CUBO A Mathematical Journal Vol.21, No¯ 03, (75–91). December 2019 http: // dx. doi. org/ 10. 4067/ S0719-06462019000300075 Weak solutions to Neumann discrete nonlinear system of Kirchhoff type Rodrigue Sanou1, Idrissa Ibrango2, Blaise Koné1, Aboudramane Guiro2 1 Laboratoire d’analyse Mathématiques et d’Informatique (LaMI), Institut des Sciences Exactes et Appliquées, Université Joseph KI-Zerbo, Ouagadougou, Burkina- Faso. 2 Laboratoire d’analyse Mathématiques et d’Informatique (LaMI), UFR, Sciences et Technique, Université Nazi Boni, 01 BP 1091 Bobo 01, Bobo Dioulasso, Burkina-Faso. drigoaime@gmail.com, ibrango2006@yahoo.fr, leizon71@yahoo.fr, abouguiro@yahoo.fr ABSTRACT We prove the existence of weak solutions for discrete nonlinear system of Kirchhoff type. We build some Hilbert spaces with suitable norms. We define the notion of weak solution corresponding to the problem (1.1). The proof of the main result is based on a minimization method of an energy functional J. RESUMEN Probamos la existencia de soluciones débiles para sistemas discretos no-lineales de tipo Kirchhoff. Construimos algunos espacios de Hilbert con normas apropiadas. Definimos la noción de solución débil correspondiente al problema (1.1). La demostración del resultado principal se basa en un método de minimización de un funcional de enerǵıa J. Keywords and Phrases: Nonlinear difference equations, anisotropic nonlinear discrete systems, minimization methods, weak solutions. 2010 AMS Mathematics Subject Classification: 47A75; 35B38; 35P30; 34L05; 34L30. http://dx.doi.org/10.4067/S0719-06462019000300075 76 R. Sanou, I. Ibrango, B. Koné, A. Guiro CUBO 21, 3 (2019) 1 Introduction In this paper, we are going to investigate the existence of weak solutions for the following anisotropic nonlinear discrete system. For i = 1, · · · , n    −M (A(k − 1, ∆ui(k − 1))) ∆(a(k − 1, ∆ui(k − 1)))=fi(k, u(k)), k ∈ Z[1, T] ∆ui(0) = ∆ui(T) = 0 (1.1) where ∆ui(k) = ui(k + 1) − ui(k) is the forward difference operator for any i = 1, · · · , n; Z[1, T] = {1, . . . , T} for T ≥ 2 and a, fi are functions to be defined later. In the last few years, great attention has been paid to the study of fourth-order nonlinear difference equations. These equations have been widely used to study discrete models in many fields such as computer science, economics, neural network, ecology, cybernetics, etc. For background and recent results, we refer the reader to [2]-[12], [14] and the references therein. Note that in recent years, much attention has been paid to problems not local since they appear in physical phenomena like the theory of nonlinear elasticity, heat diffusion, etc. Among this problems, we find Kirchhoff type problems, which are known by the presence of the term M( ∫ Ω |∇u|2)∆u in the continuous case. As far as we know, the first study which deals with anisotropic discrete boundary value problems of p(.)