CUBO A Mathematical Journal Vol.21, No¯ 02, (15–40). August 2019 http: // dx. doi. org/ 10. 4067/ S0719-06462019000200015 Zk-Magic Labeling of Path Union of Graphs P. Jeyanthi 1 K. Jeya Daisy 2 and Andrea Semaničová-Feňovč́ıková 3 1Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur 628215, Tamilnadu, India jeyajeyanthi@rediffmail.com 2Department of Mathematics, Holy Cross College, Nagercoil, Tamilnadu, India jeyadaisy@yahoo.com 3Department of Applied Mathematics and Informatics, Technical University, Košice, Slovak Republic andrea.fenovcikova@tuke.sk ABSTRACT For any non-trivial Abelian group A under addition a graph G is said to be A-magic if there exists a labeling f : E(G) → A − {0} such that, the vertex labeling f+ defined as f+(v) = ∑ f(uv) taken over all edges uv incident at v is a constant. An A-magic graph G is said to be Zk-magic graph if the group A is Zk, the group of integers modulo k and these graphs are referred as k-magic graphs. In this paper we prove that the graphs such as path union of cycle, generalized Petersen graph, shell, wheel, closed helm, double wheel, flower, cylinder, total graph of a path, lotus inside a circle and n-pan graph are Zk-magic graphs. http://dx.doi.org/10.4067/S0719-06462019000200015 16 YP. Jeyanthi, K. Jeya Daisy and Andrea Semaničová-Feňovč́ıková CUBO 21, 2 (2019) RESUMEN Para cualquier grupo Abeliano no-trivial A bajo adición, un grafo G se dice A-mágico si existe un etiquetado f : E(G) → A − {0} tal que el etiquetado de un vértice f+ definido como f+(v) = ∑ f(uv), tomado sobre todos los ejes uv incidentes en v, es constante. Un grafo A-mágico G se dice Zk-mágico si el grupo A es Zk, el grupo de enteros módulo k y estos se llaman grafos k-mágicos. En este paper demostramos que los grafos tales como la unión por caminos de ciclos, grafos de Petersen generalizados, concha, rueda, casco cerrado, rueda doble, flor, cilindro, el grafo total de un camino, lotos dentro de un ćırculo y n-sartenes son todos grafos Zk-mágicos. Keywords and Phrases: A-magic labeling, Zk-magic labeling, Zk-magic graph, generalized Petersen graph, shell, wheel, closed helm, double wheel, flower, cylinder, total graph of a path, lotus inside a circle, n-pan graph. 2010 AMS Mathematics Subject Classification: 05C78. CUBO 21, 2 (2019) Zk-Magic Labeling of Path Union of Graphs 17 1 Introduction Graph labeling is currently an emerging area in the research of graph theory. A graph labeling is an assignment of integers to vertices or edges or both subject to certain conditions. A detailed survey was done by Gallian in [1]. If the labels of edges are distinct positive integers and for each vertex v the sum of the labels of all edges incident with v is the same for every vertex v in the given graph then the labeling is called a magic labeling. Sedláček [10] introduced the concept of A-magic graphs. A graph with real-valued edge labeling such that distinct edges have distinct non-negative labels and the sum of the labels of the edges incident to a particular vertex is same for all vertices. Low and Lee [9] examined the A-magic property of the resulting graph obtained from the product of two A-magic graphs. Shiu, Lam and Sun [12] proved that the product and composition of A-magic graphs were also A-magic. For any non-trivial Abelian group A under addition a graph G is said to be A-magic if there exists a labeling f : E(G) → A−{0} such that, the vertex labeling f+ defined as f+(v) = ∑ f(uv) taken over all edges uv incident at v is a constant. An A-magic graph G is said to be Zk-magic graph if the group A is Zk, the group of integers modulo k. These Zk-magic graphs are referred to as k-magic graphs. Shiu and Low [13] determined all positive integers k for which fans and wheels have a Zk-magic labeling with a magic constant 0. Kavitha and Thirusangu [8] obtained a Zk-magic labeling of two cycles with a common vertex. Motivated by the concept of A-magic graph in [10] and the results in [9, 12, 13] Jeyanthi and Jeya Daisy [2, 3, 4, 5, 6, 7] proved that some standard graphs admit Zk-magic labeling. We use the following definitions in the subsequent section. Definition 1.1. Let G1, G2, . . . , Gn, n ≥ 2, be copies of a graph G. Let vi ∈ V (Gi), i = 1, 2, . . . , n, be the vertex corresponding to the vertex v ∈ V (G) in the ith copy of Gi. We denoted by P(n.G v) the graph obtained by adding the edge vivi+1, to Gi and Gi+1, 1 ≤ i ≤ n − 1, and we call P(n.G v) the path union of n copies of the graph G. Note, that up to isomorphism, we obtain |V (G)| graphs P(n.Gv). This operation was defined in [11]. Definition 1.2. A generalized Petersen graph P(n, m), n ≥ 3, 1 ≤ m < n 2 is a 3-regular graph with the vertex set {ui, vi : i = 1, 2, . . . , n} and the edge set {uivi, uiui+1, vivi+m : i = 1, 2, . . . , n}, where the indices are taken over modulo n. Definition 1.3. A shell graph Sn, n ≥ 4, is obtained by taking n − 3 concurrent chords in a cycle Cn. The vertex at which all the chords are concurrent is called an apex. Definition 1.4. A wheel graph Wn, n ≥ 3, is obtained by joining the vertices of a cycle Cn to an extra vertex called the centre. The vertices of degree three are called rim vertices. 