use the notations p+ = sup k∈Z p(k) and p− = inf k∈Z p(k). For the data f and a, we assume the following: { a(., .) : Z × R −→ R and A(., .) : Z × R −→ R with a(k, ξ) = ∂ ∂ξ A(k, ξ) and A(k, 0) = 0, ∀k ∈ Z. (2.1) |ξ|p(k) ≤ a(k, ξ)ξ ≤ p(k)A(k, ξ), ∀ k ∈ Z and ξ ∈ R. (2.2) There exists a positive constant C1 such that |a(k, ξ)| ≤ C1(j(k) + |ξ| p(k)−1), (2.3) for all k ∈ Z and ξ ∈ R, where j ∈ Lp ′ (.) with 1 p(k) + 1 p′(k) = 1. Let us take f ∈ Lp ′ (.). (2.4) For ξ, η ∈ R with ξ 6= η, and for almost every k ∈ Z, ( ai(x, ξ) − ai(x, η) ) (ξ − η) ≥ 0. (2.5) Moreover, in this paper, we assume that the function p : Z → (1, +∞) such that 1 < p− < p(.) < p+ < +∞. (2.6) We also assume that the function M : (0, +∞) → (0, +∞) is continuous, non decreasing and there exist two positive reals number B1, B2 such that B1 ≤ B2 and α ≥ 1 with B1t α−1 ≤ M(t) ≤ B2t α−1, for t > 0. (2.7) Let us define the functional spaces, Lp(.) = { u : Z −→ R such that ρp(.)(u) := ∑ k∈Z |u(k)|p(k) < ∞ } and W1,p(.)α = { u : Z −→ R such that ρ1,α,p(.)(u) := ∑ k∈Z |u(k)|p(k) + ( ∑ k∈Z |∆u(k)|p(k) )α < ∞ } . We introduce in Lp(.) the Luxemburg norm ||u||p(.) := inf { λ > 0 such that ∑ k∈Z ∣∣∣∣ u(k) λ ∣∣∣∣ p(k) ≤ 1 } , and we define, on the space W 1,p(.) α , the norm ||u||1,α,p(.) := inf { λ > 0 such that ∑ k∈Z ∣∣∣∣ u(k) λ ∣∣∣∣ p(k) + ( ∑ k∈Z ∣∣∣∣ ∆u(k) λ ∣∣∣∣ p(k))α ≤ 1 } . 46 Aboudramane Guiro, Idrissa Ibrango and Stanislas Ouaro CUBO 19, 3 (2017) Example 2.1. As example of functions which satsfies above assumptions, we have the following. • A(k, ξ) = 1 p(k) |ξ|p(k), where a(k, ξ) = |ξ|p(k)−2ξ, ∀k ∈ Z and ξ ∈ R, • A(k, ξ) = 1 p(k) (( 1+ |ξ|2 )p(k)/2 −1 ) , where a(k, ξ) = ( 1+ |ξ|2 )(p(k)−2)/2 ξ, ∀ k ∈ Z, ξ ∈ R and • B(t) = ctα−1, for t > 0, where α ≥ 1 and c > 0. Remark 2.2. If u ∈ Lp(.), then lim |k|→+∞ u(k) = 0. Indeed, if u ∈ Lp(.), then ∑ k∈Z |u(k)|p(k) < +∞. Let S1 = {k ∈ Z; |u(k)| < 1} and S2 = {k ∈ Z; |u(k)| ≥ 1} S2 is necessary a finite set and |u(k)| < +∞ for any k ∈ S2 since u ∈ Lp(.). As S2 is a finite set, then ∑ k∈S2 |u(k)|p + < +∞. Therefore ∑ k∈Z |u(k)|p + = ∑ k∈S1 |u(k)|p + + ∑ k∈S2 |u(k)|p + < +∞. Thus, lim |k|→+∞ u(k) = 0. � In the sequel, we will use the following result: Proposition 2.3. ([3], Proposition 2.3). If u ∈ Lp(.) and p+ < ∞, then the following properties hold: (1) ||u||p(.) < 1 =⇒ ||u|| p+ p(.) ≤ ρp(.)