-Kirchhoff type difference equation was done by Yucedag (see [11]). The function M(A(k − 1, ∆u(k − 1))) which appear in the left-hand side of problem (1.1) is more general. The main operator ∆(a(k − 1, ∆u(k − 1))) in problem (1.1) can be seen as a discrete counterpart of the anisotropic operator N∑ i=1 ∂ ∂xi a ( x, ∂ ∂xi u ) . The functional a derives from a potential with a(k, ξ) = ∂ ∂ξ A(k, ξ). Our goal is to use a minimization method in order to establish some existence results of solutions of (1.1). The idea of the proof is to transfer the problem of the existence of solutions for (1.1) into the problem of existence of a minimizer for some associated energy functional. This method was successfully used by Bonanno et al. [1] for the study of an eigenvalue nonhomogeneous Neumann problem, where, under an appropriate oscillating behaviour of the nonlinear term, they proved the existence of a determined open interval of positive parameters for which the problem considered admits infinitely many weak solutions that strongly converge to zero, in an appropriate Orlicz Sobolev space. Motivated by the work of [13] where J. Zhao proved the existence of positive solutions, the approach presented in this article is different than the one given in the papers mentioned above. To the best of CUBO 21, 3 (2019) Weak solutions to Neumann discrete nonlinear system of Kirchhoff . . . 77 our knowledge , results on existence of weak solutions of system (1.1), using minimization method, have not been found in the literature. The remaining part of this paper is organized as follows. Section 2 is devoted to mathematical preliminaries. The main existence result is proved in Section 3. In the Section 4, we give an extension of our system. 2 Mathematical background In the T-dimensional Hilbert space H = { u : Z[0, T + 1] −→ Rn such that ∆u(0) = ∆u(T) = 0 } , with the inner product 〈u, v〉 = n∑ i=1 T+1∑ k=1 ∆ui(k − 1)∆vi(k − 1), ∀ u, v ∈ H, we consider the norm ‖u‖ = ( n∑ i=1 T+1∑ k=1 |∆ui(k − 1)| 2 )1 2 . (2.1) We denote Hi = { ui : Z[0, T + 1] −→ R such that ∆ui(0) = ∆ui(T) = 0 } , for i = 1, · · · , n with the norm |ui|h = ( T+1∑ k=1 |∆ui(k − 1)| 2 )1 2 ∀ ui ∈ Hi for i = 1, · · · , n. (2.2) Moreover, we may consider Hi with the following norm |ui|m = ( T∑ k=1 |ui(k)| m ) 1 m ∀ ui ∈ Hi, m ≥ 2 for i = 1, · · · , n. (2.3) We have the following inequalities (see [2]) T(2−m)/(2m)|ui|2 ≤ |ui|m ≤ T 1/m|ui|2, ∀ ui ∈ Hi, m ≥ 2 for i = 1, · · · , n. (2.4) Let the function p : Z[0, T] −→ (2, +∞) (2.5) denoted by p− = min k∈Z[0,T] p(k) and p+ = max k∈Z[0,T] p(k). 78 R. Sanou, I. Ibrango, B. Koné, A. Guiro CUBO 21, 3 (2019) For the data a and fi, we assume the following. (H1). { a(k, .) : R → R, k ∈ Z[0, T] and there exists A(., .) : Z[0, T] × R → R which satisfies a(k, ξ) = ∂ ∂ξ A(k, ξ) and A(k, 0) = 0, for all k ∈ Z[0, T]. (H2). For all k ∈ Z[0, T] and ξ 6= η (a(k, ξ) − a(k, η)) .