CUBO A Mathematical Journal Vol.21, No¯ 01, (49–60). April 2019 http: // dx. doi. org/ 10. 4067/ S0719-06462019000100049 Certain integral Transforms of the generalized Lommel-Wright function S. Haq Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh-202002, UP, India sirajulhaq007@gmail.com K.S. Nisar Department of Mathematics, College of Arts and Science, Prince Sattam bin Abdulaziz University, Wadi Aldawaser, Riyadh region 11991, Saudi Arabia ksnisar1@gmail.com A.H. Khan Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh-202002, UP, India ahkhan.amu@gmail.com D.L. Suthar Department of Mathematics, Wollo University, Ethiopia dlsuthar@gmail.com ABSTRACT The aim of this article is to establish some integral transforms of the generalized Lommel-Wright functions, which are expressed in terms of Wright Hypergeometric function. Some integrals involving trigonometric, generalized Bessel and Struve func- tions are also indicated as special cases of our main results. http://dx.doi.org/10.4067/S0719-06462019000100049 50 S. Haq, K.S. Nisar, A.H. Khan and D.L. Suthar CUBO 21, 1 (2019) RESUMEN El objetivo de este art́ıculo es establecer algunas transformadas integrales de las fun- ciones generalizadas de Lommel-Wright, que se expresan en términos de la función hipergeométrica de Wright. Algunas integrales que involucran funciones trigonométricas, de Bessel generalizadas y de Struve también se obtienen como casos especiales de nue- stros resultados principales. Keywords and Phrases: Gamma function, generalized Wright hypergeometric function pψq , generalized Lommel-Wright functions J µ m ν,λ (z), Integral Transforms. 2010 AMS Mathematics Subject Classification: 33B20, 33B15, 65R10, 33C20. CUBO 21, 1 (2019) Certain integral Transforms of the generalized Lommel-Wright . . . 51 1 Introduction The k-Pochhammer symbol (λ)ν,k is defined (for ν,λ ∈ C;k ∈ R) by [4] (λ)ν,k = Γk(λ + ν k) Γk(λ) (λ ∈ C/0) (1.1) and the k-gamma function has the relation Γk(z) = k z/k−1Γ(z/k), (1.2) is such that Γk(z) → Γ(z) if k → 1 . The Wright hypergeometric function defined by the series [21] pψq     (α1,A1), ...,(αp,Ap); (β1,B1), ...,(βq,Bq) z     = ∞∑ k=0 p∏ j=1 Γ(αj + Ajk)z k q∏ j=1 Γ(βj + Bjk)k! , (1.3) where the coefficients A1, ...,Ap and B1, ...,Bq are positive real numbers such that 1 + q∑ j=1 Bj − p∑ j=1 Aj ≥ 0. (1.4) can be slightly generalized (1.3) as given below. pψq     (α1,1), ...,(αp,1); (β1,1), ...,(βq,1); z     = p∏ j=1 Γ(αj) q∏ j=1 Γ(βj) pFq     α1, ..,αp; β1, ...,βq; z     , (1.5) where pFq is the generalized hypergeometric function defined by [19, 21] pFq     α1, ...,αp; β1, ...,βq z     = ∞∑ k=0 (α1)n, ...,(αp)nz n (β1)n, ...,(βq)nn! = pFq(α1, ...,αp;β1, ...,βq;z), (1.6) where (λ)n is the well known Pochhammer symbol [21]. The generalization of (λ)n is given as (λ)n = λ(λ + 1)(λ + 2), ...,(λ + n − 1)) ,n > 0 (1.7) (λ)n = n∏ m=1 (λ + m − 1), (λ)0 = 1, λ 6= 0 52 S. Haq, K.S. Nisar, A.H. Khan and D.L. Suthar CUBO 21, 1 (2019) (λ)n = Γ(λ + n) Γ(λ) Generalized Bessel, Lommel, Struve and Lommel-Wright function have originated from concrete problems in Mechanics, Physics, Engineering and Astronomy. The series representation of the generalized Lommel Wright function as [8]; J µ,m ν,λ (z) = ∞∑ k=0 (−1)kΓ(k + 1)( z 2 )2k+ν+2λ Γ(λ + k + 1)mΓ(ν + kµ + λ + 1)k! , (1.8) (z ∈ N/(−∞,0] m ∈ N, ν,λ ∈ C,µ > 0). Also, we have the following relations of generalized Lommel Wright functions with trigonometric functions and the generalized Bessel function and Struve function: J1,11/2,0(z) = √ ( 2 πz ) sin(z) (1.9) J1,1−1/2,0(z) = √ ( 2 πz ) cos(z) (1.10) J µ,1 ν,λ(z) = J µ ν,λ(z) (1.11) J1,1ν,1/2(z) = Hν(z) (1.12) Further, we recall the following results [5]. ∫ ∞ 0 tu−1 exp(−t/2)Wλ,µ(t)dt = Γ(1/2 + µ + u)Γ(1/2 − µ + u) Γ(1 − λ + u) , (1.13) (Re(u ± µ) > −1/2), where the Whittaker function Wλ,µ(t) is given in[5, 11]. Wλ,µ(t) = Γ(−2µ) Γ(1/2 − µ − λ) Mλ,µ(t) + Γ(2µ) Γ(1/2 + µ − λ) Mλ,−µ(t) where Mλ,µ(t) is defined as Mλ,µ(t) = z 1/2+µ exp(−t/2) 1F1 ( 1/2 + µ + u;2µ + 1;t ) Definition 1.1. Euler Transform: Let ρ,σ ∈ C and Re(ρ),Re(σ) > 0, then the Euler transform of the function f(z) is defined by B(f(z);ρ,σ) = ∫1 0 zρ−1(1 − z)σ−1f(z)dz (1.14) CUBO 21, 1 (2019) Certain integral Transforms of the generalized Lommel-Wright . . . 53 Definition 1.2. Laplace Transform: The Laplace transform of the function f(t) is defined as F(δ) = L(f(t);δ) = ∫ ∞ 0 exp(−tδ)f(t)dt, Re(δ) > 0 (1.15) Definition 1.3. Fourier Transform: The following integral gives the Fourier transform u = Im[u](w) = ∫ R u(t) exp(iwt)dt, (1.16) where u = u(t) be a function of the space S(R) Shwartzian space of the function that decay rapidly at ∞ together with all derivatives. Definition 1.4. The Fractional Fourier Transform (FFT): Let u be the function belonging to φ(R), the Lizorkin space of function, where φ(R) = {φ ∈ S(R)} : Im[φ] ∈ V(R) and V(R) is the set of functions defined by V(R) = {v ∈ S(R)} : Vu0 = 0,n = 0,1,2, ... then FFT of order α, 0 ≤ α ≤ 1 is given by Uα(w) = Imα(w) = ∫ R exp(i wα t)u(t)dt (1.17) particularly, if α = 1 (1.17) reduces to FT and for w > 0 (1.17) reduces to FFT given by Luchko et al [10]. The aim of this paper is to obtain the Euler, Laplace, Whittaker and Fractional Fourier transforms of Lommel-Wright function. Various generalizations, integrals, transforms and fractional calculus of special functions have been investigated by many researchers (see, for details, [1, 2, 6, 7, 9, 12, 13, 14, 15, 16, 17, 18, 20]). In this sequel, here, we aim at establishing certain new generalized integral formula involving the generalized Lommel-Wright function J µ,m ν,λ (z) interesting integral formulas which are derived as special cases. 