(u) ≤ ||u|| p− p(.) ; (2) ||u||p(.) > 1 =⇒ ||u|| p− p(.) ≤ ρp(.)(u) ≤ ||u|| p+ p(.) ; (3) ||u||p(.) < 1 (= 1; > 1) ⇐⇒ ρp(.)(u) < 1 (= 1; > 1). Theorem 2.4. ([3], Theorem 2.1). Let u ∈ Lp(.) and v ∈ Lq(.) such that 1 p(k) + 1 q(k) = 1 for any k in Z. Then ∑ k∈Z |uv| ≤ ( 1 p− + 1 q− ) ||u||p(.)||v||q(.). (2.8) CUBO 19, 3 (2017) Weak homoclinic solutions to discrete nonlinear problems . . . 47 Proposition 2.5. ([10], Proposition 2.1). Let q : Z −→ R such that 1 < p− ≤ p+ < q− ≤ q+. (2.9) Then Lp(.) ⊂ Lq(.). (2.10) As in [3], we have the following result. Proposition 2.6. (1) ρ1,α,p(.)(u + v) ≤ 2 αp+−1(ρ1,α,p(.)(u) + ρ1,α,p(.)(v)), ∀ u, v ∈ W 1,p(.) α . (2) Let u in W 1,p(.) α . i) If λ > 1, we have λp − ρ1,α,p(.)(u) ≤ ρ1,α,p(.)(λu) ≤ λ αp+ρ1,α,p(.)(u). (2.11) ii) If 0 < λ < 1, we have λαp + ρ1,α,p(.)(u) ≤ ρ1,α,p(.)(λu) ≤ λ p−ρ1,α,p(.)(u). (2.12) Theorem 2.7. Let u ∈ W 1,p(.) α \ {0}. Then ||u||1,α,p(.) = a if and only if ρ1,α,p(.)(u/a) = 1. Proposition 2.8. If u ∈ W 1,p(.) α and p + < ∞, then the following properties hold: (1) ||u||1,α,p(.) < 1 =⇒ ||u|| αp+ 1,α,p(.) ≤ ρ1,α,p(.)(u) ≤ ||u|| p− 1,α,p(.) ; (2) ||u||1,α,p(.) > 1 =⇒ ||u|| p− 1,α,p(.) ≤ ρ1,α,p(.)(u) ≤ ||u|| αp+ 1,α,p(.) ; (3) ||u||1,α,p(.) < 1 (= 1; > 1) ⇐⇒ ρ1,α,p(.)(u) < 1 (= 1; > 1). 3 Existence of weak homoclinic solutions In this section we investigate the existence of weak homoclinic solutions of problem (1.1). The energy functional corresponding to problem (1.1) is defined as J : W 1,p(.) α −→ R such that J(u) = M̂ ( ∑ k∈Z A ( k − 1, ∆u(k − 1) )) + ∑ k∈Z 1 p(k) |u(k)|p(k) − ∑ k∈Z f(k)u(k), (3.1) where M̂(t) = ∫t 0 M(s) ds. 48 Aboudramane Guiro, Idrissa Ibrango and Stanislas Ouaro CUBO 19, 3 (2017) Definition 3.1. A weak homoclinic solution of problem (1.1) is a function u ∈ W 1,p(.) α such that    M ( ∑ k∈Z A ( k − 1, ∆u(k − 1) )) ∑ k∈Z a(k − 1, ∆u(k − 1))∆v(k − 1) + ∑ k∈Z |u(k)|p(k)−2u(k)v(k) = ∑ k∈Z f(k)v(k), (3.2) for any v ∈ W 1,p(.) α . Hence the critical points of functionnal J are the weak solutions for problem (1.1). The main result is the following: Theorem 3.2. Assume that hypotheses (2.1)-(2.7) hold. Then, there exists at least one weak homoclinic solution of problem (1.1). Proof. We first present some basic properties of the functional J. Proposition 3.3. The functional J is well defined on W 1,p(.) α