CUBO, A Mathematical Journal Vol. 23, no. 01, pp. 145–159, April 2021 DOI: 10.4067/S0719-06462021000100145 Existence and attractivity results for ψ-Hilfer hybrid fractional differential equations Fatima Si bachir1 Säıd Abbas2 Maamar Benbachir3 Mouffak Benchohra4 Gaston M. N’Guérékata5 1 Laboratory of Mathematics and Applied Sciences, University of Ghardaia, 47000, Algeria. sibachir.fatima@univ-ghardaia.dz.com 2 Department of Mathematics, University of Säıda–Dr. Moulay Tahar, P.O. Box 138, EN-Nasr, 20000 Säıda, Algeria. said.abbas@univ-saida.dz 3 Department of Mathematics, Saad Dahlab Blida1, University of Blida, Algeria. mbenbachir2001@gmail.com 4 Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès, P.O. Box 89, Sidi Bel-Abbès 22000, Algeria. benchohra@yahoo.com 5 NEERLab, Department of Mathematics, Morgan State University, 1700 E. Cold Spring Lane, Baltimore M.D. 21252, USA. gaston.nguerekata@morgan.edu ABSTRACT In this work, we present some results on the existence of attractive solutions of fractional differential equations of the ψ-Hilfer hybrid type. The results on the existence of solutions are a consequence of the Schauder fixed point theorem. Next, we prove that all solutions are uniformly locally attractive. RESUMEN En este trabajo, presentamos algunos resultados sobre la existen- cia de soluciones atractivas de ecuaciones diferenciales fraccionar- ias de tipo ψ-Hilfer h́ıbridas. Los resultados de existencia de solu- ciones son consecuencia del teorema de punto fijo de Schauder. A continuación, probamos que todas las soluciones son uniforme- mente localmente atractivas. Keywords and Phrases: ψ-Hilfer fractional derivative; Schauder fixed-point Theorem; uniformly locally attractive. 2020 AMS Mathematics Subject Classification: 26A33, 34A08. Accepted: 01 March, 2021 Received: 12 November, 2020 ©2021 F. Si bachir et al. This open access article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. http://cubo.ufro.cl/ http://dx.doi.org/10.4067/S0719-06462021000100145 https://orcid.org/0000-0002-1947-9213 https://orcid.org/0000-0002-2518-8658 https://orcid.org/0000-0003-3519-1153 https://orcid.org/0000-0003-3063-9449 https://orcid.org/0000-0001-5765-7175 146 F. Si bachir, S. Abbas, M. Benbachir, M. Benchohra & G. M. N’Guérékata CUBO 23, 1 (2021) 1 Introduction The theory of derivatives and integrals to a real or complex order is none other than the fractional theory which began in 1695 between G.A. de L’Hospital and G.W. Leibniz. The fractional integra- tion and differentiation go back to Leibniz, Riemann, Liouville, Abel, Weyl, and Riesz [27]. Many monographs to which the reader can refer such as Abbas et al. [1, 5, 6], Diethelm [13], Kilbas et al. [17], Oldham et al. [22], Podlubny [23], Samko et al. [24], Zhou [32, 33], Zhou et al. [34] and the works by Abbas and Benchohra [2], Lakshmikantham et al. [19, 20, 21]. Recently several works have been done concerning hybrid fractional differential equations see [9, 12, 14, 26, 31], and the references therein. Functional ψ− fractional differential equations received a great importance in applied math- ematics and other sciences, see [8, 16, 18, 25, 28, 29, 30], and the references therein. Some interesting results on existence and attractivity have been obtained in [3, 4, 7]. In this work, we are interested in the existence and attractivity of solutions for the following problem  D λ,σ;ψ 0+ u(t) v(t,u(t)) = w (t,u(t)) ; a.e. t ∈ R+, (ψ(t) −ψ(0))1−ςu(t) |t=0= u0; u0 ∈ R, (1.1) where R+ := [0, +∞), 0 < λ < 1, 0 ≤ σ ≤ 1, ς = λ + σ(1−λ), HD λ,σ;ψ 0+ is the ψ -Hilfer fractional derivative of order λ and type σ, v : R+ ×R → R∗ and w : R+ ×R → R, are given functions. Special cases: • For σ = 0,ψ(t) = t,u0 = 0, we will get nonlinear hybrid FDEs of the form  RLDλ 0+ [ u(t) v(t,u(t)) ] = w(t,u(t)), a.e. t ∈ R+, u(0) = 0. • For λ = 1,σ = 1,ψ(t) = t, we will get nonlinear integer order hybrid differential equations of the form   d dt [ u(t) v(t,u(t)) ] = w(t,y(t)), a.e. t ∈ R+, u(0) = u0 ∈ R. For v = 1, we will get nonlinear ψ-Hilfer FDEs of the form  HD λ,σ;ψ 0+ u(t) = w(t,y(t)), a.e. t ∈ R+, (ψ(t) −ψ(0))1−ςu(t) ∣∣ t=0 = u0 ∈ R. • For v = 1,σ = 0 (in this case ς = λ),ψ(t) = t, we will get nonlinear FDEs involving Riemann- Liouville fractional derivative RLDλ0+u(t) = w(t,y(t)), a.e. t ∈ R+. CUBO 23, 1 (2021) Existence and attractivity results for ψ-Hilfer hybrid fractional. . . 147 2 Preliminaries Let ψ : [a,b] → R be an increasing differentiable function such that ψ′(t) 6= 0, for all t ∈ [a,b], (−∞≤ a < b ≤ +∞). Define on [a,b], (0 < a < b < ∞) the weighted space Cςψ[a,b] = {τ : (a,b] → R : (ψ(t) −ψ(a))ςτ(t) ∈ C[a,b]}, 0 ≤ ς < 1, with the norm ‖τ‖Cς;ψ[a,b] = ‖(ψ(t) −ψ(a)) ςτ(t)‖C[a,b] = max{|(ψ(t) −ψ(a)) ςτ(t)| : t ∈ [a,b]} , where C([a,b]) denotes the Banach space of all real continuous functions on [a,b]. Let BC := BC(R+) be the Banach space of all bounded and continuous functions from R+ into R. By BCς := BCς(R+), we denote the weighted space of all bounded and continuous functions defined by BCς = {φ : R+ → R : (ψ(t) −ψ(0))1−ςφ(t) ∈ BC}, with the norm ‖φ‖BCς := sup t∈R+ ∣∣(ψ(t) −ψ(0))1−ςφ(t)∣∣ . Let us recall some definitions and properties of fractional calculus. Definition 2.1. [17] The left-sided ψ-Riemann-Liouville fractional integral and fractional deriva- tive of order λ, (n − 1 < λ < n) for an integrable function