2 Main Results This section deals with some integral formulas involving Lommel-Wright function. 54 S. Haq, K.S. Nisar, A.H. Khan and D.L. Suthar CUBO 21, 1 (2019) Theorem 2.1. For t ∈ N/(−∞,0] m ∈ N, ν,λ ∈ C and µ > 0 , the following integral formula holds true ∫1 0 tα−1(1 − t)β−1J µ,m ν,λ (x t σ)dt = ( x 2 )ν+2λ Γ(β) × 2ψm+2 [ (1,1),(α + νσ + 2λσ,2σ); (λ + 1,1), ...,(λ + 1,1),(ν + λ + 1,µ),(α + β + νσ + 2λσ,2σ); − x2 4 ] . (2.1) Proof. On using (1.8) in the integrand of (2.1) and then interchanging the order of integral sign and summation which is verified by uniform convergence of the involved series under the given conditions we get ∫1 0 tα−1(1 − t)β−1J µ,m ν,λ (x t σ)dt = ( x 2 )ν+2λ ∞∑ k=0 Γ(k + 1)(−x2/4)k Γ(λ + k + 1)mΓ(ν + kµ + λ + 1)k! × ∫1 0 tα+σ(2k+ν+2λ)−1(1 − t)β−1dt. (2.2) Now using (1.14) in the above equation we get ∫1 0 tα−1(1 − t)β−1J µ,m ν,λ (x t σ)dt = Γ(β) ( x 2 )ν+2λ × ∞∑ k=0 Γ(k + 1)Γ(α + νσ + 2λσ + 2kσ)(−x 2 4 )k Γ(λ + k + 1)mΓ(α + β + νσ + 2λσ + 2kσ)Γ(ν + kµ + λ + 1)k! . (2.3) Finally, using (1.3) in the above equation, we get our assertion (2.1). This completes the proof of Theorem 2.1. Theorem 2.2. For t ∈ N/(−∞,0] m ∈ N, ν,λ ∈ C and µ > 0 , the following integral formula holds true ∫ ∞ 0 tα−1 exp(−tδ)J µ,m ν,λ (x t σ )dt = ( x 2 δ−α )ν+2λ (δ)−α × 2ψm+1 [ (1,1),(α + νσ + 2λσ,2σ); (λ + 1,1), ...,(λ + 1,1),(ν + λ + 1,µ); − x2 4 δ2σ ] . (2.4) Proof. On using (1.8) in the integrand of (2.4) and then interchanging the order of integral sign and summation which is verified by uniform convergence of the involved series under the given CUBO 21, 1 (2019) Certain integral Transforms of the generalized Lommel-Wright . . . 55 conditions we get ∫ ∞ 0 tα−1 exp(−δ t)J µ,m ν,λ (x t σ )dt = ( x 2 )ν+2λ ∞∑ k=0 Γ(k + 1)(−x2/4)k Γ(λ + k + 1)mΓ(ν + kµ + λ + 1)k! × ∫ ∞ 0 tα+σ(2k+ν+2λ)−1 exp(−δ t)dt. (2.5) Now using (1.15) in the above equation we get ∫ ∞ 0 tα−1 exp(−δ t)J µ,m ν,λ (x t σ)dt = (δ)−α ( x 2δσ )ν+2λ × ∞∑ k=0 Γ(k + 1)Γ(α + νσ + 2λσ + 2kσ)( −x 2 4 δ2σ )k Γ(λ + k + 1)mΓ(ν + kµ + λ + 1)k! . (2.6) Finally, using (1.3) in the above equation, we get our assertion (2.6). This completes the proof of Theorem 2.2. Theorem 2.3. For t ∈ N/(−∞,0] m ∈ N, ν,λ ∈ C and µ > 0 , the following integral formula holds true ∫ ∞ 0 tη−1 exp(−p t)/2 