and is of class C 1(W 1,p(.) α , R) with the derivative given by    〈J′(u), v〉 = M ( ∑ k∈Z A ( k − 1, ∆u(k − 1) )) ∑ k∈Z a(k − 1, ∆u(k − 1))∆v(k − 1) + ∑ k∈Z |u(k)|p(k)−2u(k)v(k) − ∑ k∈Z f(k)v(k), (3.3) for all u, v ∈ W 1,p(.) α . Indeed, we denote by I(u) = M̂ ( ∑ k∈Z A ( k − 1, ∆u(k − 1) )) , L(u) = ∑ k∈Z 1 p(k) |u(k)|p(k) and Λ(u) = ∑ k∈Z f(k)u(k). We have, by using (2.7), that |I(u)| = ∣∣∣∣ ∫ ∑ k∈Z A ( k − 1, ∆u(k − 1) ) 0 M(t)dt ∣∣∣∣ ≤ B2 ∣∣∣∣ ∫ ∑ k∈Z A ( k − 1, ∆u(k − 1) ) 0 tα−1dt ∣∣∣∣ ≤ B2 α ( ∑ k∈Z ∣∣A(k − 1, ∆u(k − 1)) ∣∣ )α . CUBO 19, 3 (2017) Weak homoclinic solutions to discrete nonlinear problems . . . 49 According to (2.1), (2.3) and the discrete Hlder type inequality, we write ∑ k∈Z ∣∣A(k − 1, ∆u(k − 1)) ∣∣ ≤ ∑ k∈Z ∫∆u(k−1) 0 |a(k − 1, t)|dt ≤ C1 ∑ k∈Z ( j(k − 1) + 1 p(k − 1) |∆u(k − 1)|p(k−1)−1 ) ∆u(k − 1) ≤ C1 ∑ k∈Z j(k − 1)|∆u(k − 1)| + C1 p− ∑ k∈Z |∆u(k − 1)|p(k−1) ≤ C1 ( 1 q− + 1 p− ) ||j||q(.)||∆u||p(.) + C1 p− ||∆u||p(.) < +∞, and we deduce that |I(u)| < +∞. We have |L(u)| = ∣∣∣∣ ∑ k∈Z 1 p(k) |u(k)|p(k) ∣∣∣∣ ≤ 1 p− ∣∣∣∣ ∑ k∈Z |u(k)|p(k) ∣∣∣∣ < +∞, and |Λ(u)| = ∣∣∣∣ ∑ k∈Z f(k)u(k) ∣∣∣∣ ≤ ∑ k∈Z |f(k)||u(k)| < +∞. Clearly, the functionals I, L and Λ are in C1(W 1,p(.) α , R). Therefore, the functional J is well defined on W 1,p(.) α and is of class C 1(W 1,p(.) α , R). In what follows we prove (3.3). Let u, v ∈ W 1,p(.) α . We have    lim h→0+ I(u + hv) − I(u) h = lim h→0+ M̂ ( ∑ k∈Z A ( k − 1, ∆u(k − 1) + h∆v(k − 1) )) − M̂ ( ∑ k∈Z A ( k − 1, ∆u(k − 1) )) h = M ( ∑ k∈Z A ( k − 1, ∆u(k − 1) )) ∑ k∈Z a ( k − 1, ∆u(k − 1) ) ∆v(k − 1). Let us denote gh = |u(k) + hv(k)|p(k) − |u(k)|p(k) p(k)h . We have ∑ k∈Z |gh| ≤ 1 p−h ∑ k∈Z |u(k)|p(k) + 1 p−h ∑ k∈Z |u(k) + hv(k)|p(k) < +∞. 50 Aboudramane Guiro, Idrissa Ibrango and Stanislas Ouaro CUBO 19, 3 (2017) Thus lim h→0+ L(u + hv) − L(u) h = lim h→0+ ∑ k∈Z |u(k) + hv(k)|p(k) − |u(k)|p(k) p(k)h = ∑ k∈Z lim h→0+ |u(k) + hv(k)|p(k) − |u(k)|p(k) p(k)h = ∑ k∈Z |u(k)|p(k)−2u(k)v(k). And lim h→0+ Λ(u + hv) − Λ(u) h = lim h→0+ ∑ k∈Z f(k) ( u(k) + hv(k) ) − f(k)u(k) h = ∑ k∈Z f(k)v(k). � Proposition 3.4. The functional J is weakly lower semi-continuous. Indeed, by (2.1), (2.5) and (2.7) we have that J is convex. Thus, it is enough to show that J is lower semi-continuous. For this, we fix u ∈ W 1,p(.) α and ǫ > 0. Since J is convex, we