18 YP. Jeyanthi, K. Jeya Daisy and Andrea Semaničová-Feňovč́ıková CUBO 21, 2 (2019) Definition 1.5. A helm graph Hn, n ≥ 3, is obtained from a wheel Wn by adjoining a pendant edge at each vertex of the wheel except the center. Definition 1.6. A closed helm graph CHn, n ≥ 3, is obtained from a helm Hn by joining each pendent vertex to form a cycle. Definition 1.7. A double wheel graph DWn, n ≥ 3, is obtained by joining the vertices of two cycles Cn to an extra vertex called the hub. Definition 1.8. A flower graph Fln, n ≥ 3, is obtained from a helm Hn by joining each pendent vertex to the central vertex of the helm. Definition 1.9. A Cartesian product of a cycle Cn, n ≥ 3, and a path on two vertices is called a cylinder graph Cn�P2. Definition 1.10. A total graph T (G) is a graph with the vertex set V (G) ∪ E(G) in which two vertices are adjacent whenever they are either adjacent or incident in G. Definition 1.11. A lotus inside a circle LCn, n ≥ 3, is a graph obtained from a wheel Wn by subdividing every edge forming the outer cycle and joining these new vertices to form a cycle. Definition 1.12. An n-pan graph, n ≥ 3, is obtained by attaching a pendent edge to a vertex of a cycle Cn. 2 Zk-Magic Labeling of Path Union of Graphs In this section we prove that the graphs such as path union of cycle, generalized Petersen graph, shell, wheel, closed helm, double wheel, flower, cylinder, total graph of a path, lotus inside a circle and n-pan graph are Zk-magic graphs. Let v be a vertex of a cycle Cr, r ≥ 3. According to the symmetry all P(n.C v r ) are isomorphic. Thus we use the notation P(n.Cr). Theorem 2.1. Let r ≥ 3 and n ≥ 2 be integers. The path union of a cycle P(n.Cr) is Zk-magic for k ≥ 3 when r is odd. Proof. Let the vertex set and the edge set of P(n.Cr) be V (P(n.Cr)) = {v j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} and E(P(n.Cr)) = {v j i v j i+1 : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {v j 1v j+1 1 : 1 ≤ j ≤ n − 1}, where the index i is taken over modulo r. Let a, k be positive integers, k > 2a. Thus k ≥ 3. CUBO 21, 2 (2019) Zk-Magic Labeling of Path Union of Graphs 19 For r is odd, we define an edge labeling f : E(P(n.Cr)) → Zk − {0} as follows: f(v1i v 1 i+1) = f(v n i v n i+1) = { k − a, for i = 1, 3, . . . , r, a, for i = 2, 4, . . . , r − 1, f(v j i v j i+1) = { k − 2a, for i = 1, 3, . . . , r, j = 2, 3, . . . , n − 1, 2a, for i = 2, 4, . . . , r − 1, j = 2, 3, . . . , n − 1, f(v j 1v j+1 1 ) = 2a, for j = 1, 2, . . . , n − 1. Then the induced vertex labeling f+ : V (P(n.Cr)) → Zk is f +(v) ≡ 0 (mod k) for every vertex v in V (P(n.Cr)). An example of a Z10-magic labeling of P(4.C5) is shown in Figure 1. b b b b 2 2 8 88 b b b b b b b 4 4 6 66 b b b b b b 4 4 6 66 b b b b b b 2 2 8 8 8 bb bbb 4 44 b Figure 1: A Z10-magic labeling of P(4.C5). Up to isomorphism there are two graphs obtained by attaching n copies of a generalized Petersen graph P(r, m), r ≥ 3, 1 ≤ m ≤ r−1 2 to a path Pn to get a graph P(n.P(r, m) v). We deal with the case when v is a vertex in the outer polygon of P(r, m). Theorem 2.2. Let r ≥ 3, m ≤ r−1 2 and n ≥ 2 be positive integers. The path union of a generalized Petersen graph P(n.P(r, m)v), where v is a vertex in the outer polygon of P(r, m), is Zk-magic for k ≥ 5 when r is odd. Proof. Let the vertex set and the edge set of P(n.P(r, m)v) be V (P(n.P(r, m)v)) = {u j i, v j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} and E(P(n.P(r, m)v)) = {u j iv j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {u j iu j i+1 : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {u j 1u j+1 1 : 1 ≤ j ≤ n − 1} ∪ {v j i v j i+m : 1 ≤ i ≤ r, 1 ≤ j ≤ n}, where the index i is taken over modulo r. Let a, k be positive integers, k > 4a. Thus k ≥ 5. 20 YP. Jeyanthi, K. Jeya Daisy and Andrea Semaničová-Feňovč́ıková CUBO 21, 2 (2019) Define an edge labeling f : E(P(n.P(r, m)v)) → Zk − {0} as follows: f(v j i v j i+m) = a, for i = 1, 2, . . . , r, j = 1, 2, . . . , n − 1, f(u j iv j i ) = k − 2a, for i = 1, 2, . . . , r, j = 1, 2, . . . , n − 1, f(u1i u 1 i+1) = { k − a, for i = 1, 3, . . . , r, 3a, for i = 2, 4, . . . , r − 1, f(u j iu j i+1) = a, for i = 1, 2, . . . , r, j = 2, 3, . . . , n − 1, f(vni v n i+m) = { k − a, for n is odd, a, for n is even, f(uni v n i ) = { 2a, for n is odd, k − 2a, for n is even, f(uni u n i+1) =          a, for i = 1, 3, . . . , r and n is odd, k − 3a, for i = 2, 4, . . . , r − 1 and n is odd, k − a, for i = 1, 3, . . . , r and n is even, 3a, for i = 2, 4, . . . , r − 1 and n is even, f(u j 1u j+1 1 ) = { 4a, for j = 1, 3, . . . and j ≤ n − 1, k − 4a, for j = 2, 4, . . . and j ≤ n − 1. Then the induced vertex labeling f+ : V (P(n.P(r, m)v)) → Zk is f +(u) ≡ 0 (mod k) for all u ∈ V (P(n.P(r, m)v)). Thus V (P(n.P(r, m)v)) is a Zk-magic graph. An example of a Z15-magic labeling of P(5.P(5, 2) v) is shown in Figure 2. b b b b b b b b b b 2 2 22 2 11 13 11 11 11 11 13 13 6 6 b b b b b b b b b b 2 2 22 2 11 11 11 11 11 b b b b b b b b b b 2 8 2 4 13 9 13 b b b b b b b b b b 2 2 22 2 11 11 11 11 11 b b b b b b b b b b 2 2 22 2 11 11 11 11 11 b b b b b 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 13 13 13 4 4 4 4 2 9 8 77 Figure 2: A Z15-magic labeling of P(5.P(5, 2) v). Theorem 2.3. Let r ≥ 4 and n ≥ 2 be positive integers. The path union of a shell graph P(n.Svr ), where v ∈ V (Sr) is the vertex of degree r − 1, is Zk-magic for k ≥ 2r − 3 when r is odd and for k ≥ r − 1 when k is even. Proof. Let the vertex set and the edge set of P(n.Svr ) be V (P(n.S v r )) = {v j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} and E(P(n.Svr )) = {v j i v j i+1 : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {v j 1v j i : 3 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {v j 1v j+1 1 : 1 ≤ j ≤ n − 1} with the index i taken