Wλ,µ(p t)J µ,m ν,λ (w t δ)dt = ( w pδ )ν+2λ × 3ψm+2 [ (1,1),(1/2 + µ + η + δ ν + 2δλ,2δ),(1/2 − µ + η + δ ν + 2δλ,2δ); (λ + 1,1), ...,(λ + 1,1),(ν + λ + 1,µ),(1 − λ + η + νδ + 2δλ,2δ); − w2 4 p2δ ] . (2.7) Proof. On using (1.8) in the integrand of (2.7) and then interchanging the order of integral sign and summation which is verified by uniform convergence of the involved series under the given conditions we get ∫ ∞ 0 (u/p)η−1 exp(−u/2)Wλ,µ(u)J µ,m ν,λ (w (u/p) δ)du = ( w pδ )ν+2λ ∞∑ k=0 Γ(k + 1)(−w2/4 p2δ)k Γ(λ + k + 1)mΓ(ν + kµ + λ + 1)k! × ∫ ∞ 0 uη+δ(2k+ν+2λ)−1 exp(−u/2)Wλ,µ(u)du. (2.8) Now using (1.13) in the above equation we get ∫ ∞ 0 tη−1 exp(−p t)/2 Wλ,µ(p t)J µ,m ν,λ (w t δ)dt = ( w pδ )ν+2λ × ∞∑ k=0 Γ(k + 1)Γ(1/2 + µ + η + 2kδ + δν + 2δλ)Γ(1/2 − µ + η + 2kδ + δν + 2δλ)( −w 2 4 p2δ )k Γ(λ + k + 1)mΓ(ν + kµ + λ + 1)Γ(1 − λ + η + 2kδ + δν + 2δλ)k! . (2.9) 56 S. Haq, K.S. Nisar, A.H. Khan and D.L. Suthar CUBO 21, 1 (2019) Finally, using (1.3) in the above equation, we get our assertion (2.9). This completes the proof of Theorem 2.3. 3 Special Cases In this section, we get some integral formulas involving trigonometric function and generalized Lommel-Wright function as follows: Corollary 3.1. If we take m = 1,µ = 1,λ = 0 and ν = 1/2 in (2.1) and then by using (1.9), we derive the following integral formula: ∫1 0 tα−σ/2−1(1 − t)(β−1) sin(x tσ)dt = √ π ( x 2 ) Γ(β) 1ψ2     (α + σ/2,2σ); (3/2,1),(α + β + σ/2,2σ); − x2 4     (3.1) Corollary 3.2. If we take m = 1,µ = 1,λ = 0 and ν = 1/2 in (2.4) and then by using (1.9), we derive the following integral formula: ∫ ∞ 0 tα−σ/2−1 exp(−δ t) sin(x tσ)dt = δ−α √ π δσ ( x 2 ) Γ(β) 1ψ1     (α + σ/2,2σ); (3/2,1); − x2 4 δ2σ     (3.2) Corollary 3.3. Further if we take m = 1,µ = 1,λ = 0 and ν = 1/2 in (2.7) and then by using (1.9), we derive the following integral formula: ∫ ∞ 0 tη−δ/2−1 exp(−pt/2)Wλ,µ(p t) sin(w t δ)dt = w √ π 2 pδ 2ψ2     (η + δ/2 + 3/2,2δ)(η + δ/2 − 1/2,2δ), ; (3/2,1),(η + δ/2 + 1,2δ); − w2 4 p2δ     (3.3) Corollary 3.4. If we take m = 1,µ = 1,λ = 0 and ν = −1/2 in (2.1) and then by using (1.10), we derive the following integral formula: ∫1 0 tα−σ/2−1(1 − t)(β−1) cos(x tσ)dt = √ πΓ(β) 1ψ2     (α − σ/2,2σ); (1/2,1),(α + β − σ/2,2σ); − x2 4     (3.4) CUBO 21, 1 (2019) Certain integral Transforms of the generalized Lommel-Wright . . . 