deduce that for any v ∈ W 1,p(.) α , J(v) ≥ J(u) + 〈J′(u), v − u〉 ≥ J(u) + R(u, v) + S(u, v) + T(u, v), with R(u, v) = M ( ∑ k∈Z A ( k − 1, ∆u(k − 1) )) ∑ k∈Z a(k − 1, ∆u(k − 1)) ( ∆v(k − 1) − ∆u(k − 1) ) and S(u, v) = ∑ k∈Z |u(k)|p(k)−2u(k) ( v(k) − u(k) ) and T(u, v) = ∑ k∈Z f(k) ( u(k) − v(k) ) . Using the Hlder type inequality there exist tree non negative constants C3, C4 and C5 such that R(u, v) ≥ −M ( ∑ k∈Z A ( k − 1, ∆u(k − 1) )) ∑ k∈Z |a(k − 1, ∆u(k − 1))||∆v(k − 1) − ∆u(k − 1)| ≥ −C3||∆u − ∆v||p(.) ≥ −C3||u − v||1,α,p(.) (3.4) and T(u, v) ≥ −C4||u − v||1,α,p(.). (3.5) CUBO 19, 3 (2017) Weak homoclinic solutions to discrete nonlinear problems . . . 51 Also S(u, v) ≥ − ∑ k∈Z |u(k)|p(k)−1|v(k) − u(k)| ≥ − ( 1 p− + 1 (p′)− )∣∣∣∣|u|p(.)−1 ∣∣∣∣ p′(.) ||u − v||p(.) ≥ −C5||u − v||1,α,p(.). (3.6) Then, combining (3.4), (3.5) and (3.6), we get J(v) ≥ J(u) − C6||u − v||1,α,p(.) (3.7) with C6 = C3 + C4 + C5. Finally for all v ∈ W 1,p(.) α with ||v − u||1,α,p(.) < δ = ǫ C6 , we get J(v) ≥ J(u) − ǫ. Then J is lower semi-continuous and by corollary III.8 in [1], we conclude that J is weakly lower semi-continuous. � Proposition 3.5. The functional J is coercive and bounded from below. Indeed, we have J(u) = M̂ ( ∑ k∈Z A ( k − 1, ∆u(k − 1) )) + ∑ k∈Z 1 p(k) |u(k)|p(k) − ∑ k∈Z f(k)u(k) ≥ B1 α ( ∑ k∈Z A ( k − 1, ∆u(k − 1) ))α + 1 p+ ∑ k∈Z |u(k)|p(k) − C7||f||p′(.)||u||p(.) ≥ B1 α ( ∑ k∈Z 1 p(k − 1) ∣∣∆u(k − 1) ∣∣p(k−1) )α + 1 p+ ∑ k∈Z |u(k)|p(k) − C′7||u||1,α,p(.) ≥ B1 α(p+)α ( ∑ k∈Z ∣∣∆u(k) ∣∣p(k) )α + 1 p+ ∑ k∈Z |u(k)|p(k) − C′7||u||1,α,p(.) ≥ min ( B1 α(p+)α ; 1 p+ )(( ∑ k∈Z ∣∣∆u(k) ∣∣p(k) )α + ∑ k∈Z |u(k)|p(k) ) − C′7||u||1,α,p(.) ≥ min ( B1 α(p+)α ; 1 p+ ) ρ1,α,p(.)(u) − C ′ 7||u||1,α,p(.). To prove the coerciveness of the functional J, we may assume that ||u||1,α,p(.) > 1 and, using Proposition 2.8, we deduce from the above inequality that J(u) ≥ min ( B1 α(p+)α ; 1 p+ ) ||u|| p − 1,α,p(.) − C′7||u||1,α,p(.). Thus, J(u) −→ +∞ as ||u||1,α,p(.) −→ +∞, 52 Aboudramane Guiro, Idrissa Ibrango and Stanislas Ouaro CUBO 19, 3 (2017) namely J is coercive. Besides, for ||u||1,α,p(.) ≤ 1, we have J(u) ≥ min ( B1 α(p+)α ; 1 p+ ) ρ1,α,p(.)