CUBO A Mathematical Journal Vol.20, No¯ 02, (23–39). June 2018 http: // dx. doi. org/ 10. 4067/ S0719-06462018000200023 New approach to prove the existence of classical solutions for a class of nonlinear parabolic equations Svetlin G. Georgiev 1 and Khaled Zennir 2 1Sorbonne University, Paris, France, University of Sofia, Faculty of Mathematics and Informatics, Department of Differential Equations. 2Department Of Mathematics, College Of Sciences and Arts, Al-Ras. Qassim University, Kingdom Of Saudi Arabia. svetlingeorgiev1@gmail.com, sgg2000bg@yahoo.com, khaledzennir2@yahoo.com ABSTRACT In this article, we consider a class of nonlinear parabolic equations. We use an integral representation combined with a sort of fixed point theorem to prove the existence of classical solutions for the initial value problem (1.1), (1.2). We also obtain a result on continuous dependence on the initial data. We propose a new approach for investigation for existence of classical solutions of some classes nonlinear parabolic equations. RESUMEN En este art́ıculo, consideramos una clase de ecuaciones parabólicas nolineales. Usamos una representación integral combinada con una especie de teorema de punto fijo para probar la existencia de soluciones clásicas para el problema de valor inicial (1.1), (1.2). También obtenemos un resultado sobre la dependencia continua de la data inicial. Proponemos una estrategia nueva para la investigación de la existencia de soluciones clásicas de algunas clases de ecuaciones parabólicas nolineales. Keywords and Phrases: parabolic equation, existence, differentiability with respect to the initial data 2010 AMS Mathematics Subject Classification: 35K55, 35K45. http://dx.doi.org/10.4067/S0719-06462018000200023 24 Svetlin G. Georgiev and Khaled Zennir CUBO 20, 2 (2018) 1 Introduction Here, we consider the Cauchy problem ut − uxx = f(t, x, u, ux) in (0, ∞) × R, (1.1) u(0, x) = φ(x) in R, (1.2) where φ ∈ C2(R), f : [0, ∞) × R × R × R 7−→ C is a given continuous function, u : [0, ∞) × R 7−→ C is the main unknown. Our main results are as follows. Theorem 1.1. Let f ∈ C([0, ∞) × R × R × R), φ ∈ C2(R). Then there exists m ∈ (0, 1) such that the problem (1.1), (1.2) has a solution u ∈ C1([0, m], C2([0, 1])). Theorem 1.2. Let f ∈ C([0, ∞) × R × R × R), φ ∈ C2(R). Then there exists m ∈ (0, 1) such that the problem (1.1), (1.2) has a solution u ∈ C1([0, m], C2(R)). For O1, O2 ⊂ R with C 1(O1, C 2(O2)) we denote the space of all continuous functions u on O1 ×O2 such that ut, ux and uxx exist and are continuous on O1 × O2. Example 1.3. Let p > 1 and a ∈ C be