(ξ − η) > 0. (2.6) (H3). For any k ∈ Z[0, T], ξ ∈ R, we have A(k, ξ) ≥ 1 p(k) |ξ|p(k). (2.7) (H4). For each k ∈ Z[0, T], the function fi(k, .) : R n −→ R is jointly continuous and there exists (αi(.))1≤i≤n : Z[0, T] −→ (0, +∞) and a function (ri(.))1≤i≤n : Z[0, T] −→ [2, +∞) such that |fi(k, u)| ≤ αi(k) ( 1 + |ui(k)| ri(k)−1 ) (2.8) where 2 ≤ ri (k) < p − for i = 1, · · · , n. In what follows, we denote by : r− = min {(k,i)∈Z[0,T]×Z[1,n]} ri(k) and r + = max {(k,i)∈Z[0,T]×Z[1,n]} ri(k). For each i = 1, · · · , n, there exists hi ∈ R n such that ∇Fi(k, u)(hi) = fi(k, u) ∀u ∈ H for i = 1, · · · , n. (2.9) By (2.8) there exists (βi(.))1≤i≤n : Z[0, T] −→ (0, +∞) such that |Fi(k, u)| ≤ βi(k) ( 1 + |ui(k)| ri(k) ) for i = 1, · · · , n (2.10) where 0 < β = inf {(k,i)∈ Z[0,T]×Z[1,n]} βi(k) ≤ sup {(k,i)∈ Z[0,T]×Z[1,n]} βi(k) = β < +∞. (2.11) (H5). We also assume that the function M : (0, +∞) −→ (0, +∞) is continuous and non-decreasing and there exist positive numbers B1, B2 with B1 ≤ B2 and α > 1 such that B1t α−1 ≤ M(t) ≤ B2t α−1 for t > t∗ > 0. (2.12) Example 2.1. There are many functions satisfying both (H1) − (H4). Let us mention the following. CUBO 21, 3 (2019) Weak solutions to Neumann discrete nonlinear system of Kirchhoff . . . 79 • A(k, ξ) = 1 p(k) (( 1 + |ξ|2 )p(k)/2 − 1 ) , where a(k, ξ) = ( 1 + |ξ|2 )(p(k)−2)/2 ξ, ∀ k ∈ Z[0, T], ξ ∈ R, • fi(k, ξ) = 1 + ∣∣ξi ∣∣p(k)−1, ∀ (k, i) ∈ Z[0, T] × Z[1, n] and ξ = (ξ1, · · · , ξn) , • M(t) = 1, ∀ t ∈ (0, +∞). Moreover, we may consider H with the following norm ‖u‖m = n∑ i=1 ( T∑ k=1 |ui(k)| m ) 1 m , ∀ u ∈ H and m ≥ 2. (2.13) Using the relation (2.4) we can prove the following lemma. Lemma 2.2. We have the following inequalities T(2−m)/(2m)‖u‖2 ≤ ‖u‖m ≤ T 1/m‖u‖2, ∀ u ∈ H and m ≥ 2. (2.14) We need the following auxiliary results throughout our paper. Lemma 2.3. (1) There exist two positive constant C1, C2 such that n∑ i=1 T+1∑ k=1 |∆ui(k − 1)| p(k−1) ≥ C1 ( n∑ i=1 T+1∑ k=1 |∆ui(k − 1)| 2 )p− 2 − C2, (2.15) for all u ∈ H with |ui|h > 1. (2) For any m ≥ 2 there exists a positive constant cm such that n∑ i=1 T∑ k=1 |ui(k)| m ≤ cm n∑ i=1 T+1∑ k=1 |∆ui(k − 1)| m, ∀ u ∈ H. (2.16) Indeed, (1) By [6], there exists the positive constants λi and µi for i = 1, · · · n T+1∑ k=1 |∆ui(k − 1)| p(k−1) ≥ λi ( T+1∑ k=1 |∆ui(k − 1)| 2 )p− 2 − µi ∀ ui ∈ Hi and |ui|h > 1. n∑ i=1 T+1∑ k=1 |∆ui(k − 1)| p(k−1) ≥ min 1≤i≤n (λi) n∑ i=1 ( T+1∑ k=1 |∆ui(k − 1)| 2 )p− 2 − max 1≤i≤n (µi) n. 80 R. Sanou, I. Ibrango, B. Koné, A. Guiro CUBO 21, 3 (2019) Since the function x 7−→ x p− 2 is convex because p− > 2, then we have n∑ i=1 T+1∑ k=1 |∆ui(k − 1)| p(k−1) ≥ min 1≤i≤n (λi) ( n∑ i=1 T+1∑ k=1 |∆ui(k − 1)| 2 )p− 2 − max 1≤i≤n (µi) n. We deduce that n∑ i=1 T+1∑ k=1 |∆ui(k − 1)| p(k−1) ≥ C1 ( n∑ i=1 T+1∑ k=1 |∆ui(k − 1)| 2 )p− 2 − C2. (2) By [8], for any m ≥ 2 there exists a positive constant cm such that for i = 1, · · · , n T∑ k=1 |ui(k)| m ≤ cm T+1∑ k=1 |∆ui(k − 1)| m ∀ ui ∈ Hi. Therefore n∑ i=1 T∑ k=1 |ui(k)| m ≤ cm n∑ i=1 T+1∑ k=1 |∆ui(k − 1)| m ∀ u ∈ H. 3 Existence of weak solutions In this section, we study the existence of weak solution of problem (1.1). Definition 3.1. A weak solutions of problem (1.1) is u ∈ H such that n∑ i=1 [ M ( T+1∑ k=1 A(k − 1, ∆ui(k − 1)) ) T+1∑ k=1 a(k − 1, ∆ui(k − 1))∆vi(k − 1) ] = n∑ i=1 T∑ k=1 fi(k, u(k))vi(k) (3.1) for all v ∈ H. Note that, since H is a finite dimensional space, the weak solutions coincide with the classical solution the problem (1.1). Theorem 3.2. Assume that (H1)−(H5) holds. Then, there exists a weak solution of the problem (1.1). CUBO 21, 3 (2019) Weak solutions to Neumann discrete nonlinear system of Kirchhoff . . . 81 To prove this, we define the energy functional J : H −→ R by J(u) = n∑ i=1 M̂ ( T+1∑ k=1 A(k − 1, ∆ui(k − 1)) ) − n∑ i=1 T∑ k=1 Fi ( k, u(k) ) (3.2) where M̂(t) = ∫t 0 M(s)ds. Lemma 3.3. The functional J is well defined on H and is of class C1 ( H, R ) with the derivative given by 〈J′(u), v〉 = n∑ i=1 [ M ( T+1∑ k=1 A(k − 1, ∆ui(k − 1) ) T+1∑ k=1 a(k − 1, ∆ui(k − 1))∆vi(k − 1) ] − n∑ i=1 T∑ k=1 fi(k, u(k))vi(k), (3.3) for all u, v ∈ H. Indeed, let’s I(u) = n∑ i=1 M̂ ( T+1∑ k=1 A(k − 1, ∆ui(k − 1)) ) and Λ(u) = n∑ i=1 T∑ k=1 Fi ( k, u(k) ) . Since M̂(.), A(k, .) and F(k, .) are continuous for all k ∈ Z[0, T], then |I(u)| = ∣∣∣∣ n∑ i=1 M̂ ( T+1∑ k=1 A(k − 1, ∆ui(k − 1)) )∣∣∣∣ < +∞, |Λ(u)| = ∣∣∣∣ n∑ i=1 T∑ k=1 Fi ( k, u(k) )∣∣∣∣ < +∞. The energy functional J is well defined on H. It is not difficult to see that the functional I derivative are give by 〈I′(u), v〉= n∑ i=1 [ M ( T+1∑ k=1 A(k − 1, ∆ui(k − 1) ) T+1∑ k=1 a(k − 1, ∆ui(k − 1))∆vi(k − 1) ] (3.4) 82 R. Sanou, I. Ibrango, B. Koné, A. Guiro CUBO 21, 3 (2019) On the other hand, for all u, v ∈ H, there exists hi ∈ R n such that 〈Λ′(u), v〉 = lim t→0+ Λ(u + tv) − Λ(u) t = lim t→0+ n∑ i=1 T∑ k=1 Fi(k, u(k) + tv(k)) − Fi(k, u(k)) t = n∑ i=1 T∑ k=1 lim t→0+ Fi(k, u(k) + tv(k)) − Fi(k, u(k)) t = n∑ i=1 T∑ k=1 ∇Fi(k, u(k))(hi)vi(k) = n∑ i=1 T∑ k=1 fi(k, u(k))vi(k). The functional J is clearly of class C1 � Lemma 3.4. The functional J is lower semi-continuous. Indeed since the functional Λ is completely continuous and weakly lower semi-continuous, we have to prove the semi-continuity of I. A is convex with respect to the second variable according (H1) and (H2). With the assumption (H5) we conclude that I is convex. Thus, it is enough to show that I is lower semi-continuous. For this, we fix u ∈ H and ε > 0. Since I is convex, we deduce that, for any v ∈ H. I(v) ≥ I(u) + 〈I′(u), v − u〉 ≥ I(u) − n∑ i=1 [ M ( T+1∑ k=1 A(k − 1, ∆ui(k − 1)) ) × T+1∑ k=1 |a(k − 1, ∆ui(k − 1))||∆vi(k − 1) − ∆ui(k − 1)| ] ≥ I(u) − CM ( n∑ i=1 T+1∑ k=1 |a(k − 1, ∆ui(k − 1))||∆vi(k − 1) − ∆ui(k − 1)| ) , where CM = ( n∑ i=1 M ( T+1∑ k=1 A(k − 1, ∆ui(k − 1) )) CUBO 21, 3 (2019) Weak solutions to Neumann discrete nonlinear system of Kirchhoff . . . 