over modulo r. CUBO 21, 2 (2019) Zk-Magic Labeling of Path Union of Graphs 21 We consider the following two cases according to the parity of r. Case (i): when r is odd. Let a, k be positive integers, k > 2(r − 2)a. Thus k ≥ 2r − 3. Define an edge labeling f : E(P(n.Svr )) → Zk − {0} as follows: f(v11v 1 i ) = 2a, for i = 3, 4, . . . , r − 1, f(v11v 1 2) = f(v 1 rv 1 1) = a, f(v1i v 1 i+1) = k − a, for i = 2, 3, . . . , r − 1, f(v j 1v j+1 1 ) = { k − 2a(r − 2), for j = 1, 3, . . . and j ≤ n − 1, 2a(r − 2), for j = 2, 4, . . . and j ≤ n − 1, f(v j 1v j i ) = a, for i = 3, 4, . . . , r − 1, j = 2, 3, . . . , n − 1, f(v j i v j i+1) = { (r−3)a 2 , for i = 2, 4, . . . , r − 1, j = 2, 3, . . . , n − 1, k − (r−1)a 2 , for i = 3, 5, . . . , r − 2, j = 2, 3, . . . , n − 1, f(v j 1v j 2) = f(v j rv j 1) = k − (r−3)a 2 , for j = 2, 3, . . . , n − 1, f(vn1 v n i ) = { k − 2a, for i = 3, 4, . . . , r − 1 and n is odd, 2a, for i = 3, 4, . . . , r − 1 and n is even, f(vn1 v n 2 ) = f(v n r v n 1 ) = { k − a, for n is odd, a, for n is even, f(vni v n i+1) = { a, for i = 2, 3, . . . , r − 1 and n is odd, k − a, for i = 2, 3, . . . , r − 1 and n is even. Then the induced vertex labeling f+ : V (p(n.Svr )) → Zk is f +(u) ≡ 0 (mod k) for all u ∈ V (P(n.Svr )). Case (ii): when r is even. Let a, k be positive integers, k > (r − 2)a. Thus k ≥ r − 1. 22 YP. Jeyanthi, K. Jeya Daisy and Andrea Semaničová-Feňovč́ıková CUBO 21, 2 (2019) Define an edge labeling f : E(P(n.Svr )) → Zk − {0} in the following way. f(v11v 1 i ) = a, for i = 3, 4, . . . , r − 1, f(v11v 1 2) = k − a, f(v1rv 1 1) = 2a, f(v1i v 1 i+1) = { a, for i = 2, 4, . . . , r − 2, k − 2a, for i = 3, 5, . . . , r − 1, f(v j 1v j+1 1 ) = { k − a(r − 2), for j = 1, 3, . . . and j ≤ n − 1, a(r − 2), for j = 2, 4, . . . and j ≤ n − 1, f(v j 1v j i ) = k 2 , for i = 3, 4, . . . , r − 1, j = 2, 3, . . . , n − 1, f(v j i v j i+1) =      3k 4 , for i = 2, 3, . . . , r − 1, j = 2, 3, . . . , n − 1 and k ≡ 0 (mod 4), 3k+2 4 , for i = 2, 4, . . . , r − 2, j = 2, 3, . . . , n − 1 and k ≡ 2 (mod 4), 3k−2 4 , for i = 3, 5, . . . , r − 1, j = 2, 3, . . . , n − 1 and k ≡ 2 (mod 4), f(v j 1v j 2) = { k 4 , for j = 2, 3, . . . , n − 1 and k ≡ 0 (mod 4), k−2 4 , for j = 2, 3, . . . , n − 1 and k ≡ 2 (mod 4), f(vjrv j 1) = { k 4 , for j = 2, 3, . . . , n − 1 and k ≡ 0 (mod 4), k+2 4 , for j = 2, 3, . . . , n − 1 and k ≡ 2 (mod 4), f(vn1 v n i ) = { k − a, for i = 3, 4, . . . , r − 1 and n is odd, a, for i = 3, 4, . . . , r − 1 and n is even, f(vn1 v n 2 ) = { a, for n is odd, k − a, for n is even, f(vnr v n 1 ) = { k − 2a, for n is odd, 2a, for n is even, f(vni v n i+1) =          k − a, for i = 2, 4, . . . , r − 2 and n is odd 2a, for i = 3, 5, . . . , r − 1 and n is odd, a, for i = 2, 4, . . . , r − 2 and n is even, k − 2a, for i = 3, 5, . . . , r − 1 and n is even. Then the induced vertex labeling f+ : V (P(n.Svr )) → Zk is f +(u) ≡ 0 (mod k) for all u ∈ V (P(n.Svr )). Thus P(n.S v r ) is a Zk-magic graph for r is even. An example of a Z11-magic labeling of P(3.S v 7 ) is shown in Figure 3. According to the symmetry of wheels there exist two non isomorphic graphs P(n.W vr ). We deal with the case when v is a rim vertex, that is a vertex of degree three in Wr. Theorem 2.4. Let r ≥ 4 and n ≥ 2 be integers. The path union of a wheel graph P(n.W vr ), where v ∈ V (Wr) is a vertex of degree 3, is Zk-magic for k ≥ r when r is odd and for k ≥ 2r − 1 when r CUBO 21, 2 (2019) Zk-Magic Labeling of Path Union of Graphs 23 b b b b b b 1 1 1 1 1 1010 b b b b b b 1 1 1 1 2 2 2 9 8 9 8 b b b b b b 2 2 2 2 1 1 10 10 10 10 10 b b b 9 9 9 9 1 10 Figure 3: A Z11-magic labeling of P(3.S v 7 ). is even. Proof. Let the vertex set and the edge set of P(n.W vr ) be V (P(n.W v r )) = {wj, v j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} and E(P(n.W vr )) = {v j i v j i+1 : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {wjv j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {u j 1u j+1 1 : 1 ≤ j ≤ n − 1}, where the index i is taken over modulo r. We consider the following two cases according to the parity of r. Case (i): when r is odd. Let a, k be positive integers, k > (r − 1)a. This implies k ≥ r. Define an edge labeling f : E(P(n.W vr )) → Zk − {0} as follows: f(wjv j i ) = a, for i = 2, 3, . . . , r, j = 1, 2, . . . , n − 1, f(wjv j 1) = k − (r − 1)a, for j = 1, 2, . . . , n − 1, f(v1i v 1 i+1) = { a, for i = 1, 3, . . . , r, k − 2a, for i = 2, 4, . . . , r − 1, f(v j i v j i+1) = { (r−1)a 2 , for i = 1, 3, . . . , r, j = 2, 3, . . . , n − 1, k − (r+1)a 2 , for i = 2, 4, . . . , r − 1, j = 2, 3, . . . , n − 1, f(wnv n 1 ) = { (r − 1)a, for n is odd, k − (r − 1)a, for n is even, f(wnv n i ) = { k − a, for i = 2, 3, . . . , r and n is odd, a, for i = 2, 3, . . . , r and n is even, f(vni v n i+1) =          k − a, for i = 1, 3, . . . , r and n is odd, 2a, for i = 2, 4, . . . , r − 1 and n is odd, a, for i = 1, 3, . . . , r and n is even, k − 2a, for i = 2, 4, . . . , r − 1 and n is even, f(v j 1v j+1 1 ) = { a(r − 3), for j = 1, 3, . . . and j ≤ n − 1, k − a(r − 3), for j = 2, 4, . . . and j ≤ n − 1. This means that for the induced vertex labeling f+ : V (P(n.W vr )) → Zk is f +(u) ≡ 0 (mod k) for 24 YP. Jeyanthi, K. Jeya Daisy and Andrea Semaničová-Feňovč́ıková CUBO 21, 2 (2019) all u ∈ V (P(n.W vr )). Case (ii): when r is even. Let a, k be positive integers, k > 2(r − 1)a. Define an edge labeling f : E(P(n.W vr )) → Zk − {0} in the following way. f(w1v j 1) = f(wnv n 1 ) = k − (r − 