chosen so that ap−1 = − 1 p − 1 . Consider the Cauchy problem ut − uxx = u p in (0, ∞) × R u(0, x) = a in R. Then u(t, x) = a(t + 1)− 1 p−1 is its solution. Actually, ut(t, x) = − a p − 1 (t + 1) − p p−1 , and uxx(t, x) = 0, and (u(t, x))p = − a p − 1 (t + 1) − p p−1 . Therefore ut(t, x) − uxx(t, x) = (u(t, x)) p in (0, ∞) × R and u(0, x) = a in R. CUBO 20, 2 (2018) New approach to prove the existence of classical solutions . . . 25 To prove our main result we propose new integral representation of the solutions of the initial value problem (1.1), (1.2). Many works have been devoted to the investigation of initial value problems for parabolic equations and systems (see, for example, [13]-[16] and the references therein). We note that in the references the IVP (1.1), (1.2) is connected with the dimension n, Fujita exponent, Sobolev critical exponents, bounded and unbounded domain. In this article we propose new idea which tell us that the local existence of classical solutions of the IVP is connected with the integral representation of the solutions, it is not connected with the dimension n and if the domain is bounded or not. As an application of our new integral representation we deduce some results connected with the continuous dependence on the initial data and parameters of the problem (1.1), (1.2). Theorem 1.4. Let f ∈ C([0, ∞)×R×R×R), ∂f ∂u , ∂f ∂ux exist and are continuous in [0, ∞)×R×R×R, φ ∈ C2(R). Let also, u(t, x, φ) ∈ C1([0, m], C2([c, d])) be a solution to the problem (1.1), (1.2) for some m ∈ (0, 1) and for some [c, d] ⊂ R. Then u(t, x, φ) is differentiable with respect to φ and v(t, x) = ∂u ∂φ (t, x, φ) satisfies the following initial value problem vt − vxx = ∂f ∂u (t, x, u(t, x, φ), ux(t, x, φ))v + ∂f ∂ux (t, x, u(t, x, φ), ux(t, x, φ))vx in [0, m] × [c, d], (1.3) v(0, x) = 1 in [c, d]. (1.4) 2 Auxiliary results We will start with the following useful lemma. Lemma 2.1. Let f ∈ C([a, b]×[c, d]×R×R), g ∈ C2([c, d]). Then the function u ∈ C1([a, b], C2([c, d])) is a solution to the problem ut − uxx = f(t, x, u, ux) in (a, b] × [c, d], (2.1) u(a, x) = g(x) in [c, d], (2.2) if and only if it is a solution to the integral equation ∫x c ∫y c (u(t, z) − g(z)) dzdy − ∫t a (u(τ, x) − u(τ, c) − (x − c)ux(τ, c)) dτ = ∫t a ∫x c ∫y c f(τ, z, u(τ, z), ux(τ, z))dzdydτ, x ∈ [c, d], t ∈ [a, b]. (2.3) Proof. (1) Let u ∈ C1([a, b], C2([c, d])) is a solution to the problem (2.1), (2.2). We integrate the equation (2.1) with respect to x and we get ∫x c ut(t, z)dz − ∫x c uxx(t, z)dz = ∫x c f(t, z, u(t, z), ux(t, z))dz, x ∈ [c, d], t ∈ [a, b], 26 Svetlin G. Georgiev