(u) − C ′ 7||u||1,α,p(.) ≥ −C′7||u||1,α,p(.) > −∞. Thus J is bounded below. � Since J is proper, weakly lower semi-continuous and coercive on W 1,p(.) α , using the relation between critical points of J and problem (1.1), we deduce that J has a minimizer which is a weak homoclinic solution of (1.1). � 4 An extension In this section we consider the following problem (Pu)    −M(A(k − 1, ∆u(k − 1)))∆(a(k − 1, ∆u(k − 1))) +|u(k)|p(k)−2u(k) = f(k, u(k)), k ∈ Z lim |k|→∞ u(k) = 0, (4.1) where we assume that    f(k, .) : R −→ R is a continuous function for all k in Z; c : Z −→ [0; +∞) is such that c+ < +∞ and |f(k, t)| ≤ c(k)|t|β(k)−1, with β : Z −→ R such that 1 < p− ≤ p+ < β− ≤ β+. (4.2) For any u ∈ W 1,p(.) α , the energy functional corresponding to (4.1) is J(u) = M̂ ( ∑ k∈Z A ( k − 1, ∆u(k − 1) )) + ∑ k∈Z 1 p(k) |u(k)|p(k) − ∑ k∈Z F ( k, u(k) ) , (4.3) where F ( k, u(k) ) = ∫u(k) 0 f(k, t)dt. CUBO 19, 3 (2017) Weak homoclinic solutions to discrete nonlinear problems . . . 53 Definition 4.1. A weak homoclinic solution of problem (4.1) is a function u ∈ W 1,p(.) α such that    M ( ∑ k∈Z A ( k − 1, ∆u(k − 1) )) ∑ k∈Z a(k − 1, ∆u(k − 1))∆v(k − 1) + ∑ k∈Z |u(k)|p(k)−2u(k)v(k) = ∑ k∈Z f ( k, u(k) ) v(k), (4.4) for any v ∈ W 1,p(.) α . We have the following result: Theorem 4.2. Under assumptions (2.1)-(2.7) and (4.2), the problem (4.1) has at least one weak solution. Proof. Let h(u) = ∑ k∈Z F ( k, u(k) ) , therefore h′ : W 1,p(.) α −→ W 1,p(.) α is completly continuous and thus, h is weakly lower semi-continuous. Then J ∈ C1 ( W 1,p(.) α ; R ) and is weakly lower semi- continuous. On the other hand, for all u, v ∈ W 1,p(.) α , we have lim δ→0+ h(u + δv) − h(u) δ = lim δ→0+ ∑ k∈Z F ( k, u(k) + δv(k) ) − F ( k, u(k) δ , and since ∑ k∈Z ∣∣∣∣ F ( k, u(k) + δv(k) ) − F ( k, u(k) ) δ ∣∣∣∣ ≤ c+ δ ∑ k∈Z ( ∫u(k)+δv(k) 0 |t|β(k)−1dt + ∫u(k) 0 |t|β(k)−1dt ) ≤ c+ δβ− ∑ k∈Z ( |u(k) + δv(k)|β(k) + |u(k)|β(k) ) < +∞, we obtain lim δ→0+ h(u + δv) − h(u) δ = ∑ k∈Z lim δ→0+ F ( k, u(k) + δv(k) ) − F ( k, u(k) δ = ∑ k∈Z f ( k, u(k) ) v(k). Consequently,    〈J′(u), v〉 = M ( ∑ k∈Z A ( k − 1, ∆u(k − 1) )) ∑ k∈Z a(k − 1, ∆u(k − 1))∆v(k − 1) + ∑ k∈Z |u(k)|p(k)−2u(k)v(k) − ∑ k∈Z f ( k, u(k) ) v(k), (4.5) 54 Aboudramane Guiro, Idrissa Ibrango and Stanislas Ouaro CUBO 19, 3 (2017) for all u, v ∈ W 1,p(.) α . A critical point to J, i.e. a point u ∈ W 1,p(.) α such that 〈J′(u), v〉 = 0 for all v ∈ W1,p(.)