φ : [a,b] → R with respect to another function ψ : [a,b] → R, that is an increasing differentiable function such that ψ′(t) 6= 0, for all t ∈ [a,b], (−∞≤ a < b ≤ +∞), are respectively defined as follows: I λ;ψ a+ φ(t) = 1 Γ(λ) ∫ t a ψ′(s)(ψ(t) −ψ(s))λ−1φ(s)ds, and D λ;ψ a+ φ(t) = ( 1 ψ′(t) d dt )n I n−α;ψ a+ φ(t) = 1 Γ(n−λ) ( 1 ψ′(t) d dt )n ∫ t a ψ′(s)(ψ(t) −ψ(s))n−λ−1φ(s)ds, where Γ(·) is the Euler gamma function defined by Γ(δ) = ∫ ∞ 0 e−ttδ−1dt, δ > 0. Definition 2.2. [10] The left-sided ψ -Caputo fractional derivative of function χ ∈ Cn[a,b], (n− 1 < λ < n) n = [α] + 1 with respect to another function ψ is defined by cD λ;ψ a+ φ(t) = I n−λ;ψ a+ ( 1 ψ′(t) d dt )n φ(t) = 1 Γ(n−λ) ∫ t a ψ′(s)(ψ(t) −ψ(s))n−λ−1φ[n]ψ (s)ds, where φ [n] ψ (t) = ( 1 ψ′(t) d dt )n φ(t) and ψ defined as in Definition Q. Moreover, the ψ− Caputo frac- tional derivative of function φ ∈ ACn[a,b] is determined as cD λ;ψ a+ φ(t) = D λ;ψ a+  φ(t) −n−1∑ k=0 [ 1 ψ′(t) d dt ]k φ(a) k! (ψ(t) −ψ(a))k   . 148 F. Si bachir, S. Abbas, M. Benbachir, M. Benchohra & G. M. N’Guérékata CUBO 23, 1 (2021) Definition 2.3. [29] Let n − 1 < λ < n,n ∈ N, with [a,b],−∞ ≤ a < b ≤ +∞, and ψ ∈ Cn([a,b],R) a function such that ψ(t) is increasing and ψ′(t) 6= 0, for all t ∈ [a,b]. The ψ -Hilfer fractional derivative (left-sided) of function φ ∈ Cn([a,b],R) of order λ and type σ ∈ [0, 1] is determined as D λ,σ;ψ a+ φ(t) = I σ(n−λ);ψ a+ [ 1 ψ′(t) d dt ]n I (1−σ)(n−λ);ψ a+ φ(t), t > a. In other way D λ,σ;ψ a+ φ(t) = I σ(n−λ);ψ a+ D γ;ψ a+ φ(t), t > a, where D γ;ψ a+ φ(t) = [ 1 ψ′(t) d dt ]n I (1−σ)(n−λ);ψ a+ φ(t). In particular, the ψ -Hilfer fractional derivative of order λ ∈ (0, 1) and type σ ∈ [0, 1], can be written in the following form D λ,σ;ψ a+ φ(t) = 1 Γ(ς −λ) ∫ t a (ψ(t) −ψ(s))ς−λ−1Dγ;ψ a+ φ(s)ds = I ς−λ;ψ a+ D ς;ψ a+ φ(t), where ς = λ + σ −λσ, and Dς;ψ a+ φ(t) = [ 1 ψ′(t) d dt ] I 1−ς;ψ a+ φ(t). Lemma 2.4. [29] Let λ > 0, 0 ≤ ς < 1 and φ ∈ L1(a,b). Then I λ;ψ a+ I σ;ψ a+ φ(t) = I λ+σ;ψ a+ φ(t), a.e. t ∈ [a,b]. In particular (i) if φ ∈ Cς;ψ[a,b], then I λ;ψ a+ I σ;ψ a+ φ(t) = I λ+σ;ψ a+ φ(t), t ∈ (a,b]. (ii) If φ ∈ C[a,b], then Iλ;ψ a+ I σ;ψ a+ φ(t) = I λ+σ;ψ a+ φ(t), t ∈ [a,b]. Lemma 2.5. [29] Let λ > 0, 0 ≤ σ ≤ 1 and 0 ≤ ς < 1. If h ∈ Cς;ψ[a,b] then D λ,σ;ψ a+ I λ;ψ a+ φ(t) = φ(t), t ∈ (a,b]. If φ ∈ C1[a,b] then D λ,σ;ψ a+ I α;ψ a+ φ(t) = φ(t), t ∈ [a,b]. Lemma 2.6. Let λ > 0, 0 ≤ ς < 1 and φ ∈ Cς;ψ[a,b]. If λ > ς, then I λ;ψ a+ φ ∈ C[a,b] and I λ;ψ a+ φ(a) = lim t→a+ I λ;ψ a+ φ(t) = 0. Lemma 2.7. [29] Let φ ∈ Cn[a,b],n− 1 < λ < n, 0 ≤ σ ≤ 1, and ς = λ + σ −λσ. Then for all t ∈ (a,b] I λ;ψ a+ D λ,σ;ψ a+ φ(t) = φ(t) − n∑ k=1 [ψ(t) −ψ(a)]ς−k Γ(ς −k + 1) φ (n−k) ψ I (1−σ)(n−λ);ψ a+ φ(a). In particular, if 0 < λ < 1, we have I λ;ψ a+ D λ,σ;ψ a+ φ(t) = φ(t) − [ψ(t) −ψ(a)]ς−1 Γ(ς) I (1−σ)(1−λ);ψ a+ φ(a). CUBO 23, 1 (2021) Existence and attractivity results for ψ-Hilfer hybrid fractional. . . 