1)a, f(w1v 1 i ) = f(wnv n i ) = a, for i = 2, 3, . . . , r, f(v1i v 1 i+1) = f(v n i v n i+1) = { a, for i = 1, 3, . . . , r − 1, k − 2a, for i = 2, 4, . . . , r, f(wjv j 1) = k − 2(r − 1)a, for j = 2, 3, . . . , n − 1, f(wjv j i ) = 2a, for i = 2, 3, . . . , r, j = 2, 3, . . . , n − 1, f(v j i v j i+1) = k − a, for i = 1, 2, . . . , r, j = 2, 3, . . . , n − 1, f(v j 1v j+1 1 ) = ra, for j = 1, 2, . . . , n − 1. Then the induced vertex labeling f+ : V (P(n.W vr )) → Zk is f +(u) ≡ 0 (mod k) for all u ∈ V (P(n.W vr )). Hence f + is constant that means P(n.W vr ) admits a Zk-magic labeling. An example of a Z12-magic labeling of P(3.W v 6 ) is shown in Figure 4. b b b b b b b 2 2 2 2 2 2 11 11 11 11 1111 b b b b b b b 1 7 1 1 1 1 1 1 1 10 10 10 b b b b b b b 1 7 1 1 1 1 1 1 1 10 10 10 b b b 66 Figure 4: A Z12-magic labeling of P(3.W v 6 ). In the next theorem we deal with the path union of a closed helm graph P(n.CHvr ), where v is a vertex of degree three in CHr. Theorem 2.5. Let r ≥ 4 and n ≥ 2 be integers. The path union of a closed helm graph P(n.CHvr ), where v is a vertex of degree 3 in CHr, is Zk-magic for k ≥ r when r is odd and for even k ≥ r when r is even. Proof. Let the vertex set and the edge set of P(n.CHvr ) be V (P(n.CH v r )) = {wj, v j i , u j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} and E(P(n.CHvr )) = {v j i v j i+1 : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {u j iu j i+1 : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {wjv j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {v j i u j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {u j 1u j+1 1 : 1 ≤ j ≤ n − 1}, where the index i is taken over modulo r. CUBO 21, 2 (2019) Zk-Magic Labeling of Path Union of Graphs 25 Case (i): when r is odd. Let a, k be positive integers, k > (r − 1)a. Thus k ≥ r. Define an edge labeling f : E(P(n.CHvr )) → Zk − {0} as follows: f(wjv j 1) = k − (r − 1)a, for j = 1, 2, . . . , n − 1, f(wjv j i ) = a, for i = 2, 3, . . . , r, j = 1, 2, . . . , n − 1, f(v j i v j i+1) = { (r − 1)a, for i = 1, 3, . . . , r, j = 1, 2, . . . , n − 1, k − (r − 1)a, for i = 2, 4, . . . , r − 1, j = 1, 2, . . . , n − 1, f(u1i u 1 i+1) = { (r − 1)a, for i = 1, 3, . . . , r, k − (r − 2)a, for i = 2, 4, . . . , r − 1, f(v j i u j i ) = k − a, for i = 2, 3, . . . , r, j = 1, 2, . . . , n − 1, f(v j 1u j 1) = k − (r − 1)a, for j = 1, 2, . . . , n − 1, f(u j i u j i+1) = { (r−1)a 2 , for i = 1, 3, . . . , r, j = 2, 3, . . . , n − 1, k − (r−3)a 2 , for i = 2, 4, . . . , r − 1, j = 2, 3, . . . , n − 1, f(wnv n 1 ) = { (r − 1)a, for n is odd, k − (r − 1)a, for n is even, f(wnv n i ) =, { k − a, for i = 2, 3, . . . , r and n is odd, a, for i = 2, 3, . . . , r and n is even, f(vn1 u n 1 ) = { (r − 1), for n is odd, k − (r − 1)a, for n is even, f(vni u n i ) = { a, for i = 2, 3, . . . , r and n is odd, k − a, for i = 2, 3, . . . , r and n is even, f(vni v n i+1) =          k − (r − 1)a, for i = 1, 3, . . . , r and n is odd, (r − 1)a, for i = 2, 4, . . . , r − 1 and n is odd, (r − 1)a, for i = 1, 3, . . . , r and n is even, k − (r − 1)a, for i = 2, 4, . . . , r − 1 and n is even, f(uni u n i+1) =          k − (r − 1)a, for i = 1, 3, . . . , r and n is odd, (r − 2)a, for i = 2, 4, . . . , r − 1 and n is odd, (r − 1)a, for i = 1, 3, . . . , r and n is even, k − (r − 2)a, for i = 2, 4, . . . , r − 1 and n is even, f(u j 1u j+1 1 ) = { k − (r − 1)a, for j = 1, 3, . . . and j ≤ n − 1, (r − 1)a, for j = 2, 4, . . . and j ≤ n − 1. Then the induced vertex labeling f+ : V (P(n.CHvr )) → Zk is f +(u) ≡ 0 (mod k) for all u ∈ V (P(n.CHvr )). 26 YP. Jeyanthi, K. Jeya Daisy and Andrea Semaničová-Feňovč́ıková CUBO 21, 2 (2019) Case (ii): when r is even. Let a be a positive integer and k > (r − 2)a be an even integer. Thus k ≥ r. Define an edge labeling f : E(P(n.CHvr )) → Zk − {0} such that f(w1v 1 1) = k − (r − 1)a, f(w1v 1 i ) = a, for i = 2, 3, . . . , r, f(v1i v 1 i+1) = { (r − 1)a, for i = 1, 3, . . . , r − 1, k − (r − 1)a, for i = 2, 4, . . . , r, f(u1i u 1 i+1) = { (r − 1)a, for i = 1, 3, . . . , r − 1, k − (r − 2)a, for i = 2, 4, . . . , r − 1, f(v11u 1 1) = (r − 1)a, f(v1i u 1 i ) = k − a, for i = 2, 3, . . . , r, f(wjv j i ) = f(v j i u j i ) = f(v j i v j i+1) = k 2 , for i = 1, 2, . . . , r, j = 2, 3, . . . , n − 1, f(u j i u j i+1) =      k 4 , for i = 1, 2, . . . , r, j = 2, 3, . . . , n − 1 and k ≡ 0 (mod 4), k−2 4 , for i = 1, 3, . . . , r − 1, j = 2, 3, . . . , n − 1 and k ≡ 2 (mod 4), k+2 4 , for i = 2, 4, . . . , r, j = 2, 3, . . . , n − 1 and k ≡ 2 (mod 4), f(wnv n 1 ) = { (r − 1)a, for n is odd, k − (r − 1)a, for n is even, f(wnv n i ) = { k − a, for i = 2, 3, . . . , r and n is odd, a, for i = 2, 3, . . . , r and n is even, f(vn1 u n 1 ) = { k − (r − 1)a, for n is odd, (r − 1)a, for n is even, f(vni u n i ) = { a, for i = 2, 3, . . . , r and n is odd, k − a, for i = 2, 3, . . . , r and n is even, f(vni v n i+1) =          k − (r − 1)a, for i = 1, 3, . . . , r − 1 and n is odd, (r − 1)a, for i = 2, 4, . . . , r and n is odd, (r − 1)a, for i = 1, 3, . . . , r − 1 and n is even, k − (r − 1)a, for i = 2, 4, . . . , r and n is even, f(uni u n i+1) =          k − (r − 1)a, for i = 1, 3, . . . , r − 1 and n is odd, (r − 2)a, for i = 2, 4, . . . , r and n is odd, (r − 1)a, for i = 1, 3, . . . , r − 1 and n is even, k − (r − 2)a, for i = 2, 4, . . . , r and n is even, f(u j 1u j+1 1 ) = { k − ra, for j = 1, 3, . . . and j ≤ n − 1, ra, for j = 2, 4, . . . and j ≤ n − 1. Then the induced vertex labeling f+ : V (P(n.CHvr )) → Zk is f +(u) ≡ 0 (mod k) for all u ∈ CUBO 21, 2 (2019) Zk-Magic Labeling of Path Union of Graphs 27 V (P(n.CHvr )). Hence f + is constant equal to 0 (mod k). Therefore P(n.CHvr ) is a Zk-magic graph. An example of a Z6-magic labeling of P(3.CH v 6 ) is shown in Figure 5. b b b b b b bb b b b b b b b b b b b bb b b b b b b b b b b b bb b b b 1 11 7 1 1 1 1 5 5 5 5 5 5 11 11 11 7 7 7 8 8 8 b b 11 5 b b 1 7 5 8 11 6 3 1 1 1 1 6 6 6 6 6 6 6 66 6 6 6 6 6 6 6 6 5 5 5 5 5 8 8 11 11 11 11 7 7 7 5 3 3 3 3 3 6 6 Figure 5: A Z12-magic labeling of P(3.CH v 6 ). Theorem 2.6. Let r ≥ 3 and n ≥ 2 be integers. The path union of a double wheel graph P(n.DW vr ), where v ∈ V (DWr) is a vertex of degree 3, is Zk-magic for k ≥ 5 when r is odd. Proof. Let the vertex set and the edge set of C(n.DW vr ) be V (P(n.DW v r )) = {vj, v j i , u j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} and E(P(n.DW vr )) = {vjv j i , vju j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {v j i v j i+1 : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪{u j iu j i+1 : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪{u j 1u j+1 1 : 1 ≤ j ≤ n− 1} with index i taken over modulo r. Let a, k be positive integers, k > 4a. Thus k ≥ 5. 28 YP. Jeyanthi, K. Jeya Daisy and Andrea Semaničová-Feňovč́ıková CUBO 21, 2 (2019) For r is odd we define an edge labeling f : E(P(n.DW vr )) → Zk − {0} as follows: f(vjv j i ) = 2a, for i = 1, 2, . . . , r, j = 1, 2, . . . , n − 1, f(vju j i ) = k − 2a, for i = 1, 2, . . . , r, j = 1, 2, . . . , n − 1, f(v j i v j i+1) = k − a, for i = 1, 2, . . . , r, j = 1, 2, . . . , n − 1, f(u1i u 1 i+1) = { k − a, for i = 1, 3, . . . , r, 3a, for i = 2, 4, . . . , r − 1, f(u j i u j i+1) = a, for i = 1, 2, . . . , r, j = 2, 3, . . . , n − 1, f(vnv n i ) = { k − 2a, for i = 1, 2, . . . , r and n is odd, 2a, for i = 1, 2, . . . , r and n is even, f(vnu n i ) = { 2a, for i = 1, 2, . . . , r and n is odd, k − 2a, for i = 1, 2, . . . , r and n is even, f(vni v n i+1) = { a, for i = 1, 2, . . . , r − 1 and n is odd, k − a, for i = 1, 2, . . . , r − 1 and n is even, f(vnr v n 1 ) = { a, for n is odd, k − a, for n is even, f(uni u n i+1) =          a, for i = 1, 3, . . . , r and n is odd, k − 3a, for i = 2, 4, . . . , r − 1 and n is odd, k − a, for i = 1, 3, . . . , r and n is even, 3a, for i = 2, 4, . . . , r − 1 and n is even, f(u j 1u j+1 1 ) = { 4a, for j = 1, 3, . . . and j ≤ n − 1, k − 4a, for j = 2, 4, . . . and j ≤ n − 1. Then the induced vertex labeling f+ : V (P(n.DW vr )) → Zk is f +(u) ≡ 0 (mod k) for all u ∈ V (P(n.DW vr )). An example of a Z7-magic labeling of P(3.DW v 7 ) is shown in Figure 6. Theorem 2.7. Let r ≥ 3 and n ≥ 2 be positive integers. The path union of a flower graph P(n.Flvr), where v ∈ V (Flr) is the vertex of degree 4, is Zk-magic for k ≥ 5 when r is odd and for k ≥ 3 when k is even. Proof. Let the vertex set and the edge set of P(n.Flvr) be V (P(n.Fl v r )) = {wj, v j i , u j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} and E(P(n.Flvr)) = {wjv j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {v j i u j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {wju j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {v j i v j i+1 : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {v j 1v j+1 1 : 1 ≤ j ≤ n − 1}, with index i taken over modulo r. Case (i): when r is odd. CUBO 21, 2 (2019) Zk-Magic Labeling of Path Union of Graphs 29 b 2 3 5 6 2 2 2 2 2 2 6 6 6 6 6 6 5 5 5 5 5 5 6 6 6 6 3 3 b 4 b 2 5 6 2 2 2 2 2 2 6 6 6 6 6 6 5 5 5 5 5 5 1 11 1 1 1 1 b 2 52 2 2 2 2 2 1 5 5 5 5 5 5 b 1 1 1 1 1 1 1 1 1 1 4 4 4 3b b b bb b b b b b b b b b b b bb b b b b b b b b b b b b bb b b b b b b b b Figure 6: A Z7-magic labeling of P(3.DW v 7 ). Let a, k be positive integers, k > 4a. This means k ≥ 5. Define an edge labeling f : E(P(n.Flvr)) → Zk − {0} as follows: f(wjv j i ) = f(v j i u j i ) = a, for i = 1, 2, . . . , r, j = 1, 2, . . . , n − 1, f(u j i wj) = k − a, for i = 1, 2, . . . , r, j = 1, 2, . . . , n − 1, f(v1i v 1 i+1) = { a, for i = 1, 3, . . . , r, k − 3a, for i = 2, 4, . . . , r − 1, f(v j i v j i+1) = k − a, for i = 1, 2, . . . , r, j = 2, 3, . . . , n − 1, f(wnv n i ) = f(v n i u n i ) = { k − a, for i = 1, 2, . . . , r and n is odd, a, for i = 1, 2, . . . , r and n is even, f(uni wn) = { a, for i = 1, 2, . . . , r and n is odd, k − a, for i = 1, 2, . . . , r and n is even, f(vni v n i+1) =          k − a, for i = 1, 3, . . . , r and n is odd, 3a, for i = 2, 4, . . . , r − 1 and n is odd, a, for i = 1, 3, . . . , r and n is even, k − 3a, for i = 2, 4, . . . , r − 1 and n is even, f(v j 1v j+1 1 ) = { k − 4a, for j = 1, 3, . . . and j ≤ n − 1, 4a, for j = 2, 4, . . . and j ≤ n − 1. Then the induced vertex labeling f+ : V (P(n.Flvr)) → Zk is f +(u) ≡ 0 (mod k) for all u ∈ V (P(n.Flvr)). Case (ii): when r is even. Let a, k be positive integers, k > 2a. Thus k ≥ 3. 