α is a weak solution to (4.1). To end the proof of Theorem 4.2, we have to prove that J is coercive and bounded from below. For u ∈ W 1,p(.) α such that ||u||1,α,p(.) > 1, we have J(u) ≥ min ( B1 α(p+)α ; 1 p+ ) ||u|| p− 1,α,p(.) − ∑ k∈Z F ( k, u(k) ) ≥ min ( B1 α(p+)α ; 1 p+ ) ||u|| p− 1,α,p(.) − ∑ k∈Z ∫u(k) 0 |f(k, t)|dt ≥ min ( B1 α(p+)α ; 1 p+ ) ||u|| p− 1,α,p(.) − c+ β− ∑ k∈Z |u(k)|β(k) ≥ min ( B1 α(p+)α ; 1 p+ ) ||u|| p− 1,α,p(.) − c+K β− where K is a positive constant. As p− > 1, then J is coercive. On the other hand, for u ∈ W 1,p(.) α such that ||u||1,α,p(.) < 1, we have J(u) ≥ min ( B1 α(p+)α ; 1 p+ ) ||u|| αp+ 1,α,p(.) − c+K β− ≥ − c+K β− > −∞. Therefore, J is bounded from below. � References [1] H. Brezis; Analyse Fonctionnelle: Theorie et Applications. Paris, Masson, 1983. [2] A. Cabada, C. Li, S. Tersian; On homoclinic solutions of a semilinear p-Laplacian difference equation with periodic coefficients. Adv. Difference Equ. 2010, Art. ID 195376, 17 pp. [3] A. Guiro, B. Kon and S. Ouaro; Weak homoclinic solutions of anisotropic difference equation with variable exponents. Adv. Difference Equ. 154 (2013), 13 pp. [4] A. Guiro, B. Kon and S. Ouaro; Weak heteroclinic solutions of anisotropic difference equation with variable exponents. Electron. J. Diff. Equ. 225 (2013), 1-9. CUBO 19, 3 (2017) Weak homoclinic solutions to discrete nonlinear problems . . . 55 [5] B. Kon and S. Ouaro; Weak solutions for anisotropic discrete boundary value problems. J. Difference Equ. Appl. 17, N.10, (2011), 1537-1547. [6] B. Kon, S. Ouaro and S. Traor; Weak solutions for anisotropic nonlinear elliptic equations with variable exponent. Electron. J. Diff. Equ. 144 (2009), 1-11. [7] M. Mihailescu, P. Pucci and V. Radulescu; Nonhomogeneous boundary value problems in anisotropic Sobolev spaces. C. R. Acad. Sci. Paris, Ser. I 345 (2007), 561-566. [8] M. Mihailescu, P. Pucci and V. Radulescu; Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl. 340 (2008), 687-698. [9] M. Mihailescu, V. Radulescu and S. Tersian; Eigenvalue problems for anisotropic discrete boundary value problems. J. Difference Equ. Appl. 15(6) (2009), 557-567. [10] M. Mihailescu, V. Radulescu and S. Tersian; Homoclinic solutions of difference equations with variable exponents. Topol. Methods Nonlinear Anal. 38 (2011) 2, 277-289. Introduction Preliminaries Existence of weak homoclinic solutions An extension