149 Moreover, if φ ∈ C1−ς;ψ[a,b] and I 1−ς;ψ a+ φ ∈ C11−ς;ψ[a,b] such that 0 < ς < 1. Then for all t ∈ (a,b] I ς;ψ a+ D ς;ψ a+ φ(t) = φ(t) − [ψ(t) −ψ(a)]γ−1 Γ(ς) I 1−ς;ψ a+ φ(a). We deduce from the above lemma the following lemmas: Lemma 2.8. [18] Let v ∈ C(Υ ×R,R∗); Υ := [0,d], d > 0, κ ∈ C1−ζ,ψ(Υ). Then the problem  D λ,σ;ψ 0+ u(t) v(t,u(t)) = κ(t),a.e. t ∈ Υ. (ψ(t) −ψ(0))1−ςu(t) |t=0= u0, u0 ∈ R, has a unique solution given by u(t) = v(t,u(t)) { u0 v(0,u(0)) (ψ(t) −ψ(0))ς−1 + Iλ;ψ 0+ κ(t) } . Lemma 2.9. Let v ∈ C(Υ × R,R∗), w : Υ × R → R be a function such that w(·,u(·)) ∈ BCς for any u ∈ BCς. Then the problem (1.1) is equivalent to the problem of obtaining the solutions of the integral equation u(t) = v(t,u(t)) { u0 v(0,u(0)) (ψ(t) −ψ(0))ς−1 + Iλ;ψ 0+ w(·,u(·))(t) } . Let ∅ 6= Λ ⊂ BC and let K : Λ → Λ. We consider the solution of the equation (Ku)(t) = u(t). (2.1) We introduce the concept of attractivity of solutions for equation (2.1). Definition 2.10. Solutions of equation (2.1) are locally attractive if there exists a ball B (u0,µ) in the space BC such that, for any solutions τ = τ(t) and ξ = ξ(t) of equations (2.1) that belong to B (u0,µ) ∩ Λ, we can write lim t→∞ (τ(t) − ξ(t)) = 0. (2.2) If the limit (2.2) is uniform with respect to B (u0,µ) ∩ Λ, then the solutions of equation (2.1) are said to be uniformly locally attractive (or, equivalently, that the solutions of (2.1) are locally asymptotically stable). Lemma 2.11. [11] Let M ⊂ BC. Then M is relatively compact in BC if the following conditions are satisfied: (a) M is uniformly bounded in BC; (b) the functions belonging to M are almost equicontinuous in R+, i.e., equicontinuous on every compact set in R+; 150 F. Si bachir, S. Abbas, M. Benbachir, M. Benchohra & G. M. N’Guérékata CUBO 23, 1 (2021) (c) the functions from M are equiconvergent, i.e., given ε > 0, there exists L(ε) > 0 such that ∣∣∣u(t) − lim t→∞ u(t) ∣∣∣ < ε, for any t ≥ L(ε) and u ∈ M. Theorem 2.12. (Schauder Fixed-Point Theorem [15]). Let F be a Banach space, let U be a nonempty bounded convex and closed subset of F, and let K : U → U be a compact and continuous map. Then K has at least one fixed point in U. 3 Existence and Attractivity Results Definition 3.1. A measurable function u ∈ BCς is a solution of problem (1.1) if it verifies the initial condition (ψ(t)−ψ(0))1−ςu(t) |t=0= u0 and the equation D λ,σ;ψ 0+ u(t) v(t,u(t)) = w (t,u(t)) on R+. We will give the following hypotheses: (H1) The function t 