and Khaled Zennir CUBO 20, 2 (2018) or ∫x c ut(t, z)dz − ux(t, x) + ux(t, c) = ∫x c f(t, z, u(t, z), ux(t, z))dz, x ∈ [c, d], t ∈ [a, b]. Now we integrate the last equation with respect to x and we find ∫x c ∫y c ut(t, z)dzdy − ∫x c (ux(t, z) − ux(t, c)) dz = ∫x c ∫y c f(t, z, u(t, z), ux(t, z))dzdy, x ∈ [c, d], t ∈ [a, b], or ∫x c ∫y c ut(t, z)dzdy − u(t, x) + u(t, c) + (x − c)ux(t, c) = ∫x c ∫y c f(t, z, u(t, z), ux(t, z))dzdy, x ∈ [c, d], t ∈ [a, b]. We integrate the last equality with respect to t and we obtain ∫t a ∫x c ∫y c ut(s, z)dzdyds − ∫t a (u(s, x) − u(s, c) − (x − c)ux(s, c)) ds = ∫t a ∫x c ∫y c f(s, z, u(s, z), ux(s, z))dzdyds, x ∈ [c, d], t ∈ [a, b], or ∫x c ∫y c (u(t, z) − g(z)) dzdy − ∫t a (u(s, x) − u(s, c) − (x − c)ux(s, c)) ds = ∫t a ∫x c ∫y c f(s, z, u(s, z), ux(s, z))dzdyds, x ∈ [c, d], t ∈ [a, b], i.e., u satisfies the equation (2.3). (2) Let u ∈ C1([a, b], C2([c, d])) be a solution to the integral equation (2.3). We differentiate the equation (2.3) with respect to x and we get ∫x c (u(t, z) − g(z)) dz − ∫t a (ux(s, x) − ux(s, c)) ds = ∫t a ∫x c f(s, z, u(s, z), ux(s, z))dzds, x ∈ [c, d], t ∈ [a, b]. Again we differentiate with respect to x and we find u(t, x) − g(x) − ∫t a uxx(s, x)ds = ∫t a f(s, x, u(s, x), ux(s, x))ds, x ∈ [c, d], t ∈ [a, b]. (2.4) Now we put t = a in the last equation and we find u(a, x) = g(x), x ∈ [c, d], CUBO 20, 2 (2018) New approach to prove the existence of classical solutions . . . 27 i.e., the function u satisfies (2.2). Now we differentiate the equation (2.4) with respect to t and we find ut(t, x) − uxx(t, x) = f(t, x, u(t, x), ux(t, x)), x ∈ [c, d], t ∈ [a, b]. The proof of the existence results are based on the following theorem. Theorem 2.2 ([14]). Let X be a nonempty closed convex subset of a Banach space Y. Suppose that T and S map X into Y such that (1) S is continuous and S(X) contained in a compact subset of Y. (2) T : X 7−→ Y is expansive and onto. Then there exists a point x∗ ∈ X such that Sx∗ + Tx∗ = x∗. Definition 2.3. Let (X, d) be a metric space and M be a subset of X. The mapping T : M 7−→ X is said to be expansive if there exists a constant h > 1 such that d(Tx, Ty) ≥ hd(x, y) for any x, y ∈ M. 3 Proof of Theorem 1.1 Let B > ‖φ‖C2([0,1]) be arbitrarily chosen. Since φ ∈ C([0, 1]), f ∈ C([0, 1]×[0, 1]×[−B, B]×[−B, B]) we have that there exists a constant M11 > 0 such that |φ(x)| ≤ M11 in [0, 1], |f(t, x, y, z)| ≤ M11 in [0, 1] × [0, 1] × [−B, B] × [−B, B]. We take l, m ∈ (0, 1) so that lB + l(B + M11) + 3lBm + lM11m ≤ B l(5B + 2M11) ≤ B. (3.1) Let E11 = C 1([0, m], C2([0, 1])) be endowed with the norm ||u|| = max { max (t,x)∈[0,m]×[0,1] |u(t, x)|, max (t,x)∈[0,m]×[0,1] |ut(t, x)|, max (t,x)∈[0,m]×[0,1] |ux(t, x)|, max (t,x)∈[0,m]×[0,1] |uxx(t, x)| } . 