30 YP. Jeyanthi, K. Jeya Daisy and Andrea Semaničová-Feňovč́ıková CUBO 21, 2 (2019) Define an edge labeling f : E(P(n.Flvr)) → Zk − {0} as follows: f(w1v 1 1) = f(v 1 1u 1 1) = 2a, f(u11w1) = k − 2a, f(v j i v j i+1) = k − a, for i = 1, 2, . . . , r, j = 2, 3, . . . , n − 1, f(wjv j i ) = f(v j i u j i ) = a, for i = 2, 3, . . . , r, j = 1, 2, . . . , n − 1, f(wju j i) = k − a, for i = 2, 3, . . . , r, j = 1, 2, . . . , n − 1, f(wnv n 1 ) = f(v n 1 u n 1 ) = { k − 2a, for n is odd, 2a, for n is even, f(wnu n 1 ) = { 2a, for n is odd, k − 2a, for n is even, f(wnv n i ) = f(v n i u n i ) = { k − a, for i = 2, 3, . . . , r and n is odd, a, for i = 2, 3, . . . , r and n is even, f(wnu n i ) = { a, for i = 2, 3, . . . , r and n is odd, k − a, for i = 2, 3, . . . , r and n is even, f(vni v n i+1) = { a, for i = 1, 2, . . . , r and n is odd, k − a, for i = 1, 2, . . . , r and n is even, f(v j 1v j+1 1 ) = { k − 2a, for j = 1, 3, . . . and j ≤ n − 1, 2a, for j = 2, 4, . . . and j ≤ n − 1. The induced vertex labeling f+ : V (P(n.Flvr)) → Zk is f +(u) ≡ 0 (mod k) for all u ∈ V (P(n.Flvr)). An example of a Z10-magic labeling of P(4.Fl v 3) is shown in Figure 7. b b 2 2 2 2 8 8 b b b b 2 8 8 8 8 2 b b b b 2 2 2 2 8 8 b b b b 2 8 8 8 2 b b 8 b b 2 2 2 2 4 8 8 2 b b b 2 8 2 b 2 b b b b 2 2 2 2 4 8 82 b b b b 2 8 2 b b 2 2 8 2 Figure 7: A Z10-magic labeling of P(4.Fl v 3). Let v be a vertex of a cylinder graph Cr�P2, r ≥ 3. According to the symmetry all P(n.(Cr�P2) v) are isomorphic. Thus we use the notation P(n.(Cr�P2)). Theorem 2.8. Let r ≥ 3, n ≥ 2 be integers. The path union of a cylinder graph P(n.(Cr�P2)) is Zk-magic for k ≥ 5 when r is odd. CUBO 21, 2 (2019) Zk-Magic Labeling of Path Union of Graphs 31 Proof. Let the vertex set and the edge set of P(n.(Cr�P2)) be V (P(n.(Cr�P2))) = {v j i , u j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} and E(P(n.(Cr�P2))) = {u j iv j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {u j iu j i+1 : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {v j i v j i+1 : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {u j 1u j+1 1 : 1 ≤ j ≤ n − 1}, with index i taken over modulo r. Let a, k be positive integers, k > 4a. Thus k ≥ 5. For r odd we define an edge labeling f : E(P(n.(Cr�P2))) → Zk − {0} as follows: f(v j i u j i) = k − 2a, for i = 1, 2, . . . , r, j = 1, 2, . . . , n − 1, f(v j i v j i+1) = a, for i = 1, 2, . . . , r, j = 1, 2, . . . , n − 1, f(u1i u 1 i+1) = { k − a, for i = 1, 3, . . . , r, 3a, for i = 2, 4, . . . , r − 1, f(u j iu j i+1) = a, for i = 1, 2, . . . , r, j = 2, 3, . . . , n − 1, f(vni v n i+1) = { k − a, for n is odd, a, for n is even, f(vni u n i ) = { 2a, for n is odd, k − 2a, for n is even, f(uni u n i+1) =          a, for i = 1, 3, . . . , r and n is odd, k − 3a, for i = 2, 4, . . . , r − 1 and n is odd, k − a, for i = 1, 3, . . . , r and n is even, 3a, for i = 2, 4, . . . , r − 1 and n is even, f(u j 1u j+1 1 ) = { 4a, for j = 1, 3, . . . , j ≤ n − 1, k − 4a, for j = 2, 4, . . . , j ≤ n − 1. Then the induced vertex labeling f+ : V (P(n.(Cr�P2))) → Zk is f +(v) ≡ 0 ≡ k for all v ∈ V (P(n.(Cr�P2))). Hence f + is constant and is equal to 0 ≡ k. An example of a Z9-magic labeling of P(3.(C7�P2)) is shown in Figure 8. 1 2 3 4 8 7 2 2 2 2 2 2 2 5 5 5 5 5 5 5 7 77 6 6 7 2 2 2 2 2 2 2 5 5 5 5 5 5 5 b b b 2 2 2 2 2 2 2 22 7 7 7 7 7 7 4 4 44 4 4 3 3 2 b b bb b b b b b bb b b b b bb b b b b b b b b b b b b bb b b b b b b b 6 b Figure 8: A Z9-magic labeling of P(3.(C7�P2) v). 32 YP. Jeyanthi, K. Jeya Daisy and Andrea Semaničová-Feňovč́ıková CUBO 21, 2 (2019) Theorem 2.9. Let r ≥ 5 and n ≥ 2 be positive integers. The path union of a total graph of a path P(n.T (Pr) v), where v ∈ V (T (Pr)) is a vertex of degree two, is Zk-magic for k ≥ 3. Proof. Let the vertex set and the edge set of P(n.T (Pr) v) be V (P(n.T (Pr) v)) = {u j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {v j i : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ n} and E(P(n.T (Pr) v)) = {u j iu j i+1 : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ n} ∪ {v j i v j i+1 : 1 ≤ i ≤ r − 2, 1 ≤ j ≤ n} ∪ {u j i+1v j i : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ n} ∪ {u j iv j i : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ n} ∪ {u j 1u j+1 1 : 1 ≤ j ≤ n − 1}. We consider the following two cases according to the parity of r. Case (i): when r is odd. Let a, k be positive integers, k > 2a. Thus k ≥ 3. Define an edge labeling f : E(P(n.T (Pr) v)) → Zk − {0} as follows: f(u1i u 1 i+1) = { a, for i = 1, 3, . . . , r, 2a, for i = 2, 4, . . . , r − 3, f(u1r−1u 1 r) = f(v 1 1v 1 2) = a, f(v1i v 1 i+1) = { 2a, for i = 3, 5, . . . , r, a, for i = 2, 4, . . . , r − 1, f(u11v 1 1) = a, f(u12v 1 2) = k − a, f(u1i v 1 i ) = k − 2a, for i = 3, 4, . . . , r − 2, f(u1r−1v 1 r−1) = k − a, f(v11u 1 2) = k − 2a, f(v1i u 1 i+1) = k − a, for i = 2, 3, . . . , r − 1, f(u j 1v j 1) = f(u j 2v j 1) = a, for j = 2, 3, . . . , n − 1, f(u j 1u j 2) = f(u j r−1u j r) = k − a, for j = 2, 3, . . . , n − 1, f(u j iu j i+1) = k − 2a, for i = 2, 3, . . . , r − 2, j = 2, 3, . . . , n − 1, f(v j i v j i+1) = k − 2a, for i = 1, 2, . . . , r − 2, j = 2, 3, . . . , n − 1, f(u j iv j i ) = f(u j i+1v j i ) = 2a, for i = 2, 3, . . . , r − 2, j = 2, 3, . . . , n − 1, f(ujrv j r−1) = f(u j r−1v j r−1) = a, for j = 2, 3, . . . , n − 1, CUBO 21, 2 (2019) Zk-Magic Labeling of Path Union of Graphs 33 f(unr−1u n r ) = { k − a, for n is odd, a, for n is even, f(uni u n i+1) =          k − a, for i = 1, 3, . . . , r and n is odd, k − 2a, for i = 2, 4, . . . , r − 3 and n is odd, a, for i = 1, 3, . . . , r and n is even, 2a, for i = 2, 4, . . . , r − 3 and n is odd, f(vn1 v n 2 ) = { k − a, for n is odd, a, for n is even, f(vni v n i+1) =          k − 2a, for i = 3, 5, . . . , r and n is odd, k − a, for i = 2, 4, . . . , r − 1 and n is odd, 2a, for i = 3, 5, . . . , r and n is even, a, for i = 2, 4, . . . , r − 1 and n is even, f(un1 v n 1 ) = { k − a, for n is odd, a, for n is even, f(un2 v n 2 ) = { a, for n is odd, k − a, for n is even, f(uni v n i ) = { 2a, for i = 3, 4, . . . , r − 2 and n is odd, k − 2a, for i = 3, 4, . . . , r − 2 and n is even, f(unr−1v n r−1) = { a, for n is odd, k − a, for n is even, f(vn1 u n 2 ) = { 2a, for n is odd, k − 2a, for n is even, f(vni u n i+1) = { a, for i = 2, 3, . . . , r − 1 and n is odd, k − a, for i = 2, 3, . . . , r − 1 and n is even, f(u j 1u j+1 1 ) = { k − 2a, for j = 1, 3, . . . and j ≤ n − 1, 2a, for j = 2, 4, . . . and j ≤ n − 1. Then the induced vertex labeling f+ : V (P(n.T (Pr) v)) → Zk is f +(u) ≡ 0 (mod k) for all u ∈ V (P(n.T (Pr) v)). 