7→ w(t,u) is measurable on R+ for each u ∈ BCς, the function u 7→ w(t,u) is continuous on BCς for a.e. t ∈ R+, and the function v is bounded such that u 7→ v(t,u) is continuous. (H2) There exists a continuous function T : R+ → R+ such that for a.e. t ∈ R+ and each u ∈ R, |w(t,u)| ≤ T(t) 1 + |u| , and lim t→∞ (ψ(t) −ψ(0))1−ς ( I λ;ψ 0+ T ) (t) = 0. Set T∗ = sup t∈R+ (ψ(t) −ψ(0))1−ς ( I λ;ψ 0+ T ) (t) < ∞. Now we present a theorem on the existence and attractivity of solutions of the problem (1.1). Theorem 3.2. Assume that the hypotheses (H1) and (H2) hold. Then the problem (1.1) has at least one solution defined on R+ and the solutions of problem (1.1) are uniformly locally attractive. Proof. Consider the operator K such that, for any u ∈ BCς, (Ku)(t) = v(t,u(t)) { u0 v(0,u(0)) (ψ(t) −ψ(0))ς−1 + 1 Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1w(s,u(s))ds } . CUBO 23, 1 (2021) Existence and attractivity results for ψ-Hilfer hybrid fractional. . . 151 Let L be a bound of the function v. For any u ∈ BCς, and for each t ∈ R+, we have∣∣∣∣(ψ(t) −ψ(0))1−ς(Ku)(t) ∣∣∣∣ ≤|v(t,u(t))| {∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + (ψ(t) −ψ(0))1−ςΓ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1|w(s,u(s))|ds } ≤|v(t,u(t))| {∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + (ψ(t) −ψ(0))1−ςΓ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1T(s)ds } ≤L {∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + T∗ } :=R∗. So |K(u)‖BC ≤ R∗. (3.1) Therefore, K(u) ∈ BCς. Since, the map K(u) is continuous on R+; for any u ∈ BCς, and K(BCς) ⊂ BCς, then the operator K maps BCς into itself. Furthermore, equation (3.1) implies that the operator K transforms the ball BR∗ := B(0,R∗) = {v ∈ BCς : ‖v‖BCς ≤ R∗} into itself. From Lemma 2.9 the solution of problem (1.1) is reduced to finding the solutions of the operator equation K(u) = u. We show that the operator K : BCς → BCς satisfies all assumptions of Theorem 2.12. The proof is divided into several steps: Step 1. K is continuous. Let {un}n∈N be a sequence such that un → u in BR∗. Then, for each t ∈ R+, we have∣∣((ψ(t) −ψ(0))1−ς (Kun) (t) − ((ψ(t) −ψ(0))1−ς(Ku)(t)∣∣ ≤ ∣∣∣∣v(t,un(t)) { u0 v(0,u(0)) + (ψ(t) −ψ(0))1−ς Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1w(s,un(s))ds } −v(t,u(t)) { u0 v(0,u(0)) + (ψ(t) −ψ(0))1−ς Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1w(s,u(s))ds }∣∣∣∣ ≤ ∣∣∣∣v(t,un(t)) { u0 v(0,u(0)) + (ψ(t) −ψ(0))1−ς Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1w(s,un(s))ds } −v(t,u(t)) { u0 v(0,u(0)) + (ψ(t) −ψ(0))1−ς Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1w(s,un(s))ds } + v(t,u(t)) { u0 