28 Svetlin G. Georgiev and Khaled Zennir CUBO 20, 2 (2018) By K̃11 we denote the set of all equi-continuous families in E11, i.e., for every ǫ > 0 there exists δ = δ(ǫ) > 0 such that |u(t1, x1) − u(t2, x2)| < ǫ, |ut(t1, x1) − ut(t2, x2)| < ǫ, |ux(t1, x1) − ux(t2, x2)| < ǫ, |uxx(t1, x1) − uxx(t2, x2)| < ǫ whenever |t1 − t2| < δ, |x1 − x2| < δ. Let also, K′11 = K̃11, K11 = {u ∈ K ′ 11 : ||u|| ≤ B} and L11 = {u ∈ K ′ 11 : ||u|| ≤ (1 + l)B}. We note that K11 is a closed convex subset of L11. For u ∈ L11 we define the operators T11(u)(t, x) = (1 + l)u(t, x), S11(u)(t, x) = −lu(t, x) + l ∫x 0 ∫y 0 (u(t, z) − φ(z))dzdy −l ∫t 0 (u(τ, x) − u(τ, 0) − xux(τ, 0))dτ −l ∫t 0 ∫x 0 ∫y 0 f(τ, z, u(τ, z), ux(τ, z))dzdydτ. We will prove that the problem ut − uxx = f(t, x, ux) in [0, m] × [0, 1], (3.2) u(0, x) = φ(x) in [0, 1], (3.3) has a solution u ∈ C1([0, m], C2([0, 1])). a)S11 : K11 7−→ K11. Let u ∈ K11. Then S11(u) ∈ C 1([0, m], C2([0, 1])) and for (t, x) ∈ [0, m] × CUBO 20, 2 (2018) New approach to prove the existence of classical solutions . . . 29 [0, 1], using the first inequality of (3.1), we get |S11(u)(t, x)| = ∣ ∣ ∣ −lu(t, x) + l ∫x 0 ∫y 0 (u(t, z) − φ(z))dzdy −l ∫t 0 (u(τ, x) − u(τ, 0) − xux(τ, 0))dτ −l ∫t 0 ∫x 0 ∫y 0 f(τ, z, u(τ, z), ux(τ, z))dzdydτ ∣ ∣ ∣ ≤ l|u(t, x)| + l ∫x 0 ∫y 0 (|u(t, z)| + |φ(z)|) dzdy +l ∫t 0 (|u(τ, x)| + |u(τ, 0)| + x|ux(τ, 0)|) dτ +l ∫t 0 ∫x 0 ∫y 0 |f(τ, z, u(τ, z), ux(τ, z))|dzdydτ ≤ lB + l(B + M11) + 3lBm + lM11m ≤ B. Note that S11(u)t(t, x) = −lut(t, x) + l ∫x 0 ∫y 0 ut(t, z)dzdy −l(u(t, x) − u(t, 0) − xux(t, 0)) −l ∫x 0 ∫y 0 f(t, z, u(t, z), ux(t, z))dzdy, (t, x) ∈ [0, m] × [0, 1]. 30 Svetlin G. Georgiev and Khaled Zennir CUBO 20, 2 (2018) Then, using the second inequality of (3.1), we obtain |S11(u)t(t, x)| = ∣ ∣ ∣ −lut(t, x) + l ∫x 0 ∫y 0 ut(t, z)dzdy −l(u(t, x) − u(t, 0) − xux(t, 0)) −l ∫x 0 ∫y 0 f(t, z, u(t, z), ux(t, z))dzdy ∣ ∣ ∣ ≤ l|ut(t, x)| + l ∫x 0 ∫y 0 |ut(t, z)|dzdy +l (|u(t, x)| + |u(t, 0)| + x|ux(t, 0)|) +l ∫x 0 ∫y 0 |f(t, z, u(t, z), ux(t, z))|dzdy ≤ lB + lB + 3lB + lM11 = l(5B + M11) ≤ B, (t, x) ∈ [0, m] × [0, 1]. Also, S11(u)x(t, x) = −lux(t, x) + l ∫x 0 (u(t, z) − φ(z))dz −l ∫t 0 (ux(τ, x) − ux(τ, 0))dτ −l ∫t 0 ∫x 0 f(τ, z, u(τ, z), ux(τ, z))dzdτ, (t, x) ∈ [0, m] × [0, 1]. CUBO 20, 2 (2018) New approach to prove the existence of classical solutions . . . 