34 YP. Jeyanthi, K. Jeya Daisy and Andrea Semaničová-Feňovč́ıková CUBO 21, 2 (2019) Case (ii): when r is even. Let a, k be positive integers, k > 2a. Thus k ≥ 3. Define an edge labeling f : E(P(n.T (Pr) v)) → Zk − {0} as follows: f(u1i u 1 i+1) = f(v 1 i v 1 i+1) = { k − a, for i = 1, 3, . . . , r − 1, k − 2a, for i = 2, 4, . . . , r, f(v11u 1 1) = k − a, f(v1i u 1 i ) = a, for i = 2, 3, . . . , r − 1, f(v1i u 1 i+1) = 2a, for i = 1, 2, . . . , r − 2, f(v1r−1u 1 r) = a, f(u j 1v j 1) = f(u j 2v j 1) = a, for j = 2, 3, . . . , n − 1, f(u j 1u j 2) = f(u j r−1u j r) = k − a, for j = 2, 3, . . . , n − 1, f(u j i u j i+1) = k − 2a, for i = 2, 3, . . . , r − 2, j = 2, 3, . . . , n − 1, f(v j i v j i+1) = k − 2a, for i = 1, 2, . . . , r − 2, j = 2, 3, . . . , n − 1, f(u j i v j i ) = f(u j i+1v j i ) = 2a, for i = 2, 3, . . . , r − 2, j = 2, 3, . . . , n − 1, f(ujrv j r−1) = f(u j r−1v j r−1) = a, for j = 2, 3, . . . , n − 1, f(uni u n i+1) = f(v n i v n i+1) =          a, for i = 1, 3, . . . , r − 1 and n is odd, 2a, for i = 2, 4, . . . , r and n is odd, k − a, for i = 1, 3, . . . , r − 1 and n is even, k − 2a, for i = 2, 4, . . . , r and n is even, f(un1 v n 1 ) = { a, for n is odd, k − a, for n is even, f(uni v n i ) = { k − a, for i = 2, 3, . . . , r − 1 and n is odd, a, for i = 2, 3, . . . , r − 1 and n is even, f(vni u n i+1) = { k − 2a, for i = 1, 2, . . . , r − 2 and n is odd, 2a, for i = 1, 2, . . . , r − 2 and n is even, f(vnr−1u n r ) = { k − a, for n is odd, a, for n is even, f(u j 1u j+1 1 ) = { 2a, for j = 1, 3, . . . and j ≤ n − 1, k − 2a, for j = 2, 4, . . . and j ≤ n − 1. Then the induced vertex labeling f+ : V (P(n.T (Pr) v)) → Zk is f +(u) ≡ 0 (mod k) for all u ∈ V (P(n.T (Pr) v)). Hence P(n.T (Pr) v) is a Zk-magic graph. CUBO 21, 2 (2019) Zk-Magic Labeling of Path Union of Graphs 35 An example of a Z5-magic labeling of P(5.T (P6) v) is shown in Figure 9. b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 1 2 3 4 3 3 3 3 4 4 4 4 1 1 1 2 2 2 2 1 11 1 4 4 3 3 3 3 4 4 3 3 2 2 2 2 2 2 1 2 2 2 2 2 2 2 4 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 4 4 3 3 3 3 33 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 11 1 1 1 1 3 3 3 33 Figure 9: A Z5-magic labeling of P(5.T (P6) v). Theorem 2.10. Let r ≥ 3 and n ≥ 2 be integers. Let v is a vertex of degree 2 in LCr. The path union of a lotus inside a circle graph P(n.LCvr ), is Zk-magic for k ≥ r. Proof. Let the vertex set and the edge set of P(n.LCvr ) be V (P(n.LC v r )) = {wj, v j i , u j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} and E(P(n.LCvr )) = {wjv j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {v j i u j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {v j i u j i+1 : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {u j iu j i+1 : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {u j 1u j+1 1 : 1 ≤ j ≤ n − 1}, where the index i is taken over modulo r. We consider the following two cases according to the parity of r. Case (i): when r is odd. Let a, k be positive integers, k > (r − 1)a. Thus k ≥ r. 36 YP. Jeyanthi, K. Jeya Daisy and Andrea Semaničová-Feňovč́ıková CUBO 21, 2 (2019) Define an edge labeling f : E(P(n.LCvr )) → Zk − {0} in the following way. f(wjv j 1) = k − (r − 1)a, for j = 1, 2, . . . , n − 1, f(wjv j i ) = a, for i = 2, 3, . . . , r, j = 1, 2, . . . , n − 1, f(v j 1u j 1) = (r − 2)a, for j = 1, 2, . . . , n − 1, f(v j i u j i ) = k − 2a, for i = 2, 3, . . . , r, j = 1, 2, . . . , n − 1, f(v j i u j i+1) = a, for i = 1, 2, . . . , r, j = 1, 2, . . . , n − 1, f(u1i u 1 i+1) = { k − a, for i = 1, 3, . . . , r, 2a, for i = 2, 4, . . . , r − 1, f(u j iu j i+1) = { k − (r−1)a 2 , for i = 1, 3, . . . , r, j = 2, 3, . . . , n − 1, (r+1)a 2 , for i = 2, 4, . . . , r − 1, j = 2, 3, . . . , n − 1, f(u j 1u j+1 1 ) = { k − (r − 3)a, for j = 1, 3, . . . , j ≤ n − 1, (r − 3)a, for j = 2, 4, . . . , j ≤ n − 1, f(wnv n 1 ) = { (r − 1)a, for n is odd, k − (r − 1)a, for n is even, f(wnv n i ) = { k − a, for i = 2, 3, . . . , r and n is odd, a, for i = 2, 3, . . . , r and n is even, f(vn1 u n 1 ) = { k − (r − 2)a, for n is odd, (r − 2)a, for n is even, f(vni u n i ) = { 2a, for i = 2, 3, . . . , r and n is odd, k − 2a, for i = 2, 3, . . . , r and n is even, f(vni u n i+1) = { k − a, for i = 1, 2, . . . , r and n is odd, a, for i = 1, 2, . . . , r and n is even, f(uni u n i+1) =          a, for i = 1, 3, . . . , r and n is odd, k − 2a, for i = 2, 4, . . . , r − 1 and n is odd, k − a, for i = 1, 3, . . . , r and n is even, 2a, for i = 2, 4, . . . , r − 1 and n is even. Then the induced vertex labeling f+ : V (P(n.LCvr )) → Zk is f +(u) ≡ 0 (mod k) for all u ∈ V (P(n.LCvr )). Case (ii): when r is even. Let a, k be positive integers, k > (r − 1)a. Thus k ≥ r. CUBO 21, 2 (2019) Zk-Magic Labeling of Path Union of Graphs 37 Define an edge labeling f : E(P(n.LCr)) → Zk − {0} as follows: f(w1v 1 1) = k − (r − 1)a, f(w1v 1 i ) = a, for i = 2, 3, . . . , r, f(v11u 1 1) = (r − 2)a, f(v1i u 1 i ) = k − 2, for