Cubo A Moth.cmo ti col Jo urrrnl l'ol.05(/\~ st \l dir1d . T l1 t' 1l 1t 'Qt\' uf b uudt,.f lull"a.t Frr('rfl.l or:- for whkl1 ( l . l ) liolds. 11( ;\ ) < . u{.'\ ")< . but r1 {A) 1111 1\ hl' 110 1 fttUid 10 "(A "). Tlms Frcrl(X. Y) is n propcr s\lbsct of t hc :'\oeth cr opcrntors. Th1 • Ncwd1n optTllll Oft(; are coll('(I 111 honor o f F . :'\oc thcr. who wns 1lu;• firsl l o si ud ,Y n • lnf>.~ of 111 11¡.¡ulnr 1otiti;.111I rqmu1011s with op('rntors of 1h1 s dnss iu 1921 jJJ. 92 A CJ11ll'a cterizl.ltior1 o( U11bounded F'rcdl1olm Operntoffl In f11j " si mpl e nnd s hort proof of t he Fredho lm ahernat1 \-e and n chnratl riuuon ol Fredholm opero t.ors ar e g:iven for boundt..>d linear opem1ors. Rccall thnt " lincnr boundtd opern tor F lS ca ll ed a finitc- rank operntor ií dim R{F ) < , whe re R(F ) ili th e rftng~ of F In t he presc nt. papcr ti he resu lts of (4] are generalized to thc en.se of closcd uuboundi!d linear opern1ors. Niuncl y, t he following rt.>s ult is pro\•ed: Theo r em 1.1 lf A is r1 Frcdholm opcmtor, then A = 8 - F, (131 U!hr:rt: Bu a /mear c/o.rnrl 071emlor, D(B ) = D( A ), R ( B ) = )~. N(B) = {O) , 1md Fu cr fimlc-ronk opem tor. Comrnr.~ely, if (1. 3) lwlds. whcnr 13 ·X - )' .... a l111eor closc.d dc.n,,rlr defi11ed oparo t-o,.. R {/3) = i' , N(B) = {O) . arid F r.s u fimtc-ronJ.: opttm tor, tl1r; 11 A u rÜ,JcJ /J(.-1) = 0(8). and (1. 1) rmd (l. !!} hofd. so A 1s a Fredholm opcmtor. lu !>Ce t1011 2 11 proof of T heo rti m 1 is givc n. 111 th c htcraturc 1lu.' co.:.c of unboundtd Frcdholm opcrators is usun lly no! d iscusscd dírcc tly. In jSj tmd m [6j. pp.5i· GI. s mgulllfllU"' of 1hc pn.r1u nct er-dcpc11dc11!, Frcd holm opcrntors nrc s tud icd. 1111(! iu !7J nppll cn11011?i of tlwo Frcdho hn OJ>Crn to rs in brnn chiu g tlhco ry nrc prcsc nt cd Thcorcm 1 1 is UbC Ítll. for cx1u11plr 111 lhc 1hoory of c l\ipt,ic boundnry vnlu c problcms, but "-"t' do no t go in10 fur1h1•r dl•ltlll (~ c.g .. (11. (21. l;j). 2 Proof 1 ;\ssi1111c 1hnt A : X - )" i~ lin cnr , closecra 1or, und ( 1 1) nnd (12) hold l..c t lL~ provc 1h111, t1hc11 ( ! .:.!) holds, D ( /J ) = D ( A ). R( B ) = l '.N( B} = fDt . 8111rl~ 11ml F 1:, fim1c- 11111k opt·1·ntor . Lc1 ~;,}i'5'.,'fr1 be n bnsis of N(i\) nnd fl •J }i -5'.J°f" be a bas11> of N(JI º ) h lb k111rrm 1h8' /1 (J\)J. = N (A ' ). (2 1) whcre R( ..t)J. 1s !lw set of liticur fun c1io11nl1t h'11 111 1 ~ · sud1 1lia1 (i.-•1, J\11 ) = O V11 1)(11). whcrc (-.·,. /) is tl1 c vn lu c of 11 li11 cn r íu11 c110 11nl v, E l .. on lht' e l<'1m·111 f }' Clr1Ul~·. t•1 E ,\ '( A") . 1 :S: ; $ 11 . Dc-fmt' /Ju := Au + L ( /1 J.u)11, ·=( A + f 1u. ,,, E } ". '' 1221 A .C. H.nmm 93 "'hnro F In n flnllc-ra.nk opcrnlor, {vJ }i sJ.S n is n aot. of cloments of Y , biorthogo nul to the { O,j ¡é m . le ~ ! "1J h SJ 5 111 (~,. u.,.) .. 6Jm := l ,j = m , and {liJ }t SJ~n IS th e: set of elemcnta of x·, Ulorthogo11nl 10 t ho set (1PJ)1 ~J.Sn • (l1 J,¡p ,., ) = ÓJ•n · Existence of .!!ets bio rt hogonal to flnlt o.ly mnr.\)· hnCMl.y lndo pcmdc.nt ole.menta of n Bnnnch spnce follows from t.he Jfo.lm - B11 nool1 lhoorom. An ar bilrnry olomcmt 'll E X can be un iquely represc.nt.ed a.s 1J = u 1 + I:;'. 1 l°J 'PJ• CJ m t'ODSI, rutd (Ji¡, U¡)= Q, 1 :5 j $ 11. Lct ue chedt thft t N(B) = {O} and /l(B) = Y . Ass um e B u = O, t.hnt is Au + 'f..J'. 1(111 , u}vJ • O. Apply l/'m t.o tlhia oquntiou, uso (rb,,, , A-u)= O, and get n " O• L(~m,v¡)(h¡, u) = L; 6,,,;(h¡, u) = (h,,,, u), 1 $ m $ n. ,.. J• l 1'lwruforc . f and u,...-+ u , then Bun - Fu" -o f, and the above argument shows that Bu - Fu= f so Au =f. Thus A is closed. Finall y, !et us prove (1.2). Let Au =O, i.e. Bu - Fu= O. App lying the bounded linear injective eperator a- 1, ene ge t s an equivalent equation u - Tu=O , T:=B - 1F, T:X--X, (2 .6) with a finite-rank o perator T. It is an elementary fact (see {4 ]) that dim N(J - T) := n < oo if T is a fini te-rank operator. Since N(A) = N(I -T), ene has dim N( A ) = n < oo. Now Jet Aºv =O. Then B ºv-F•v =O. (2.7) Since (B º ) - 1 = (B- 1 )º is a bounded and injective linear operater, the e lements v are in one-to-o ne corresp ond ence with the elements w := B ºv , aud (2.7) is equiva.lent to w - T ' w =O, T' ~ F ' (B ' )-' , (2.8) so that T' is the a.djoint to operator T := s -1 F . Since T is a finite-rank operator, it is an elementary fact (see [4)) that dim N(l - T ' ) = dim(l -T) = n < oo. Since N(A') = N(I -T'), property (1.2) is preved . Theerem 1. 1 is preved . o An immediate conseque nce of Theorem 1.1 is the Fredholm alternative (see Theorcm 1.1 in [4]) for unbounded operators A E Fred(X, Y ). A.G. Ramm References [111] KANTOROVJCH, L. ANill AKIL0V, G., F'unctional analysis in normed spaces, Macmillan, New York, 1964. [2] KNrO, T., Perturbation theory for linear operut