83 By using Schwartz inequality, we get : I(v) ≥ I(u) − CM n∑ i=1 [(T+1∑ k=1 |a(k − 1, ∆ui(k − 1))| 2 )1 2 × ( T+1∑ k=1 |∆vi(k − 1) − ∆ui(k − 1)| 2 )1 2 ] ≥ I(u) − CM   n∑ i=1 ( T+1∑ k=1 |a(k − 1, ∆ui(k − 1))| 2 )1 2   ×   n∑ i=1 ( T+1∑ k=1 |∆vi(k − 1) − ∆ui(k − 1)| 2 )1 2   By (2.2) I(v) ≥ I(u) − CM   n∑ i=1 ( T+1∑ k=1 |a(k − 1, ∆ui(k − 1))| 2 )1 2   [ n∑ i=1 |vi − ui|h ] . Since Hi is finite dimensional, there exist the positive constants θi for i = 1, · · · , n such that |vi|h ≤ θi|vi|2 ∀ vi ∈ Hi. (3.5) Then, I(v) ≥ I(u) − CM   n∑ i=1 ( T+1∑ k=1 |a(k − 1, ∆ui(k − 1))| 2 )1 2   [ n∑ i=1 θi|vi − ui|2 ] ≥ I(u) − max 1≤i≤n (θi) CM   n∑ i=1 ( T+1∑ k=1 |a(k − 1, ∆ui(k − 1))| 2 )1 2   [ n∑ i=1 |vi − ui|2 ] . Also, the space H is finite dimensional, there exists a positive constant γ such that: ‖u‖2 ≤ γ‖u‖ ∀ u ∈ H. From this, we have I(v) ≥ I(u) − γ max 1≤i≤n (θi) CM   n∑ i=1 ( T+1∑ k=1 |a(k − 1, ∆ui(k − 1))| 2 )1 2  ‖v − u‖ ≥ I(u) −  1 + γ max 1≤i≤n (θi) CM n∑ i=1 ( T+1∑ k=1 |a(k − 1, ∆ui(k − 1))| 2 )1 2  ‖v − u‖ 84 R. Sanou, I. Ibrango, B. Koné, A. Guiro CUBO 21, 3 (2019) Finally I(v) ≥ I(u) − S(T, u)‖v − u‖ ≥ I(u) − ε, (3.6) for all v ∈ H with ‖v − u‖ < δ = ε S(T,u) , where S(T, u) = 1 + γ max 1≤i≤n (θi) CM n∑ i=1 ( T+1∑ k=1 |a(k − 1, ∆ui(k − 1))| 2 )1 2 . We conclude that J is weakly lower semi-continuous. Proposition 3.5. The functional J is coercive and bounded from below. Indeed, according to (2.7), (2.10)-(2.12) we have J(u) = n∑ i=1 M̂ ( T+1∑ k=1 A(k − 1, ∆ui(k − 1)) ) − n∑ i=1 T∑ k=1 Fi ( k, u(k) ) ≥ B1 α(p+)α [ n∑ i=1 ( T+1∑ k=1 |∆ui(k − 1)| p(k−1) )α] − n∑ i=1 T∑ k=1 Fi ( k, u(k) ) ≥ B1 α(p+)α [ n∑ i=1 ( T+1∑ k=1 |∆ui(k − 1)| p(k−1) )α] − n∑ i=1 T∑ k=1 βi(k) ( 1 + |ui(k)| ri(k) ) ≥ B1 α(p+)α [ n∑ i=1 ( T+1∑ k=1 |∆ui(k − 1)| p(k−1) )α] − β n∑ i=1 T∑ k=1 ( 1 + |ui(k)| ri(k) ) ≥ B1 α(p+)α [ n∑ i=1 ( T+1∑ k=1 |∆ui(k − 1)| p(k−1) )α] − β n∑ i=1 T∑ k=1 |ui(k)| ri(k) − βnT. There exist ηi and νi such that J(u) ≥ B1 α(p+)α [ min 1≤i≤n (ηi) ( n∑ i=1 T+1∑ k=1 |∆ui(k − 1)| p(k−1) )α − max 1≤i≤n (νi) ] − β n∑ i=1 T∑ k=1 |ui(k)| ri(k) − βnT. (3.7) To prove the coerciveness of the functional J, we may assume that ||u|| > 1 and we deduce from the above inequality (2.15) that CUBO 21, 3 (2019) Weak solutions to Neumann discrete nonlinear system of Kirchhoff . . . 