31 Hence, using the first inequality of (3.1), |S11(u)x(t, x)| = ∣ ∣ ∣ −lux(t, x) + l ∫x 0 (u(t, z) − φ(z))dz −l ∫t 0 (ux(τ, x) − ux(τ, 0))dτ −l ∫t 0 ∫x 0 f(τ, z, u(τ, z), ux(τ, z))dzdτ ∣ ∣ ∣ ≤ l|ux(t, x)| + l ∫x 0 (|u(t, z)| + |φ(z)|) dz +l ∫t 0 (|ux(τ, x)| + |ux(τ, 0)|) dτ +l ∫t 0 ∫x 0 |f(τ, z, u(τ, z), ux(τ, z))|dzdτ ≤ lB + l(B + M11) + 2lBm + lM11m ≤ B, (t, x) ∈ [0, m] × [0, 1]. For (t, x) ∈ [0, m] × [0, 1] we have S11(u)xx(t, x) = −luxx(t, x) + l(u(t, x) − φ(x)) −l ∫t 0 uxx(τ, x)dτ −l ∫t 0 f(τ, x, u(τ, x), ux(τ, x))dτ, 32 Svetlin G. Georgiev and Khaled Zennir CUBO 20, 2 (2018) from where, using the first inequality of (3.1), |S11(u)xx(t, x)| = ∣ ∣ ∣ −luxx(t, x) + l(u(t, x) − φ(x)) −l ∫t 0 uxx(τ, x)dτ −l ∫t 0 f(τ, x, u(τ, x), ux(τ, x))dτ ∣ ∣ ∣ ≤ l|uxx(t, x)| + l (|u(t, x)| + |φ(x)|) +l ∫t 0 |uxx(τ, x)|dτ +l ∫t 0 |f(τ, x, u(τ, x), ux(τ, x))|dτ ≤ lB + l(B + M11) + lBm + lM11m ≤ B. We note that {S11(u) : u ∈ K11} is an equi-continuous family in E11. Consequently S11 : K11 7−→ K11. Also, S11(K11) ⊂ K11 ⊂ L11, i.e., S11(K11) resides in a compact subset of L11. b) S11 : K11 7−→ K11 is a continuous operator. We note that if {un} ∞ n=1 be a sequence of ele- ments of K11 such that un −→ u in K11 as n −→ ∞, then S11(un) −→ S11(u) in K11 as n −→ ∞. Therefore S11 : K11 7−→ K11 is a continuous operator. c) T11 : K11 7−→ L11 is an expansive operator and onto. For u, v ∈ K11 we have that ||T11(u) − T11(v)|| = (1 + l)||u − v||, i.e., T11 : K11 7−→ L11 is an expansive operator with constant 1 + l. Let v ∈ L11. Then v 1+l ∈ K11 and T11 ( v 1 + l ) = v, i.e., T11 : K11 7−→ L11 is onto. From a), b), c) and from Theorem 2.2, it follows that there is u11 ∈ K11 such that T11u11 + S11u11 = u11 CUBO 20, 2 (2018) New approach to prove the existence of classical solutions . . . 33 or (1 + l)u11(t, x) − lu11(t, x) + l ∫x 0 ∫y 0 (u11(t, z) − φ(z))dzdy −l ∫t 0 (u11(τ, x) − u11(τ, 0) − xu11x(τ, 0))dτ −l ∫t 0 ∫x 0 ∫y 0 f(τ, z, u11(τ, z), u11x(τ, z))dzdydτ = u11(t, x), or ∫x 0 ∫y 0 (u11(t, z) − φ(z))dzdy − ∫t 0 (u11(τ, x) − u11(τ, 0) − xu11x(τ, 0))dτ − ∫t 0 ∫x 0 ∫y 0 f(τ, z, u11(τ, z), u11x(τ, z))dzdydτ = 0, (t, x) ∈ [0, m] × [0, 1], whereupon, using Lemma 2.1, we conclude that u11 ∈ C 1([0, 1], C2([0, 1])) is a solution to the problem (3.2), (3.3). 4 Proof of Theorem 1.2 Now we consider the problem ut − uxx = f(t, x, u(t, x), ux(t, x)) in (0, m] × [1, 2], (4.1) u(0, x) = φ(x) in [1, 2]. (4.2) Let E12 = C 1([0, m], C2([1, 2])) be endowed with the norm ||u|| = max { max (t,x)∈[0,m]×[1,2] |u(t, x)|, max (t,x)∈[0,m]×[1,2] |ut(t, x)|, max (t,x)∈[0,m]×[1,2] |ux(t, x)|, max (t,x)∈[0,m]×[1,2] |uxx(t, x)| } . By K̃12 we denote the set of all equi-continuous families in E12. Let K′12 = K̃12, K12 = {u ∈ K ′ 12 : ||u|| ≤ B}. 