i = 2, 3, . . . , r, f(v1i u 1 i+1) = a, for i = 1, 2, . . . , r, f(u1i u 1 i+1) = { k − a, for i = 1, 3, . . . , r − 1, 2a, for i = 2, 4, . . . , r, f(wjv j i ) = { a, for i = 1, 3, . . . , r − 1, j = 2, 3, . . . , n − 1, k − a, for i = 2, 4, . . . , r, j = 2, 3, . . . , n − 1, f(v j i u j i) = { k − 2a, for i = 1, 3, . . . , r − 1, j = 2, 3, . . . , n − 1, k − a, for i = 2, 4, . . . , r, j = 2, 3, . . . , n − 1, f(v j i u j i+1) = { a, for i = 1, 3, . . . , r − 1, j = 1, 2, . . . , n − 1, 2a, for i = 2, 4, . . . , r, j = 1, 2, . . . , n − 1, f(u j i u j i+1) = { k − a, for i = 1, 3, . . . , r − 1, j = 2, 3, . . . , n − 1, a, for i = 2, 4, . . . , r, j = 2, 3, . . . , n − 1, f(wnv n 1 ) = { (r − 1)a, for n is odd, k − (r − 1)a, for n is even, f(wnv n i ) = { k − a, for i = 2, 3, . . . , r and n is odd, a, for i = 2, 3, . . . , r and n is even, f(vn1 u n 1 ) = { k − (r − 2)a, for n is odd, (r − 2)a, for n is even, f(vni u n i ) = { 2a, for i = 2, 3, . . . , r and n is odd, k − 2a, for i = 2, 3, . . . , r and n is even, f(vni u n i+1) = { k − a, for i = 1, 2, . . . , r and n is odd, a, for i = 1, 2, . . . , r and n is even, f(uni u n i+1) =          a, for i = 1, 3, . . . , r − 1 and n is odd, k − 2a, for i = 2, 4, . . . , r and n is odd, k − a, for i = 1, 3, . . . , r − 1 and n is even, 2a, for i = 2, 4, . . . , r and n is even, f(u j 1u j+1 1 ) = { k − ra, for j = 1, 3, . . . , j ≤ n − 1, ra, for j = 2, 4, . . . , j ≤ n − 1. Then the induced vertex labeling f+ : V (P(n.LCvr )) → Zk is f +(u) ≡ 0 (mod k) for all u ∈ 38 YP. Jeyanthi, K. Jeya Daisy and Andrea Semaničová-Feňovč́ıková CUBO 21, 2 (2019) V (P(n.LCvr )). Hence f + is constant and is equal to ≡ 0 (mod k). An example of a Z10-magic labeling of P(3.LC v 6 ) is shown in Figure 10. b b b bb b b b b b b b b b b b bb b b b b b b b b b b b bb b b b b b b b b b b b 1 2 4 5 6 8 9 1 1 1 1 1 1 1 1 1 8 8 8 8 1 1 1 9 9 9 2 2 4 1 1 1 9 9 2 8 9 2 2 8 8 9 1 9 9 9 9 9 5 6 9 9 9 9 9 9 2 2 2 2 2 1 8 1 1 8 8 9 9 9 1 1 1 9 Figure 10: A Z10-magic labeling of P(3.LC v 6 ). In the last theorem we deal with the path union of an r-pan graph P(n.(r-pan)v), where v is a vertex of degree two in an r-pan graph. Theorem 2.11. Let r ≥ 3, n ≥ 2 be integers. The path union of an r-pan graph P(n.(r-pan)v), where v is a vertex of degree two in an r-pan graph, is Zk-magic for k ≥ 5 when r is odd. Proof. Let v be a vertex of degree two in an r-pan graph. Let the vertex set and the edge set of P(n.(r-pan)v) be V (P(n.(r-pan)v)) = {wj, v j i : 1 ≤ i ≤ r, 1 ≤ j ≤ n} and E(P(n.(r-pan) v)) = {v j i v j i+1 : 1 ≤ i ≤ r, 1 ≤ j ≤ n} ∪ {v j 1wj : 1 ≤ j ≤ n} ∪ {w j 1w j+1 1 : 1 ≤ j ≤ n − 1}, where the index i is taken over modulo r. Let a, k be positive integers, k > 2a. Thus k ≥ 5. For r odd we define an edge labeling f : E(P(n.(r-pan)v)) → Zk − {0} as follows: f(v1i v 1 i+1) = f(v n i v n i+1) = { k − a, for i = 1, 3, . . . , r, a, for i = 2, 4, . . . , r − 1, f(v j i v j i+1) = { k − 2a, for i = 1, 3, . . . , r, j = 2, 3, . . . , n − 1, 2a, for i = 2, 4, . . . , r − 1, j = 2, 3, . . . , n − 1, f(v11w1) = f(v n 1 wn) = 2a, f(v j 1wj) = 4a, for j = 2, 3, . . . , n − 1, f(w j 1w j+1 1 ) = k − 2a, for j = 1, 2, . . . , n − 1. Then the induced vertex labeling f+ : V (P(n.(r-pan)v)) → Zk is f +(u) ≡ 0 (mod k) for all u ∈ V (P(n.(r-pan)v)). This means that P(n.(r-pan)v) is a Zk-magic graph. An example of a Z9-magic labeling of P(4.(5-pan) v) is illustrated in Figure 11. CUBO 21, 2 (2019) Zk-Magic Labeling of Path Union of Graphs 39 b b b b b b 2 7 7 7 2 5 b b b b b b 8 b b b b b b 8 b b b b b b 2 7 7 7 2 b bbb 5 5 5 5 4 4 4 5 5 55 4 4 4 Figure 11: A Z9-magic labeling of P(4.(5-pan) v). Acknowledgment This work was supported by the Slovak Research and Development Agency under the contract No. APVV-15-0116 and by VEGA 1/0233/18. 40 YP. Jeyanthi, K. Jeya Daisy and Andrea Semaničová-Feňovč́ıková CUBO 21, 2 (2019) References [1] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb., 2018, # DS6. [2] P. Jeyanthi and K. Jeya Daisy, Zk-magic labeling of subdivision graphs, Discrete Math. Algo- rithm. Appl., 8(3) (2016), 19 pages, DOI: 10.1142/ S1793830916500464. [3] P. Jeyanthi and K. Jeya Daisy, Zk-magic labeling of open star of graphs, Bull. Inter. Math. Virtual Inst., 7 (2017), 243–255. [4] P. Jeyanthi and K. Jeya Daisy, Certain classes of Zk-magic graphs, J. Graph Labeling, 4(1) (2018), 38–47. [5] P. Jeyanthi and K. Jeya Daisy, Zk-magic labeling of some families of graphs, J. Algorithm Comput., 50(2) (2018), 1–12. [6] P. Jeyanthi and K. Jeya Daisy, Zk-magic labeling of cycle of graphs, Int. J. Math. Combin., 1 (2019), 88–102. [7] P. Jeyanthi and K. Jeya Daisy, Some results on Zk-magic labeling, Palestine J. Math., 8(2) (2019), 400–412. [8] K. Kavitha and K. Thirusangu, Group magic labeling of cycles with a common vertex, Int. J. Comput. Algorithm, 2 (2013), 239–242. [9] R.M. Low and S.M. Lee, On the products of group-magic graphs, Australas. J. Combin., 34 (2006), 41–48. [10] J. Sedláček, On magic graphs, Math. Slov., 26 (1976), 329–335. [11] S.C. Shee and Y.S. Ho, The cordiality of the path-union of n copies of a graph, Discrete Math., 151(1-3) (1996), 221–229. [12] W.C. Shiu, P.C.B. Lam and P.K. Sun, Construction of magic graphs and some A-magic graphs with A of even order, Congr. Numer., 167 (2004), 97–107. [13] W.C. Shiu and R.M. Low, Zk-magic labeling of fans and wheels with magic-value zero, Aus- tralas. J. Combin., 45 (2009), 309–316. Introduction Zk-Magic Labeling of Path Union of Graphs