v(0,u(0)) + (ψ(t) −ψ(0))1−ς Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1w(s,un(s))ds } −v(t,u(t)) { u0 v(0,u(0)) + (ψ(t) −ψ(0))1−ς Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1w(s,u(s))ds }∣∣∣∣ 152 F. Si bachir, S. Abbas, M. Benbachir, M. Benchohra & G. M. N’Guérékata CUBO 23, 1 (2021) ≤ ∣∣∣∣v(t,un(t)) −v(t,u(t)) ∣∣∣∣ ∣∣∣∣ u0v(0,u(0)) + (ψ(t) −ψ(0)) 1−ς Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1 ×w(s,un(s))ds ∣∣∣∣ + |v(t,u(t))|(ψ(t) −ψ(0))1−ςΓ(λ) × ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1|w(s,un(s)) −w(s,u(s))|ds. Hence ∣∣(ψ(t) −ψ(0))1−ς (Kun) (t) − (ψ(t) −ψ(0))1−ς(Ku)(t)∣∣ ≤ ∣∣∣∣v(t,un(t)) −v(t,u(t)) ∣∣∣∣ {∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + (ψ(t) −ψ(0))1−ς Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1|w(s,un(s))|ds } + L (ψ(t) −ψ(0))1−ς Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1|w(s,un(s)) −w(s,u(s))|ds. (3.2) Case 1. If t ∈ [0,d], then, in view of the facts that un → u as n →∞, v and w are continuous, by the Lebesgue dominated convergence theorem, from the equation (3.2), we have ‖K (un) −K (u)‖BCς → 0 as n →∞. Case 2. If t ∈ (d,∞), then, from the hypotheses and (3.2), we have∣∣(ψ(t) −ψ(0))1−ς (Kun) (t) − (ψ(t) −ψ(0))1−ς(Ku)(t)∣∣ ≤ ∣∣∣∣v(t,un(t)) −v(t,u(t)) ∣∣∣∣ {∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + (ψ(t) −ψ(0))1−ς Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1T(s)ds } + 2L (ψ(t) −ψ(0))1−ς Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1T(s)ds. Then ∣∣(ψ(t) −ψ(0))1−ς (Kun) (t) − (ψ(t) −ψ(0))1−ς(Ku)(t)∣∣ ≤ ∣∣∣∣v(t,un(t)) −v(t,u(t)) ∣∣∣∣ {∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + ((ψ(t) −ψ(0))1−ς (Iλ;ψ0+ T) (t) } + 2L((ψ(t) −ψ(0))1−ς ( I λ;ψ 0+ T ) (t). (3.3) Since un → u as n →∞, v is continuous and (ψ(t)−ψ(0))1−ς ( I λ;ψ 0+ T ) (t) → 0 as t →∞, it follows from (3.3) that ‖K (un) −K(u)‖BCς → 0 as n →∞. Step 2. L (BR∗) is uniformly bounded, and equicontinuous on every compact subset [0,d] of R+, d > 0. CUBO 23, 1 (2021) Existence and attractivity results for ψ-Hilfer hybrid fractional. . . 153 We have L (BR∗) ⊂ BR∗ and BR∗ is bounded, so L (BR∗) is uniformly bounded. Next, for each t1, t2 ∈ [0,d], t1 < t2, and u ∈ BR∗, we have ∣∣(ψ(t2) −ψ(0))1−ς (Ku) (t2) − (ψ(t1) −ψ(0))1−ς(Ku)(t1)∣∣ ≤ ∣∣∣∣v(t2,u(t2)) { u0 v(0,u(0)) + (ψ(t2) −ψ(0))1−ς Γ(λ) ∫ t2 0 ψ′(s)(ψ(t2) −ψ(s))λ−1w(s,u(s))ds } −v(t1,u(t1)) { u0 v(0,u(0)) + (ψ(t1) −ψ(0))1−ς Γ(λ) ∫ t1 0 ψ′(s)(ψ(t1) −ψ(s))λ−1w(s,u(s))ds }∣∣∣∣ ≤ ∣∣∣∣v(t2,u(t2)) { u0 v(0,u(0)) + (ψ(t2) −ψ(0))1−ς Γ(λ) ∫ t2 0 ψ′(s)(ψ(t2) −ψ(s))λ−1w(s,u(s))ds } −v(t1,u(t1)) { u0 v(0,u(0)) + (ψ(t2) −ψ(0))1−ς Γ(λ) ∫ t2 0 ψ′(s)(ψ(t2) −ψ(s))λ−1w(s,u(s))ds } + v(t1,u(t1)) { u0 v(0,u(0)) + (ψ(t2) −ψ(0))1−ς Γ(λ) ∫ t2 0 ψ′(s)(ψ(t2) −ψ(s))λ−1w(s,u(s))ds } −v(t1,u(t1)) { u0 v(0,u(0)) + (ψ(t1) −ψ(0))1−ς Γ(λ) ∫ t1 0 ψ′(s)(ψ(t1) −ψ(s))λ−1w(s,u(s))ds }∣∣∣∣. Thus ∣∣(ψ(t2) −ψ(0))1−ς (Ku) (t2) − (ψ(t1) −ψ(0))1−ς(Ku)(t1)∣∣ ≤ |v(t2,u(t2)) −v(t1,u(t1))| ∣∣∣∣ u0v(0,u(0)) + (ψ(t2) −ψ(0))1−ς Γ(λ) ∫ t2 0 ψ′(s)(ψ(t2) −ψ(s))λ−1w(s,u(s))ds ∣∣∣∣ + |v(t1,u(t1))| ∣∣∣∣(ψ(t2) −ψ(0))1−ςΓ(λ) ∫ t1 0 ψ′(s)(ψ(t2) −ψ(s))λ−1w(s,u(s))ds + (ψ(t2) −ψ(0))1−ς Γ(λ) ∫ t2 t1 ψ′(s)(ψ(t2) −ψ(s))λ−1w(s,u(s))ds − (ψ(t1) −ψ(0))1−ς Γ(λ) ∫ t1 0 ψ′(s)(ψ(t1) −ψ(s))λ−1w(s,u(s))ds ∣∣∣∣. Hence ∣∣(ψ(t2) −ψ(0))1−ς (Ku) (t2) − (ψ(t1) −ψ(0))1−ς(Ku)(t1)∣∣ ≤ |v(t2,u(t2)) −v(t1,u(t1))| (∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + (ψ(t2) −ψ(0))1−ς Γ(λ) ∫ t2 0 ψ′(s)(ψ(t2) −ψ(s))λ−1|w(s,u(s))|ds ) + L (∫ t1 0 ∣∣∣∣(ψ(t2) −ψ(0))1−ςΓ(λ) ψ′(s)(ψ(t2) −ψ(s))λ−1 − (ψ(t1) −ψ(0))1−ς Γ(λ) ψ′(s)(ψ(t1) −ψ(s))λ−1 ∣∣∣∣ |w(s,u(s))|ds + (ψ(t2) −ψ(0))1−ς Γ(λ) ∫ t2 t1 ψ′(s)(ψ(t2) −ψ(s))λ−1|w(s,u(s))|ds ) 154 F. Si bachir, S. Abbas, M. Benbachir, M. Benchohra & G. M. N’Guérékata CUBO 23, 1 (2021) ≤ |v(t2,u(t2)) −v(t1,u(t1))| (∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + (ψ(t2) −ψ(0))1−ς Γ(λ) ∫ t2 0 ψ′(s)(ψ(t2) −ψ(s))λ−1T(s)ds ) + L (∫ t1 0 ∣∣∣∣(ψ(t2) −ψ(0))1−ςΓ(λ) ψ′(s)(ψ(t2) −ψ(s))λ−1 − (ψ(t1) −ψ(0))1−ς Γ(λ) ψ′(s)(ψ(t1) −ψ(s))λ−1 ∣∣∣∣ T(s)ds + (ψ(t2) −ψ(0))1−ς Γ(λ) ∫ t2 t1 ψ′(s)(ψ(t2) −ψ(s))λ−1T(s)ds ) . From the continuity of the functions T and v, by setting T∗ = supt∈[0,d] T(t), we obtain∣∣(ψ(t2) −ψ(0))1−ς (Ku) (t2) − (ψ(t1) −ψ(0))1−ς(Ku)(t1)∣∣ ≤ |v(t2,u(t2)) −v(t1,u(t1))| (∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + T∗(ψ(t2) −ψ(0))1−ςΓ(λ) ∫ t2 0 ψ′(s)(ψ(t2) −ψ(s))λ−1ds ) + LT∗ (∫ t1 0 ∣∣∣∣(ψ(t2) −ψ(0))1−ςΓ(λ) ψ′(s)(ψ(t2) −ψ(s))λ−1 − (ψ(t1) −ψ(0))1−ς Γ(λ) ψ′(s)(ψ(t1) −ψ(s))λ−1 ∣∣∣∣ds + (ψ(t2) −ψ(0))1−ς Γ(λ) ∫ t2 t1 ψ′(s)(ψ(t2) −ψ(s))λ−1ds ) ≤ |v(t2,u(t2)) −v(t1,u(t1))| (∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + T∗(ψ(t2) −ψ(0))1−ς+λΓ(λ + 1) ) + LT∗ (∫ t1 0 ∣∣∣∣(ψ(t2) −ψ(0))1−ςΓ(λ) ψ′(s)(ψ(t2) −ψ(s))λ−1 − (ψ(t1) −ψ(0))1−ς Γ(λ) ψ′(s)(ψ(t1) −ψ(s))λ−1 ∣∣∣∣ds + (ψ(t2) −ψ(0))1−ςΓ(λ + 1) (ψ(t2) −ψ(t1))λ ) . As t1 → t2, the right-hand side of the inequality tends to zero. Step 3. L (BR) is equiconvergent. Let u ∈ BR∗. Then, for each t ∈ R+ we have∣∣∣∣(ψ(t) −ψ(0))1−ς(Ku)(t)| ∣∣∣∣ ≤ |v(t,u(t))| {∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + ∣∣∣∣(ψ(t) −ψ(0))1−ςΓ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1w(s,u(s))ds ∣∣∣∣ } ≤ |v(t,u(t))| {∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + ∣∣∣∣(ψ(t) −ψ(0))1−ςΓ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1T(s)ds ∣∣∣∣ } ≤ L {∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + (ψ(t) −ψ(0))1−ς (Iλ;ψ0+ T) (t) } . Since (ψ(t) −ψ(0))1−ς ( I λ;ψ 0+ T ) (t) → 0 as t → +∞, CUBO 23, 1 (2021) Existence and attractivity results for ψ-Hilfer hybrid fractional. . . 