34 Svetlin G. Georgiev and Khaled Zennir CUBO 20, 2 (2018) Since φ ∈ C([1, 2]), f ∈ C([0, m] × [1, 2] × [−B, B] × [−B, B]) we have that there exists a constant M12 > 0 such that |φ(x)| ≤ M12 in [1, 2], |f(t, x, y, z)| ≤ M12 in [0, m] × [1, 2] × [−B, B] × [−B, B]. Let l1 > 0 be chosen so that l1(5B + 2M12) ≤ B l1B + l1(B + M12) + 3l1Bm + l1M12m ≤ B Let also, L12 = {u ∈ K ′ 12 : ||u|| ≤ (1 + l1)B}. We note that K12 is a closed convex subset of L12. For u ∈ L12 we define the operators T12(u)(t, x) = (1 + l1)u(t, x), S12(u)(t, x) = −l1u(t, x) + l1 ∫x 1 ∫y 1 (u(t, z) − φ(z))dzdy −l1 ∫t 0 (u(τ, x) − u11(τ, 1) − (x − 1)u11x(τ, 1))dτ −l1 ∫t 0 ∫x 1 ∫y 1 f(τ, z, u(τ, z), ux(τ, z))dzdydτ. As in the previous section one can prove that there is u12 ∈ C 1([0, 1], C2([1, 2])) which is a solution to the problem (4.1), (4.2). This solution u12 satisfies the integral equation ∫x 1 ∫y 1 (u12(t, z) − φ(z))dzdy − ∫t 0 (u12(τ, x) − u11(τ, 1) − (x − 1)u11x(τ, 1))dτ − ∫t 0 ∫x 1 ∫y 1 f(τ, z, u12(τ, z), u12x(τ, z))dzdydτ = 0, (t, x) ∈ [0, m] × [1, 2]. (4.3) Now we put x = 1 in (4.3) and we find ∫t 0 (u12(τ, 1) − u11(τ, 1))dτ = 0, CUBO 20, 2 (2018) New approach to prove the existence of classical solutions . . . 35 which we differentiate with respect to t and we get u12(t, 1) = u11(t, 1) in [0, m]. (4.4) Now we differentiate (4.3) with respect to x and we find ∫x 1 (u12(t, z) − φ(z))dz − ∫t 0 (u12x(τ, x) − u11x(τ, 1))dτ − ∫t 0 ∫x 1 f(τ, z, u12(τ, z), u12x(τ, z))dzdτ = 0, (t, x) ∈ [0, m] × [1, 2]. In the last equation we put x = 1 and we become ∫t 0 (u12x(τ, x) − u11x(τ, 1))dτ = 0, (t, x) ∈ [0, m] × [1, 2], which we differentiate with respect to t and we find u12x(t, 1) = u11x(t, 1) in [0, m]. (4.5) Now we differentiate (4.4) with respect to t and we get u12t(t, 1) = u11t(t, 1) in [0, m]. Hence, (4.4), (4.5) and f(t, 1, u11(t, 1), u11x(t, 1)) = f(t, 1, u12(t, 1), u12x(t, 1)), we find u12xx(t, 1) = u12t(t, 1) − f(t, 1, u12(t, 1), u12x(t, 1)) = u11t(t, 1) − f(t, 1, u11(t, 1), u11x(t, 1)) = u11xx(t, 1) in [0, m]. Consequently the function u(t, x) =    u11(t, x) in [0, m] × [0, 1] u12(t, x) in [0, m] × [1, 2], is a C1([0, m], C2([0, 2]))-solution to the problem ut − uxx = f(t, x, u(t, x), ux(t, x)) in (0, m] × [0, 2], u(0, x) = φ(x) in [0, 2]. 