ClUlIOO a Math ematical Journal Vol. 6, ~ 1, {11 6 -1 2 1). March 2004. On Brouwer's Fixed Point Theor em' N . Tarkhanov Un ivcrsitii.t Potsdam ln stitu t für Mathematik Postfach 60 15 53 1441 5 Potsdam Ge rm any tark ha11 ov@math .uni -potsdam .de ABSTRACT Thc pa ¡>cr presc nts a u cx pli cit fo rmul a for t hc numb er oí fixcd points of a C"" nrn p oí a segmc11t [a , b] C R. Whi! c t hc formula can be derived frorn thc Lcíschct:1. flx«I point thoo rcm for gc ncrnl CW -comp lcxes , t hc nc w p roof is ins truct ivc and hi ghli ght.s th c co 11 t ribu tiom1 of dcgcncratc fi xcd points . 1 Introduction 111 19 10 Orouwe r (cf. IB ro l 2]} provc H º(o '[a,bj) , ( H f ), H 1 (o' [a, bj)--> H ' (o' [a,bj) are cndomorphis ms of t hc cohomology of th c de Rh a m co mp lex o n lc1, b], indu1,;cd by t hc pull-back o pera t or ¡n on differe nti a l fo rm s. Sincc Lh e cohomology is fi 11 it(' d im (' nsio nal al C\'e ry stcp , t hc t races of th ese endo mo rphi sms ar e well dcfi ncd . o. Note th at in fact. L ( f) = 1 in our specia l case , fo r Hº( l [a, bJ) ~ C a nd H 1 (l [a , b]) ~ Le mma 4 . 1 Sup11os e all jixcd¡minl s of ll1 e ma¡J f on [a , bJ are iso fot cci . Tlw11 l b b " ) L(f ) = P·' · d( 0(J (y) - y) - b = . " a (4 . 1) Proo f. Appl ying t hc pu \1 -back opcrato r r t o both sid cs o f equalitics (3.2 ) WC g 1' I (f'P ) d f ' - f' Sº. d(f1P ) = f ' - f'S' . for ¡: and d rninmuLe. Si ncc ¡ : P maps E 1 [a , b] to ljri , b] wc ded uce t ha t / 1 a nd /' S are liomo to pi c· cndo- mo r phi :-; ms of t h€' de Rl mm com pl cx . Hencc t hcy induce th e samc endomo rp hisms of t hc co homology, i.c ., fl f = fl (JDS). !t. fol lows t hat L(/ ) = L( P S). \\'(' no w ob:;c rvc t.hat J DS is a trac e dass end omorp hism of t. he de JUmm co mplcx . Dy thc nltcrn at.i ng su 111 fo rmul a (cf. for ins t.a.ncc Theo rcm 19 .1.1 5 of [HOr85 ]) wc obtai n L(f) Tr J' Sº - Tr J' S' [ ll.'(U x l )'Kso - (! x l )' K s • ) wh(' rr ~ stands for t. hc d iagonal m ap [a , bJ -+ [a . bl x lo ,bJ . an cl K s is t hr Schw<1rlz ke rn el of By as.-. ump1io n, th c se t Fix(f, [a, b]) is d isc rc tc. Since thc intcg ran cl is of cla."'~ l 1 j11. bJ. W(' gf'l L (f) = li"' 1. ll.'(11 x l )'K so - (/ x I )'Ks •) ' 'º ¡ .. .1,¡\ U, wlu •rt• ( ' I!' l lw M't o f al l ¡wi1 1t s y E [a , bl wh osc d ist a ncc to Fix( / . [o, b]) is l t~ss t hai1 On Drouwer's FLYed Poillt Theorem 119 Wc no~ make use of cqualities (3.2) to evaluate Lhe integrand in the latter integnll. Nnmcly, tlhey imply that d~Kp = -Kso, d~Kp = -Ks• mvny from Lhc diagonal oí [a, b] x [a, b]. IL follows that holds on la, bJ \ Uc, whcnct: L(f) T hii; provt.'S thc formula. t-•(-d~(f x 1)'Kp+d.,(fx 1)' I'U X 1)'Kp) lim { d(t:::..~ (f x l)~Kp) €-~u Í¡n,bJ\U, pv[ d(8(f(y)-y)-:=~) 5 Fixed point theorem o '1'111• sccm1d term in t hc in Lngral (4. l) is eas ily evaluated , he11ce t.his for1nula t r m1sf111·n1s '" L(f) = l + p.v. [ d8(f(y) - y) . T heorem 5.1 Let f be 11 C 00 mav of tite sr.9m e11t !n , b] with isofolerl jix1~1i ¡min/ .. '1. 'l'lie11 L(f) = 1 + 8(/(71) - 11) r-+ L µ(p) n+ pEFix(/,(n,b) ) wlum~ ¡1(1' ) i.s thc loco/ dcgree of 1 - f at p. Proof. Writ.r r1 < p 1 < ... < PN < ¡, for 1.111' fixccl points oí f Lha1. lit• in l.lu~ 01w11 i11t1•rv11I (u ,b}. Siurr 1.ht! f1111ct.