85 J(u) ≥ B1 α(p+)α   min 1≤i≤n (ηi)  C1 ( n∑ i=1 T+1∑ k=1 |∆ui(k − 1)| 2 )p− 2 − C2   α − max 1≤i≤n (νi)   −β n∑ i=1 T∑ k=1 |ui(k)| ri(k) − βnT. There exist a function K(α, C) such that J(u) ≥ B1 α(p+)α ( min 1≤i≤n (ηi)C α 1 ||u|| αp− − min 1≤i≤n (ηi)K(α, C)C α 2 − max 1≤i≤n (νi) ) − β n∑ i=1 T∑ k=1 |ui(k)| ri(k) − βnT. Namely J(u) ≥ A1||u|| αp− − β n∑ i=1 T∑ k=1 |ui(k)| ri(k) − A2, where A1 = B1 α(p+)α min 1≤i≤n (ηi)C α 1 and A2 = B1 α(p+)α ( min 1≤i≤n (ηi)K(α, C)C α 2 + max 1≤i≤n (νi) ) + βnT. So J(u) ≥ A1||u|| αp− − β n∑ i=1 T∑ k=1 |ui(k)| ri(k) − A2 ≥ A1||u|| αp− − β n∑ i=1 T∑ k=1 |ui(k)| r+ − β n∑ i=1 T∑ k=1 |ui(k)| r− − A2. Using (2.16) J(u) ≥ A1||u|| αp− − (Cr−)β n∑ i=1 T∑ k=1 |∆ui(k)| r− − (Cr+)β n∑ i=1 T∑ k=1 |∆ui(k)| r+ − A2 By using (2.4) there exists the positive constants K1 and K2 such that J(u) ≥ A1||u|| αp− − K1 n∑ i=1 ( T∑ k=1 |∆ui(k)| 2 )r− 2 − K2 n∑ i=1 ( T∑ k=1 |∆ui(k)| 2 )r+ 2 − A2. 86 R. Sanou, I. Ibrango, B. Koné, A. Guiro CUBO 21, 3 (2019) There exist the positive constants A3, A4, A5 and A6 such that J(u) ≥ A1||u|| αp− − K1A3 ( n∑ i=1 T∑ k=1 |∆ui(k)| 2 )r− 2 − K1 A4 − A5 K2 ( n∑ i=1 T∑ k=1 |∆ui(k)| 2 )r+ 2 − K2 A6 − A2. Consequently, there exist the positive constants A7 , A8 and A9 such that J(u) ≥ A1||u|| αp− − A7||u|| r− − A8||u|| r+ − A9. (3.8) Recall that p− > r+ α ≥ r− α . Then J is coercive. Besides, for ||u|| ≤ 1, we have with (3.7) J(u) ≥ B1 α(p+)α [ min 1≤i≤n (ηi) ( n∑ i=1 T+1∑ k=1 |∆ui(k − 1)| p(k−1) )α − max 1≤i≤n (νi) ] − β n∑ i=1 T∑ k=1 |ui(k)| ri(k) − βnT ≥ − B1 α(p+)α max 1≤i≤n (νi) − β n∑ i=1 T∑ k=1 |ui(k)| ri(k) − βnT ≥ − B1 α(p+)α max 1≤i≤n (νi) − β n∑ i=1 T∑ k=1 |ui(k)| r− − β n∑ i=1 T∑ k=1 |ui(k)| r+ − βnT. Using (2.16) J(u) ≥ − B1 α(p+)α max 1≤i≤n (νi) − (Kr−)β n∑ i=1 T∑ k=1 |∆ui(k)| r− − (Kr+)β n∑ i=1 T∑ k=1 |∆ui(k)| r+ − βnT. By using (2.14) there exists the positives constants K′1 and K ′ 2 such that J(u) ≥ − B1 α(p+)α max 1≤i≤n (νi) − K ′ 1 n∑ i=1 ( T∑ k=1 |∆ui(k)| 2 )r− 2 − K′2 n∑ i=1 ( T∑ k=1 |∆ui(k)| 2 )r+ 2 − βnT. CUBO 21, 3 (2019) Weak solutions to Neumann discrete nonlinear system of Kirchhoff . . . 87 There exist the positive constants C′3, C ′ 4, C ′ 5 and C ′ 6 such that J(u) ≥ − B1 α(p+)α max 1≤i≤n (νi) − K ′ 1C ′ 3 ( n∑ i=1 T∑ k=1 |∆ui(k)| 2 )r− 2 − K′1 C ′ 4 − C ′ 5 K ′ 2 ( n∑ i=1 T∑ k=1 |∆ui(k)| 2 )r+ 2 − K′2 C ′ 6 − βnT. Consequently, there exist the positive constants C′7 and C ′ 8 such that J(u) ≥ − B1 α(p+)α max 1≤i≤n (νi) − C ′ 7||u|| r− − K′1 C ′ 4 − C ′ 8||u|| r+ − K′2 C ′ 6 − βnT ≥ − B1 α(p+)α max 1≤i≤n (νi) − C ′ 7 − K ′ 1 C ′ 4 − C ′ 8 − K ′ 2 C ′ 6 − βnT. Thus, J is bounded from below � Since J is weakly lower semi-continuous, bounded from below and coercive on H, using the re- lation between critical points of J and problem (1.1), we deduce that J has a minimizer which is a weak solution to problem (1.1). 