36 Svetlin G. Georgiev and Khaled Zennir CUBO 20, 2 (2018) Then we consider the problem ut − uxx = f(t, x, u(t, x), ux(t, x)) in (0, m] × [2, 3] u(0, x) = φ(x) in [2, 3]. (4.6) As in above there is u13 ∈ C 1([0, m], C2([2, 3])) which is a solution to the problem (4.6) and satisfies the integral equation ∫x 2 ∫y 2 (u13(t, z) − φ(z))dzdy − ∫t 0 (u13(τ, x) − u12(τ, 2) − (x − 2)u12x(τ, 2))dτ − ∫t 0 ∫x 2 ∫y 2 f(τ, z, u13(τ, z), u13x(τ, z))dzdydτ = 0, t ∈ [0, m], x ∈ [2, 3]. The function u(t, x) =    u11(t, x) in [0, m] × [0, 1] u12(t, x) in [0, m] × [1, 2] u13(t, x) in [0, m] × [2, 3] is a C1([0, m], C2([0, 3]))-solution to the problem ut − uxx = f(t, x, u(t, x), ux(t, x)) in [0, m] × [0, 3], u(0, x) = φ(x) in [0, 3]. An so on. We construct a solution u1 ∈ C 1([0, m], C2(R)) which is a solution to the problem ut − uxx = f(t, x, u(t, x), ux(t, x)) in (0, m] × R, u(0, x) = φ(x) in R. CUBO 20, 2 (2018) New approach to prove the existence of classical solutions . . . 37 5 Proof of Theorem 1.4 We have that the solution u(t, x, φ) satisfies the following integral equation Q(φ) = ∫x c ∫y c (u(t, z, φ(z)) − φ(z))dzdy − ∫t 0 (u(τ, x, φ(x)) − u(τ, c, φ(c)) − (x − c)ux(τ, c, φ(c)))dτ − ∫t 0 ∫x c ∫y c f(τ, z, u(τ, z, φ(z)), ux(τ, z, φ(z)))dz = 0, t ∈ [0, m], x ∈ [c, d]. Then Q(φ) − Q(φ1) = ∫x c ∫y c (u(t, z, φ(z)) − u(t, z, φ1(z)) − (φ(z) − φ1(z)))dzdy − ∫t 0 (u(τ, x, φ(x)) − u(τ, x, φ1(x)))dτ + ∫t 0 (u(τ, c, φ(c)) − u(τ, c, φ1(c)))dτ + ∫t 0 (x − c)(ux(τ, c, φ(c)) − ux(τ, c, φ1(c)))dτ − ∫t 0 ∫x c ∫y c ( f(τ, z, u(τ, z, φ(z)), ux(τ, z, φ(z))) −f(τ, z, u(τ, z, φ1(z)), ux(τ, z, φ1(z))) ) dzdydτ = ∫x c ∫y c ( ∂u ∂φ (t, z, φ(z)) − 1 ) dzdy − ∫t 0 ∂u ∂φ (τ, x, φ(x))dτ + ∫t 0 ∂u ∂φ (τ, c, φ(c))dτ + ∫t 0 (x − c) ( ∂u ∂φ ) x (τ, c, φ(c))dτ − ∫t 0 ∫x c ∫y c ∂f ∂u (τ, z, u(τ, z, φ(z)), ux(τ, z, φ(z))) ∂u ∂φ (τ, z, φ(z))dzdydτ − ∫t 0 ∫x c ∫y c ∂f ∂ux (τ, z, u(τ, z, φ(z)), ux(τ, z, φ(z))) ( ∂u ∂φ ) x (τ, z, φ(z))dzdydτ +δ{φ, φ1}, 38 Svetlin G. Georgiev and Khaled Zennir CUBO 20, 2 (2018) where δ{φ, φ1} −→ 0 as φ(x) −→ φ1(x) for every x ∈ [c, d]. Hence, when φ(x) −→ φ1(x) for every x ∈ [c, d], we get 0 = ∫x c ∫y c (v(t, z) − 1)dzdy − ∫t 0 v(τ, x)dτ + ∫t 0 v(τ, c)dτ + ∫t 0 xvx(τ, c)dτ − ∫t 0 ∫x c ∫y c ∂f ∂u (τ, z, u(τ, z, φ(z)), ux(τ, z, φ(z)))v(τ, z)dzdydτ − ∫t 0 ∫x c ∫y c ∂f ∂ux (τ, z, u(τ, z, φ(z)), ux(τ, z, φ(z)))vx(τ, z)dzdydτ, (5.1) which we differentiate twice in x and once in t and we get that v satisfies (1.3). Now we put t = 0 in (5.1) and then we differentiate twice in x, and we find that v satisfies (1.4). Acknowledgments The authors would like to thank the anonymous referees for their helpful comments and suggestions. References [1] A. Braik, A. Beniani and Kh. Zennir Polynomial stability for system of 3 wave equations with infinite memories, Math. Meth. Appl. Sci. 2017; 1–15. DOI: 10.1002/mma.4599 [2] A. Braik, Y. Miloudi and Kh. Zennir A finite-time blow-up result for a class