C ubo Matemática Edu cacional Vol. 5., N° 1, Enero 2003 A N e w Expansion Formula G e orge A . Anastassiou Dcvm·tmenl o/ Mathematu;al S cien ces Uniuc 1·sby o/ M emphis Mcmvhis, TN 38 152 U.S. rt. c-ma·íl: ganaslss@mcmphis. ed1J 2000 AMS S ubject C lassilication : 26A42, 26A99, 26D 15 Key Words and Phr ases: T aylo r li ke expan ion , Rie ma nn- SLieltjes integral , inequaliLy íor integ ral ancl S\!Im. A bstract A new Tay lor like exp1:1insion íormula is est.ablished . Rere t!he JUemann- St.ieltjes i.ntegral of a funcllion is expanded into a finit.e sum for m wh ich involves the deriva.tives ar llhe funct ion evaluated al t.he rigbt end point of t he int.erwl of integrnllimi. Thc error of t hc appro.ximation is given in un integral fo rm involv ing tlH~ nllh deriva.ti ve of thc íunction. lmp!icullions and applicntio ns o f tbe fo r mu la follmv. l. R esults We give our first end mai n resulL: T beorem l. Let go be a Lebesgue integrable and of bou.nded variation function on [a, bJ, a < b. We fonn g¡ (X) :=f.' go(t.)dt,. ( 1) j ' (x - t)•- 1 g.(x) := 0 --¡;;-::-¡y-oo(l)dl, n EN, x E [a, b[ . (2) 26 George A. Anastassiou Let f be such that ¡Cn- I) is a absolutely continuous function on [a, bj. Then [ fdgo = ~(- !)• ¡<•l( b)gk(b) - f(a)g0(a) k:::O + (-1)" l 9n-1(t)J(n)(t)dt. Proof. We apply integration by parts repeatedly (see [lj, p. 195): t fdgo = f(b)go(b) - /(a)go(a) - l gof'dt, and 1• gof'dt Furthermore 1· J"g¡dt So far we have got 1• J'dg1 = J'(b)g1(b) - /'(a)g1(a) - [ 91/"dt ¡'(b)g1(b) - t 91/"dt. 1• J"d92 = J"(b)92 (b) - /"(a)g2(a) -1• 92/"'dt J"(b)92(b) -1· g2J'"dt. t fdgo f(b)9o(b) - f( a)go(a) - J'(b)g1(b) + !"(b)92(b) -1· 92/"'dt. Similarly we find J.' 92/"'dt = ¡· f"'dg, = f"' (b)g3(b) -1· g,¡C4ldt. T hat is, t fd!Jo = f(b)go(b) - /(a)g0 (a) - ¡'(b)91(b) + /"(b)92(b) - J"'(b)g3(b) + t g,¡C4ldt. (3) A Ncw Expnnsion Fbrmu/a 27 'fhc validit.y of (3) is now cleer. o On Theorem 1 wc have Coro llnry l. Additionally a.ssurne that ¡C11> exists and rs boun ded. 1'lien ll fdYo - ~(- 1 )•¡ 01 we want t o prove that ~ --+ O as n--+ +oo. Set See that A" Xn := nf' n = 1,2, . Xn+ 1 = ___.:'.'.!__·Xn , n = l,2,. n+l But there exists no EN: n > A - 1, i.e., A< 1l{) + 1, that is , r := n:+l < 1 (in fac t Lake no := rA - Il + 1, where r·l is t he ceiJj ng of the number) . Thus Xno+ l = re, where C := X,..0 > 0. T herefore A No w Expansion fbrmula 29 Likcwi we gct And in g ncral wc obtain O < X,.0 ¡ k < rk · e e· · r 010 tk, k E N whcrc e· : *°· That is inccrN-oasN - · ¡ , wcobtainthatx,.,.-OasN- l . l .c.,~ -o, ~n-1 O Re mark l. (O n Thooro1n 1) t;u rthcrmorc w 1ha1 (hcrc f E C"(la,bl)) lt fd!JO 1 /(a)9o(a) I c3> lf:( - 1J' ¡c'>¡¡ ). (9) Thcn 11' fdgo 1 / (a)9o(a)I :S /, . { ~¡9,(b)l I f 19n -1(l) jd1} . n El'I fi xcd. (10) 2. Applications (I} Lcl {ttn.}nieN be a scquo11cc of 13orcl finitcsigncd mcasu rcs on [a, bl. Consiclcr thc dislribution fun tions g0 ,,,.(x) : ''"'¡a,xl, x E a, bJi m. EN, which 1:1rc of boundl' is a absoluwly co ntinuous íuncLion on [0 1 q. Then by Thoorem J we find 9u{X) = ~, ali n E N. Fu rLhermore we geL 1 ,,_ , ¡ i• l( ) ( )" 1' f fdt = l::Hl•--1- + ...=.!__ t." ! 1" >(t )dt. lo k = O ( k + 1 )! n! O ( 16) One can d eri ve o t her formulas like ( 16} ror various basic ga 1s. References 111 Apostol, T. M .1 11Mathemat1cai AuaJy 1s", Ad d ison- Wesley, Rea.ding, M A1 1960. (21 Hogoas, G. 1 11CharacterizaL'ion o/ weak conuergen.ce of si91ied measures on JO, q•, Math. Sean