CUBO 6, 13-18 ( 1990) R11cilbldo14qo•lo 1989 ON NUCLEAR BERNSTEIH ALGEBRAS by Rodolfo Baeza V. 12 O. -Abstract. In [ J] P. Holgate preved that the core of any orthogonal Bernstein algebra is a special train algebra and consequently a genetic algebra . Let A be a Bernstein algebra. Then A is a nuclear algebra if and only if the ocre of A is A. The present paper preves that the core of a Bernstein algebra is a special train algebra. 1.-Prelimlnaries. In the following let K be an infinita commutati ve f ield whose characteristic is nei ther 2 nor 3. Let A be a commutative nonassociative K algebra. For every sequence principal 8 1 •ª2, • • • 'ªk product a 1 of k elemente of A define the of all finita sume of products with a 1= a 1 . g'k is the set ak of k elemente in BU. g'k is called principal power of B. We say that aeA is nilpotent if there existe ne~ such that a"""º, A is nilpotent if there existe teli euch that At• O , If all elements of A are 1 J FOMotCYT 227-89; 01\Ffll 710-881 CCINT-USP-BRAZIL ;ll l m APPPA !JI L, • .A . A . PAC.14 C U B O nilpotents we say that A is a nilalgebra. A la called a Jordan algebra if xy=yx and x 2 (xy)=x(x2y) Vx,yEA. A.A.Albert preved that all finite dimensional Jordan nilalgebram or characteristic ~ 2 are nilpotent. Lemma l. Let A be a commutative algebra ,char(A)•2 and x3•o 't'xEA. Then A is a Jordan algebra. Proof. The identity x 3 "" (x+y) 3 • (x-y) 3 • O impliea that o ""' (x+y) 3 -(x-y) 3 = 2(2x(xy)+x2y). , But char(A) • 2, hence x 2y=-2x(xy). Replacing y by xy we obtain x 2 (xy)•-2x(x(xy)) • x(-2x(xy)) "" x(x2y), Le. A is a Jordan algebra. Let (A,w) be an (n+l) dimensional commutative non· associative baric K-algebra where w:A ---+ X is a waight function. (A,w) is called Bernstein algebra iff (x 2 ) 2 ""W(x) 2 x 2 , VxeA. In any Bernstein (A,w) algebra th• nontrivial homomorphism w is uni(¡uely determined, and A possesses at least one non tri vial idempotent element ec.I, ( see { 5] ) • The e-canonical decomposi tion of A is Xe•U•V whan U• { yeker { w) : ey• 'iy) and v-{ yEker ( w) : ey-o ) . The subspacea U and V satisfy the fundamental relations u2~, uv~, v2~, vv2•o, uY-o and the fundamental identities u~-o, u1(u 1v 1 )•O, u 1 (u 2 u 3 )+u 2 (u 3 u 1 }+u 3 (u 1 u 2 ) • o (Jacobi's identity) 1 vu 1tU, v 1EV, and (xy)(zt)+(xz)(yt)+(xt)(yz) •O Vx,y,z,teN • ker(w) • U• V. Lemma 2. Let (A,w) be a Bernstein algebra. Then N•Xer(w) and its princ ipa l powers are ideals of A. Proof . N is an ideal of A, since the kernel! of a h omomo rph i sm is an ideal. P.Holgate preved [3,p 615), that all yE.H ea t isf y e( y 1 y2 ) ... and D is a n ideal of c . That ie , (C/D , W') h 1 Berna te i n algebra, aince it is a homomorphic image ot c . Naturall y w' {c+D) • w(c) defines the weight function in C/D. IAt ua no te that x• c +D • ker(w') if f w(c) • O iff c • ker(w) I thua ke .r (1..1 ' ) • {c+D:cEN ) • ii • ü eV. Pr opo.t tion 2 . Let A • KeeU• V be a Berna te i n a lgebra, and C• IC tMU• tf•JC be i t s core . Then e is a apec i a l tra in algebra . Proo f . Pi rst , shall prove tha t C/ D i s a s pec i al train a lgebra . By lemma 3 we kn o w that C/ D i s a Bernstein algebra . It only rema in s to prove tha t x 3 • O Vx Eke r (w ' ) and then UH Propoai t lon 1. Let x • n+D be an el e ment ot ke r {w') , thua n • u-tu , u;t . Uaing the f undamental relat i o na and i dentitie• in OH HUCl.EAn .. e u B o PAG.17 the Bernstein algebra e, 2(u 1 u 2 )[u(u 1 u 2 ))EU. V 2s;:U, V2U=O and Jacobi's identity imply v 2 s;:o and, consequently u 2 (u1 u 2 )eD . Furthermore the second and the last fundamental identities imply that 2u3 ((u 1 u 2 )[u(u 1 u 2 ))) ""-2(u(u 1 u 2 )][u 3 (u 1 u 2 )] = (uu 3 )((u 1 u 2 )(u 1 u 2 ))E(uu 3 )v2-o vu3EU, because v 2g>. Then we have (u 1 u 2 )(u{u 1 u 2 )) E Uf\Ann(U), and by Jacobi's identity it is in D. '.1'hat is x 3=n3+D=-D and C/D is a special train algebra. This shows that r E N existe such that Q. (ker(w 1 ) )r Nr+1=NNrs;: ND .. O. By lemma 2 we know that N 1 is an ideal of e far all integer i>O. But N is nilpotent, hence e is a special train algebra. Remark l. It was preved in (2} that the orthogonality is not a necessary condition to be a special train algebra. The present work provee that the orthogonal hypothesis can be removed from Proposi tion 4 of [3) • Remark 2. It is preved in (5] that the core e of a Bernstein algebra A satisfy e = A2 • Let A = KeeU•V be a Bernstein algebra, the.n A 2 mA implies V=if ,and the meaning of our proposition 2 is that "Every nuclear Bernstein algebra is a special train algebra". References . (1] M.T.A.lcalde, R.Baeza, e.Burgueño, Aucour des algebres de Bernstein, Arch . Math., Vol. 53,134-140 (1989). ( 2] Baeza R. ,A non orChogonal BernsCein algebra vhich 1.~ R SnJ':r:1R1 trR1n Rlrtt":hrR. A.tris dri X F.scnlri dA AlaAbrA