of solutions with positive initial energy for coupled system of heat equations with memories, Math. Meth. Appl. Sci. 2017; 1–9. DOI: 10.1002/mma.4695 [3] K.Deng, Comparison principle for some nonlocal problems, Quart. Appl. Math. 50 (1992), no. 3, 517–522. [4] Z.B.Fang and J. Zhang, Global and blow-up solutions for the nonlocal p-Laplacian evolution equationwith weighted nonlinear nonlocal boundary condition, J. Integral Equat. Appl. 26 (2014), no. 2, 171–196. [5] Y.Gao and W.Gao, Existence and blow-up of solutions for a porous medium equation with nonlocal boundary condition, Appl. Anal. 90 (2011), no. 5, 799–809. [6] A.Gladkov and M.Guedda, Blow-up problem for semilinear heat equation with absorption and a nonlocal boundary condition, Nonlinear Anal. 74 (2011), no. 13, 4573–4580. [7] A.Gladkov and M.Guedda, Semilinear heat equation with absorption and a nonlocal boundary condition, Appl. Anal. 91 (2012), no. 12, 2267–2276. [8] A.Gladkov and K. I.Kim, Blow-up of solutions for semilinear heat equation with nonlinear nonlocal boundary condition, J. Math. Anal. Appl. 338 (2008), 264–273. CUBO 20, 2 (2018) New approach to prove the existence of classical solutions . . . 39 [9] A.Gladkov and K. I.Kim, Uniqueness and nonuniqueness for reaction-diffusion equation with nonlocal boundary condition, Adv. Math. Sci. Appl. 19 (2009), no. 1, 39–49. [10] A.Gladkov and A.Nikitin, A reaction-diffusion system with nonlinear nonlocal boundary con- ditions, Int. J. Partial Differential Equations 2014 (2014), Article ID 523-656. [11] D. Liu, Blow-up for a degenerate and singular parabolic equation with nonlocal boundary condition, J. Nonlinear Sci. Appl. 9 (2016), 208–218. [12] D. Liu and C.Mu, Blowup properties for a semilinear reaction-diffusion system with nonlinear nonlocal boundary conditions, Abstr. Appl. Anal. 2010 (2010), Article ID 148035, 1-17. [13] A. Samarskii, V. Galaktionov, S. Kurdyumov and A. Mikhailov. Blow-up in Quasilinear Parabolic Equations. Walter de Gruyer-Berlin-New York. 1995. [14] T. Xiang and R. Yuan. A class of expansive type Krasnoselskii fixed point theorem. Nonlinear Analysis, 2009, pp. 3229-3239. [15] G. Zhong and L.Tian Blow up problems for a degenerate parabolic equation with nonlocal source and nonlocal nonlinear boundary condition, Boundary Value Problems 2012 (2012), no. 45, 1-14. [16] J. Zhou and D.Yang Blowup for a degenerate and singular parabolic equation with nonlocal source and nonlocal boundary, Appl. Math. Comput. 256 (2015), 881-884. Introduction Auxiliary results Proof of Theorem 1.1 Proof of Theorem 1.2 Proof of Theorem 1.4