57 Corollary 3.5. If we take m = 1,µ = 1,λ = 0 and ν = −1/2 in (2.4) and then by using (1.10), we derive the following integral formula: ∫ ∞ 0 tα−σ/2−1 exp(−δ t) cos(x tσ)dt = δ(σ−α) √ π 1ψ1     (α − σ/2,2σ); (1/2,1); − x2 4 δ2σ     (3.5) Corollary 3.6. Further if we take m = 1,µ = 1,λ = 0 and ν = −1/2 in (2.7) and then by using (1.10), we derive the following integral formula: ∫ ∞ 0 tη−δ/2−1 exp(−pt/2)Wλ,µ(p t) cos(w t δ)dt = w √ π 2 2ψ2     (η − δ/2 + 3/2,2δ)(η − δ/2 − 1/2,2δ), ; (1/2,1),(η − δ/2 + 1,2δ); − w2 4 p2δ     (3.6) Corollary 3.7. If we take m = 1 in (2.1) and then by using (1.11), we derive the following integral formula: ∫1 0 tα−1(1 − t)(β−1)J µ ν,λ(x t σ )dt = ( x 2 )ν+2λ Γ(β) ×2ψ3     (1,1),(α + νσ + 2λσ,2σ); (λ + 1,1),(ν + λ + 1,µ),(α + β + νσ + 2λσ,2σ); − x2 4     (3.7) Corollary 3.8. If we take m = 1 in (2.4) and then by using (1.11), we derive the following integral formula: ∫ ∞ 0 tα−1 exp(−δ t)J µ ν,λ(x t σ)dt = ( x 2 )ν+2λ δ−α 2ψ2     (1,1),(α + νσ + 2λσ,2σ); (λ + 1,1),(ν + λ + 1,µ); − x2 4 δ2σ     (3.8) Corollary 3.9. Further if we take m = 1 in (2.7) and then by using (1.11), we derive the following integral formula: ∫ ∞ 0 tη−1 exp(−pt/2)Wλ,µ(p t)J µ ν,λ(w t δ )dt = ( w pδ )ν+2λ ×3ψ3     (1,1),(1/2 + µ + η + νδ + 2λδ,2δ),(1/2 − µ + η + νδ + 2λδ,2δ); (λ + 1,1),(ν + λ + 1,µ),(1 − λ + η + δν + 2δλ,2δ); − w2 4 p2δ     (3.9) 58 S. Haq, K.S. Nisar, A.H. Khan and D.L. Suthar CUBO 21, 1 (2019) Corollary 3.10. If we take µ = 1,m = 1 and λ = 1/2 in (2.1) and then by using (1.12), we derive the following integral formula: ∫1 0 tα−1(1 − t)(β−1)Hν(x t σ)dt = ( x 2 )ν+1 Γ(β) ×2ψ3     (1,1),(α + νσ + σ,2σ); (3/2,1),(ν + 3/2,1),(α + β + νσ + σ,2σ); − x2 4     (3.10) Corollary 3.11. If we take µ = 1,m = 1 and λ = 1/2 in (2.4) and then by using (1.12), we derive the following integral formula: ∫ ∞ 0 tα−1 exp(−δ t)Hν(x t σ )dt = ( x 2 δσ )ν+1 δ−α ×2ψ2     (1,1),(α + νσ + σ,2σ); (3/2,1),(ν + 3/2,1); − x2 4 δ2σ     (3.11) Corollary 3.12. Further if we take µ = 1,m = 1 and λ = 1/2 in (2.7) and then by using (1.12), we derive the following integral formula: ∫ ∞ 0 tη−1 exp(−pt/2)Wλ,µ(p t)Hν(w t δ)dt = ( w pδ )ν+1 ×3ψ3     (1,1),(η + νδ + δ + 3/2,2δ),(η + νδ + δ − 1/2,2δ); (3/2,1),(ν + 3/2,1),(η + δν + δ + 1/2,2δ); − w2 4 p2δ     (3.12) CUBO 21, 1 (2019) Certain integral Transforms of the generalized Lommel-Wright . . . 59 References [1] J. Choi and P. Agarwal, Certain unified integrals associated with Bessel functions, Bound. Value Probl., 95, (2013), pages 9. [2] J. Choi, P. Agarwal, S. Mathur and S.D. Purohit, Certain new integral formulas involving the generalized Bessel function, Bull. Korean Math. Soc., 4, (2014), 995-1003. [3] J. Choi, K.S. Nisar, Certain families of integral formulas involving Struve function, Bol. Soc. Parana. Mat., 37(3), (2019), 27-35. [4] R. Díaz and E. Pariguan, On hypergeometric functions and k-Pochhammer symbol, Divulg. Mat., 15, (2007), 179-192. [5] A. Erdélyi,W. Magnus,F. Oberhettinger