4 An extension In this section we are going to show that the existence result obtained for system (1.1) can be extended. Let’s consider the following system. For i = 1, · · · , n    −M (A(k − 1, ∆ui(k − 1))) ∆(a(k − 1, ∆ui(k − 1))) + σi(k)φ(k, ui(k)) = δi(k)fi(k, u(k)), ∀ k ∈ Z[1, T] ∆ui(0) = ∆ui(T) = 0, (4.1) where T ≥ 2 is a fixed integer, and we shall use the following assumption. (H6). σi : Z[1, T] −→ R and δi : Z[1, T] −→ R are such that σi(k) ≥ σ0 > 0 for (k, i) ∈ Z[1, T] × Z[1, n] and 0 < δi(k) ≤ sup {(k,i)∈Z[1,T]×Z[1,n]} |δi(k)| = δ0. (H7). φ(k, t) = |t| p(k)−2t for (k, t) ∈ Z[0, T] × R. 88 R. Sanou, I. Ibrango, B. Koné, A. Guiro CUBO 21, 3 (2019) In the T−dimensional Hilbert space H with the inner product 〈u, v〉 = n∑ i=1 T+1∑ k=1 ∆ui(k − 1)∆vi(k − 1) + n∑ i=1 T+1∑ k=1 ui(k)vi(k), we consider the norm ‖u‖ = √ 〈u, u〉 = ( n∑ i=1 T+1∑ k=1 |∆ui(k − 1)| 2 + n∑ i=1 T∑ k=1 |ui(k)| 2 )1 2 . Definition 4.1. A weak solution of problem (4.1) is a function u ∈ H such that n∑ i=1 [ M ( T+1∑ k=1 A(k − 1, ∆ui(k − 1) ) T+1∑ k=1 a(k − 1, ∆ui(k − 1))∆vi(k − 1) ] + n∑ i=1 T∑ k=1 σi(k)|ui(k)| p(k)−2ui(k)vi(k) = n∑ i=1 T∑ k=1 δi(k)fi(k, u(k))vi(k). for all v ∈ H. Theorem 4.2. Under the assumptions (H1)- (H6) the problem (4.1) has a least weak solution in H. Indeed, for u ∈ H we define the energy functional corresponding to system (4.1) by J(u) = n∑ i=1 M̂ ( T+1∑ k=1 A(k − 1, ∆ui(k − 1)) ) + n∑ i=1 T∑ k=1 σi(k) p(k) |ui(k)| p(k) − n∑ i=1 T∑ k=1 δi(k)Fi ( k, u(k) ) . Obviously, J is class C1 (H, R) and is weakly lower semicontinuous, and we show that 〈J′(u), v〉 = n∑ i=1 [ M ( T+1∑ k=1 A(k − 1, ∆ui(k − 1) ) T+1∑ k=1 a(k − 1, ∆ui(k − 1))∆vi(k − 1) ] + n∑ i=1 T∑ k=1 σi(k)|ui(k)| p(k)−2ui(k)vi(k) − n∑ i=1 T∑ k=1 δi(k)fi ( k, u(k) ) vi(k). for all u, v ∈ H. This implies that the weak solution of system(4.1) coincides with the critical points of the func- tional J. It suffices to prove that J is bounded below and coercive in order to complete the proof. CUBO 21, 3 (2019) Weak solutions to Neumann discrete nonlinear system of Kirchhoff . . . 89 J(u) = n∑ i=1 M̂ ( T+1∑ k=1 A(k − 1, ∆ui(k − 1)) ) + n∑ i=1 T∑ k=1 σi(k) p(k) |ui(k)| p(k) − n∑ i=1 T∑ k=1 δi(k)Fi ( k, u(k) ) ≥ n∑ i=1 M̂ ( T+1∑ k=1 A(k − 1, ∆ui(k − 1)) ) − n∑ i=1 T∑ k=1 δi(k)Fi ( k, u(k) ) ≥ n∑ i=1 M̂ ( T+1∑ k=1 A(k − 1, ∆ui(k − 1)) ) − δ0 n∑ i=1 T∑ k=1 Fi ( k, u(k) ) . We obtain J(u) ≥ B1 α(p+)α [ min 1≤i≤n (ηi) ( n∑ i=1 T+1∑ k=1 |∆ui(k − 1)| p(k−1) )α − max 1≤i≤n (νi) ] − δ0β n∑ i=1 T∑ k=1 |ui(k)| ri(k) − δ0βnT. (4.2) For ‖u‖ > 1, by the same procedure, we prove that J(u) ≥ A′1‖u‖ αp− − A′7‖u‖ r− − A′8‖u‖ r+ − A′9, where A′1, A ′ 7, A ′ 8 and A ′ 9 are the positive constants. Hence p− > r+ α ≥ r− α , J is coercive. If ||u|| ≤ 1 by (4.2) we have J(u) ≥ − B1 α(p+)α max 1≤i≤n (νi) − δ0β n∑ i=1 T∑ k=1 |ui(k)| ri(k) − δ0βnT. By the same reasoning J(u) ≥ −D1 − δ0βnT where D1 > 0. Thus, J is bounded from below � Since J is weakly lower semi-continuous, bounded from below and coercive on H, using the relation between critical points of J and problem (4.1), we deduce that J has a minimizer which is a weak solution to problem (4.1). 