CUJlIOO Mal.em4tico Educacional Vol. 5, N2 t, (W-tt9). J UNIO eoos. T hree proofs of an ident ity involving deri vati ves of a positive definite matrix and its determinant Ba i- Ni G uo • Depart ment of Appl ied Mathematics and Informatics Jia ozuo lnstitute of Technology, Jiaozuo City, Henan 454000 T he People's Repu blic of China e-mail: guobaini@jzit.edu.cn A B STRACT In lhc pa¡>cr, t.hrcc prooís for an identity involving deriva t i ves o f a pOti.iti\'C dcfinit.c mntrix nncl its dct.erminant. a.re given using tcchniquc of hnca.r algebra. T hc idcnLity is bn.sic in diffcrential geomctry 2000 Molhcmatia Sub1ect Clas:iification: ISA IS, I5A24. Keu worW ond phrwes: l clcntity, positi vo clefimtc malrix, d et.erminant , deri va t.i ve 1 Int roductio n Let iW be an n-di me ns iona \1 n .$ 11 co nnected, C 1 Rie.mannia n ma n ifold . For d efin ition of manifold , piense re~ r t o s tandard texts fl, 4]. The Riema nnian metric on M associates t o each p E M an inner product o n Mp , which we d enote by ( , ). T he associat ed no rm will be deaoted by 1 I· T he Rieman nia n metn c LS C m 1.he s nse Lha l if X 1 Y a re C vector fields on M , l hen (X, Y} is n re.al-\'al ued funct iou on M . "Th~ au'bor WM s uppor tcd in pnrt by NNSF (# 10001016) of China., S F for Lhc Promincnt Youth ol Hcnan Provlnce, NS F of Hcnan Provincc (#~051800), F fo r P urc llcscnrdt of Nutur&I So0>Ct ol the Educnt lon DcpMtmcnt oí Hcnan Provioce (# 1999 11 000•1), Doctor F\md ol J..oauo lnft.ituLc of Tcchnology, China.. 225 226 Bai-Ni Guo Let U be an open set in M 1 and x ; U --t R" a diffeomorphism of U into IR" 1 lbat is , a cbart on M. Then associated to tbe chart are n coordinate vector 6elds , written as 8/8:.r) oras 8;, j = 1, ... 1 n . For Lhe given Ri emannian metric, define 9;> = (8;,8>), g = detG, G = (g;>h9.> $•• a-' = (~'h9.> $• • where j , k = 1, . . . , n , det G and a- 1 denote tbe determinant and t he inverse oí G respectively. It is well-known that G is a positive definite mat rix . See {2 1 pp. 3- 7J . The íollowing id entity involving de ri vatives of a posit ive defin ite matrix and its determfoant is fundamental in differentiaJ geometry. Theorem 1 Por 1 :S j ::; n, we have tr(G- 18;G) = 8;( 1og). (1) In th is s ho rl note , we wi ll g ive t hree proo fs of t he identit.y ( 1) us ing different technique oí linear a lge bra. Fa r concepta of linear a lgebra, picase refer to l3J. 2 Three proofs of identity (1) Firs t proo í. Si.nce Lhe metr ic ma trix G = (9ij) is a pos itive definite matrix 1 then we can assume its eigenvalues oí G are >.¡ > 0 1 i = 1, ... , n . From t heory o f linear a lge bra1 we ha.ve g = det G = IGI = I1 >. ;, (2) i= I lng = ¿in >.¡, (3) i = l " 8 ·>. · a;(lng) = I: T· i = l 1 (4) where j :=:: 1, . .. , n . FU rlher, t here is a n orthogonal matrix P such t hat ) = A, >-n (5) T hree proofs of an identity involviog ... therefore, ,.-e have G = PAP- 1 1 c- 1 = PA - 1 P - 1 1 and 8, G = 8,(P/\P- 1 ) = (81P)/\P- 1 + P(8; A)P-1 + P/\(8,(P- 1)), c-1(8;G) = (P/\ - 1 p - ' )(8;P)/\P-1 + (P/\- 1 p - 1)(P(8,A)P- 1) + (P/\ - 1 p - ')(P/\(8;(P- 1))) = pf1 - 1(P- 18¡P)/\P- 1 + P(/\ - 18, ¡ p - • + P8;(P- 1 ). l'rom p - • P = E, it follows t hat (8,(P - '))P + p - 1(8, P) = O, thus (6) (7) G 1(/J,G) = - (Pr1)[(8;( P- 1))PJ(PA - 1 ) - 1 + P( - 18, A)P- 1 + P8;(P- 1) = - (PA- 1 p - ')P[(8;(P- 1 ))PJP- 1(PA - 1 p -•¡-• + P(/\ - 18; /\)P- ' + P8,(P- 1 ) = - G(P8,(P- 1 ))G- 1 + P(A- 18,A)P- ' + P8,(P- ' ). (8) sing 1he formula O, it.s element a,1 u o /uncl 1on o/ x, lhe r1 d( ln IAI) = tr[A - ' dA] = tr( d;! A-1) . dx dx dx (19) T hree proofs of an identity invol ving ... R e m a.rk 3 Lct A(t ) ia an in ve rtible differentiable molru-, lh en (d el A)' = (d el A ) lr(A- 1 A'). where A' dt nott:J th e derivati ue o/ m atrix A unth rupo;t to t . 229 (20) T bird pro of. Let e· = (G11 ) d enote the adj oint of the positive d efi nit e mat rix G 1 lhen G,1 = G¡¡, nnd _, _ G' 8¡G _ t r(G' 81G) _ ~ ~ .. tr(G 8,G) - t r IGI - IGI - ¿_, c ,,(8,g,,), 9 1.1- =- I (21} 8 g 8 IGI l n l n 8,{ln g ) = :E. = =.! = - 8; L Y11 G11 = - L: [{8,g,,)G 11 + 9118;G11]. 9 g g l = l g l=I (22} The prooí red uces LO p rove t hnL (23) l -= 1 •-=2 1= 1 lu íact 1 wc have ¿g.,(8, G.,) = L L (8,g,¡)G,, , k = l , 2, ... , n. (2~ ) i.-=I 1j lc l= l T his compleLes t he prooí. • R efe r e n ces [IJ M P do Carmo1 Oifferential Geometry o/ Curves and S urfaces, Prc ntice- llnll. loe., Englewood C liffs, Ncw Jersey, 1976. {2J 1 Cha\-el, E 19cnvalu es in Riema nruon Gcornctry, Acadcmic Press, 1984. [3J A Ramachandra H.ao and P. Bhi masankarnm, Lmeor Algebm, 2nd edition, TcxlS aod Readi ngs in Mathematics 19 , Hindustan Book Agency, New Delh1, lodi•, 2000. 141 F W \\'aro r , Foundations o/ D1fferent1able Mantfolds and Lie Groups, Cradua~ Thxts in Mothemnt ics 9 4, pringer·Verlag, 1983. C hina Aca- demte Pubhshcrs, Bcij ing, 19 3.