and F.G. Tricomi, Tables of Integral Transforms, Vol.2, McGraw-Hill, New York-Toronto-London (1954). [6] K.S. Gehlot, and J.C. Prajapati, Fractional Calculus of generalized k-wright function, Journal of Fractional Calculus and Applications, 4, (2013), 283-289. [7] K.S. Gehlot and S.D. Purohit, Fractional Calculus of K-Bessels function , Acta Universitatis Apulensis., 38, (2014), 273-278. [8] K.B. Kachhia and J.C. Prajapati, On generalized fractional kinetic equations involving general- ized Lommel-Wright functions, Alexandria Engineering Journal (elsevier) 55, (2016), 2953-2957. [9] J.P. Konovska, Theorems on the convergence of series in generalized Lommel-Wright functions. Fract. Calc. Appl. Anal., 10(1),(2007), 59-74. [10] Y. Luchko, H. Martinez and J. Trujillo, Fractional Fourier transform and some of its applica- tions, Fract. Calc. Appl. Anal., 11, (2008), ,457-470. [11] A.M. Mathai, R.K. Saxena and H.J. Haubold, The H-function, Theory and Applications, Springer, New York (2010). [12] K.S. Nisar, D. Baleanu and M.M. Al Qurashi, Fractional calculus and application of general- ized Struve function, Springer Plus (2016)5:910,DOI 10.1186/s40064-016-2560-3. [13] K.S. Nisar, G. Rahman, A. Ghaffar, S.A. Mubeen, new class of integrals involving extended Mittag-Leffler function, J. Fract. Calc. Appl., 9 (1), (2018), 222-231. [14] S.R. Mondal, K.S. Nisar, Certain unified integral formulas involving the generalized modified k-Bessel function of first kind, Commun. Korean Math. Soc., 32(1), (2017), 47–53. 60 S. Haq, K.S. Nisar, A.H. Khan and D.L. Suthar CUBO 21, 1 (2019) [15] K.S. Nisar, W.A. Khan, Beta type integral operator associated with Wright generalized Bessel function, Acta Math. Univ. Comenian. (N.S.) 87(1), 117-125(2018). [16] G. Rahman, A. Ghaffar, K.S. Nisar, S. Mubben, A new class of integrals involving extended Mittag-Leffler function Journal of Fractional Calculus and Applications, 9(1), (2018), 222-231. [17] K.S. Nisar, W.A. Khan and A.H. Abusufian, Certain Integral transforms of k-Bessel function, Palest. J. Math., 7(1), (2018), 161-166. [18] K.S. Nisar, D.L. Suthar, S.D. Purohit, M. Aldhaifallah, Some unified integral associated with the generalized Struve function, Proc. Jangjeon Math. Soc.,20(2), (2017), 261-267. [19] E.D. Rainville, Special Functions, Macmillan, New York, 1960. [20] A.K. Rathie, A new generalization of generalized hypergeometric function, Matematiche (Catania), 52(2), (1997), 297-310. [21] H.M. Srivastava, and H.L. Manocha, A treatise on generating functions, John Wily and Sons (Halsted Press, New York,Ellis Horwood, Chichester), 1984. Introduction Main Results Special Cases