90 R. Sanou, I. Ibrango, B. Koné, A. Guiro CUBO 21, 3 (2019) Competing interests The authors declare that there is no conflict of interest regarding the publication of the paper. Acknowledgment The authors express their deepest thanks to the editor and anonymous referee for their comments and suggestions on the article. CUBO 21, 3 (2019) Weak solutions to Neumann discrete nonlinear system of Kirchhoff . . . 91 References [1] G. Bonanno, G. Molica Bisci and V. Radulescu; Arbitrarity small weak solutions for nonlinear eigenvalue problem in Orlicz-Sobolev spaces, Monatshefte fur Mathematik, vol. 165, no. 3-4, pp. 305-318, 2012. [2] X. Cai and J. Yu; Existence theorems for second-order discrete boundary value problems, J. Math. Anal. Appl. 320 (2006), 649-661. [3] A. Castro and R. Shivaji; Nonnegative solutions for a class of radically symmetric nonpositone problems, Proceedings of the American Mathematical Society, vol 106, pp. 735-740,1989. [4] Y. Chen, S. Levine, and M.Rao; Variable exponent, linear growth functionals in image restora- tion, SIAM Journal on Applied Mathematics, vol.66, no.4, pp. 1383-1406, 2006. [5] L. Diening; Theoretical and numerical results for electrorheogica fluids, [PhD. thesis], Univer- sity of Freiburg, 2002. [6] A. Guiro, I. Nyanquini and S. Ouaro; On the solvability of discrete nonlinear Neumann prob- lems involving the p(x)-Laplacian, Adv. Differ. equ. 32 (2011). [7] B. Koné and S. Ouaro; Weak solutions for anisotropic discrete boundary value problems, J. Differ. Equ. Appl. 16(2) (2010), 1-11. [8] M. Mihailescu, V. Radulescu and S. Tersian; Eigenvalue problems for anisotropic discrete boundary value problems, J. Differ. Equ. Appl. 15 (2009), 557-567. [9] K. R. Rajagopal and M. Ruzicka; Mathematical modeling of electrorheological materials, Con- tinuum Mechanics and Thermodynamics, vol.13, pp.59-78, 2001. [10] M. Ruzicka, Electrorheological Fluids; Modeling and Mathematical Theory, vol. 1748 of Lec- ture Notes in Mathematics, Springer,Berlin, Germany, 2000. [11] Z. Yucedag; Existence of solutions for anisotropic discrete boundary value problems of Kirch- hoff type, Int. J. Differ. Equ. Appl, Vol. 13(1) (2014), 1-15. [12] G. Zhang and S. Liu; On a class of semipositone discrete boundary value problem, J. Math. Anal. Appl. 325 (2007), 175-182. [13] J. Zhao; Positive solutions and eigenvalue intervals for a second order p-Laplacian discrete system, Adv. Differ. equ. 2018 2018:281. [14] V. Zhikov; Averaging of functionals in the calculus of variations and elasticity, Mathematics of the USSR-Izvestiya, vol.29 (1987), pp. 33-66. Introduction Mathematical background Existence of weak solutions An extension