is t he d eri vati ve of a olu t ion it is a
li near combina tion of t. he columns of = M.
In other words 1 A/ is t he mat.rix of D relative to t he basis . Simi la rly, if el>
a nd .V are two bases for F ( D) t hen t. her is a constant invertib le mat rix P
s uch that.
l!J = P.
Applying D, we have
D -11 = D(P) = D() P = M P = '1/ P- 1/lf P,
Dcrck Hacon 6 1
80 thnt l hc mnt.rires oí D rclativ lo any t.wo bases far F(D) are simila r.
Thl'r ar two cas wh re bases are w 11 known. First, if A is any 11 il pol c nt
·onstant mntr i x th n
1
6 = l +tA+2t'A'+ ..
is a polynomial ma l rix whi h is asily n to be o basi for D - A. lcarly
oe = eA.
ndly, if a d iagona l rn ntrix 'D(D) has a basi then nonc of its d iagonal
C'ntnes can b zcro, fo r o t.h rwi t.h ·re would b infi ni tcly mauy !i n arly
in lrp<'nd nt olut ions. onvcrscly, 1 t / (D) be a diagona l ent ry f 'D(D) of
1 hr fonn Dlr+ high r pow r f D wh r k > O. Th n t.hc row vect.or
(1 t ... (k¡:li )I)
'"n ""'"' for f(D). 11ch bases mny be as.cmbled 11110 R basis 6. for 'D(D).
Clt·arly
D = D. J
wlwn• J 1s d 1rN't s11111 of Jorclan blotk ·, arh ro1t.-.ist111g of 011cs jusi abovc
111(' dt&Ronal and z r s I:; wh r .
In li:l'lltrnl , R "'"is f r F ( D ) may ll<' obta1111~l by r l11ci ng F t,o dia-
gonaJ form by row nnd c' olu mn opcra1 ions. Th1 ml.'I hod, whid 1 is bRs 1 on
long d1,'1MOn of poly noll\inl:;, is xplo.incd m varions tcx t.bo ks, for C'xtun¡ IC'
[J orchm (\lol 3, S<'<'li n 14 1) a nd gocs as follows.
l...t·1 g bí.' a nonzcro cnLry oí F . 13y • dmngmg rows oí P and t.hcn
c·olumn: oí F W<.' 111ay u.ss11mr t hat g is in Lht· upprr 1 ft hand com er f F'
(i t' m rh firs1 row nnd c·ol11 mn). lí g d1vicl~ rv<·ry nt.ry in ils row nncl
<·olnmn th n , by row n11cl C' lumn perations. all tht• rntri~ in t.h first. row
ami 1ht-" firs1 rolumn of F cxrcpt g may be r<.'dul''-'tl to zero. In olh r word
P ma~· be r!'d11('('(l to 11 © G (say). therwi , F 1s red uccd lo n matri x wit,h
nonzt--ro entry of 1 w N el grrc ami th pro<'Cdurr 1s l hen r p at.ed. Sine
r hr dcgrre rannol be rocluecd bcyond í'C'ro, F will ev nt.11 nlly b rccl uccd
to h JI (sny). rx t., // is a simila rly redurt'd and o on. In thc cnd , a
diagonal matnx 'D is blni nC'd . Tlms therr urc poly norni o.I mul.rircs U(.c)
nnd \ "(r) (w11h polynorn iL\I invrr ') s11rh 1ha1
UPV= D
62 Jordan Normal Form vio ODE's
Since U and V are invertible, is a basis for 'D(D) if and only if V(D) is
a basis for F(D).
3. Jordan Normal Form for Nilpotent Matrices
Let A be a nilpotent matrix. By reducing xi - A to diagonal form , one
can calculate explicitly U, V and 'D such that
U(D)(D - A)V(D) = 'D(D)
Now D - A has a basis, aarnely e. So 'D(D) also has a basis. Hence ó.,
as defined above, is a basis for 'D(D). Thus V(D)ó. is a basis for D - A.
Therefore
V(D)ó. = 8P
where Pisan invertible c0FJ.sta111t matrix. Applying D , we have
8AP = D (8P) = DV (D) ó. =V (D) Dó. = (V(D)ó.) J = 8PJ
Since e is a basis, this implies that AP = PJ, as required.
lf needed , the matrix P may be easily calculated , because it is t he
constant term of 8P and hence aJso of V (D)ó..
4. The General Case
Here we switch from poly nomial solut.ions to formal power series so-
lut ions with D defined formally by the usual formul a. Many textbooks
(for example J ordan 's Cours d'nnalyse) prove the basic result (due to Eu-
ler) [EulerJ that the polynomial /(D) has a basis consisling of f,tie"' for
each factor (x - a)" of f and J¡t1 eªtsin bt and fit'eª'cosbt for each fac-
tor ( (x - a)'+ b2) ' where O ,,,; j < k . For diagona l 'D such bases may be
asse mbled 111 lhe obvious way into a basis ó. for 'D( D ). Again , Dó. = ó.J
where J is o Jordan matrix. The res!. of t.he argument. goes t hrough as in
t.he n.ilpotent case..
Derek Hacon 63
111 . Jordn.n, Cours d 'anaLysc, nu1 hicr. V11lrus
l2J L . Eul r , De integmttone aequat1orum d1ffcren1talmm altionmi
groduum, Opero Omnin Vol. XX II 1> 10 149