\011 0(f(y) - y) is c:onstant away from tlw set. o f fixt~d poin!s uf f w1· ~1·t r1 - • N 1•~+1 -• b -t L(f ) = 1 + I d8(f(71) -y) + L: I d8(f(y)-y ) + I d8(f(y)- y) o+c k = l l'~ +c p ,, +r fur 1111 ( > O Rnmll r.nouRh. lfoncc it follows t hat n +r N 1•1+ t L(f ) = 1 - (-l(/(71) - y) I,_, - L: 8(/(y) - y ) I,.. _,. k = l 120 N. Th.rkhanov A passage to the limit when € ~ O+ g ives the desired formula, for the local dcgrcc of 1 - f at. pis opposite to that of f - l . o lf a is a simple fixed poini of f then t he sign of (1 - / )(a+) already unic¡ucly determines the local degree of a ny smooth extens ion of l - f t.o a ncighbo urhoocl o f a . amely t he local degree of 1 - f at. a just. amounts to s ign (1 - /)(a+), or s ign {I - /'(a )} . The s ame rcasoning applies to the case where bis a si mple fixcd point off. Howcver these arguments no longer work if a or b is not s imple, for f can be extended to a smooth function in a ne ighbo urhood of a respecti vely b in di vcrse manners. Fa r this reason we need another s pecification of fixed points of f 0 11 thl.' boundary. Supposc / (a) = a. T hcn a is said to be an at.tracti ng fixed point off if ( 1 - /)(a+) > O, a ncl repul!iing if ( J - f)(a+) < O. lf f(b ) == b thcn t he fixccl point bis called a t tracti ng if ( 1 - J)(b- ) < O, and repu\sing if ( 1 - j)(b- ) > O. F'or thc atLracting fi.xcd points on the boundary we define t he local degree o r 1 - f to be 1, and for thc repuls ing fixed points wc defi ne the loca l degree o f l - f to be - 1. Thcn Thcorcm 5. 1 can be reformulatcd in t hc following way. Corollary 5.2 Let f be a C 00 map of the segment [a, b] with isolated fixed 11oi11h. Th en L(f) = µ (p), 11EFix( / ,(n,b))U Fix!• I( / ,O(o .b)) F'ix1ª 1(/,8(o, b)) being the set aj attracting fixed points o/f on tli e bo1mdary. For thc s mooth mapg or [a, b] the fi xed point theorcm of Bro uwer [Bro 12J is a n obvious consequcnce of Corollary 5.2 because L(/) == 1. References IAB67J M . F'. ATIYAH a nd R. BoTT, A Lefschetz fixed point formula for ellipt.ic complezes. 1, Ann. Mat h. 86 (1967), no. 2, 374-407. IBd~HIJ L . BouTET DE M ONVE L, Boundary probfem.t for pseudo-different.ial 011Cr· aton, Act a Math. 126 (197 1) , no. 1- 2, 11 - 5 1. ID 91J A . V . BllENNEn a nd M. A. S tt un1N, T l1 e Atiyah-Bott-Le/schetzform1Jlajor ell1pltc complexes 011 manifolds with botmdary, C ur rent. Problcms of Math- e mat.ics. F\mdamental Directions. Vol. 38, VIN IT I, Moscow, 1991 , pp. 11 9 183. jBro 12J L. 8 . J . B nouwEn, Über Abbildungen uon Mannig/alt1gke1 tcn, Math. Ann. 7 1 ( 1912) , 305- 3 14 . IDo172) J\ . D OLO , l ccturcs 011 Algebrair Topology, Spring cr- Verlag, Bt•rlin c:L al.. 1972. On Brouwer's Fixed Point Theorem 121 [H0r85] L . H6RMANDER, 11~e Analysis o/ Linear Partia/ Diflerentfol Operators. Vol. 3: Pseudo-dif!erential operators, Springer-Verlag, Berlin et al., 1985. [Hop29J H. HOPF, Úber die algebraische Arizalll von Fi.xpu11kten, Math. z, .. 29 ( 1929~, 493- 524. [Lcf26] S. LEFSCHETZ, Jntersectio11s and transformation.s o/ complexes and mani- foldJ, Tra.ns. Amcr. Matlh. Soc. 28 (1926), 1-49. [Tar95] N. N. TAR.KHANOV, Comvlexes o/ Dif!erential Operotors, Kluwer Academic Publis hcrs, Dordrccht., NL, 1995.