155 we find |(Ku)(t)| ≤ L {∣∣∣∣ u0(ψ(t) −ψ(0))1−ςv(0,u(0)) ∣∣∣∣ + (ψ(t) −ψ(0)) 1−ς ( I λ;ψ 0+ T ) (t) (ψ(t) −ψ(0))1−ς } . Hence, |(Lu)(t) − (Lu)(+∞)|→ 0 as t → +∞, in view of Lemma 2.11 as a consequence of Steps 1 − 4, we conclude that K : BR∗ → BR∗ is compact and continuous. Applying the Theorem 2.12, we have that K has a fixed point u, which is a solution of problem (1.1) on R+. Step 4. The uniform local attractivity of solutions. We assume that u∗ is a solution of problem (1.1) under the conditions of this theorem. Set u ∈ B ( u∗, 2L {∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + 2T∗ }) , we have ∣∣(ψ(t) −ψ(0))1−ς (Ku) (t) − (ψ(t) −ψ(0))1−ς(u∗)(t)∣∣ ≤ ∣∣(ψ(t) −ψ(0))1−ς (Ku) (t) − (ψ(t) −ψ(0))1−ς(Ku∗)(t)∣∣ ≤ |v(t,u(t)) −v(t,u∗(t))| {∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + (ψ(t) −ψ(0))1−ς Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1|w(s,u(s))|ds } + L (ψ(t) −ψ(0))1−ς Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1|w(s,u(s)) −w(s,u∗(s))|ds ≤ 2L {∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + (ψ(t) −ψ(0))1−ςΓ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1T(s)ds } + 2L (ψ(t) −ψ(0))1−ς Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1T(s)ds ≤ 2L {∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + 2T∗ } . Thus, we get ‖K(u) −u∗‖BCς ≤ 2L {∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + 2T∗ } . So, we conclude that K is a continuous function such that K ( B ( u∗, 2L {∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + 2T∗ })) ⊂ B ( u∗, 2L {∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + 2T∗ }) . 156 F. Si bachir, S. Abbas, M. Benbachir, M. Benchohra & G. M. N’Guérékata CUBO 23, 1 (2021) Moreover, if u is a solution of problem (1.1), then |u(t) −u∗(t)| = |(Ku)(t) − (Ku∗) (t)| ≤ |v(t,u(t)) −v(t,u∗(t))| { (ψ(t) −ψ(0))ς−1 ∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + 1 Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1|w(s,u(s))|ds } + L Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1|w(s,u(s)) −w(s,u∗(s))|ds ≤ 2L { (ψ(t) −ψ(0))ς−1 ∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + 1 Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1|w(s,u(s))|ds } + L Γ(λ) ∫ t 0 ψ′(s)(ψ(t) −ψ(s))λ−1|w(s,u(s)) −w(s,u∗(s))|ds ≤ 2L { (ψ(t) −ψ(0))ς−1 ∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + 2(Iλ;ψ0+ T)(t) } . Therefore, |u(t) −u∗(t)| ≤ 2L { (ψ(t) −ψ(0))ς−1 ∣∣∣∣ u0v(0,u(0)) ∣∣∣∣ + 2 (ψ(t) −ψ(0))1−ς(Iλ;ψ0+ T)(t)(ψ(t) −ψ(0))1−ς } . (3.4) By using (3.4) and the fact that lim t→∞ (ψ(t) −ψ(0))1−ς(Iλ;ψ 0+ T)(t) = 0, we conclude lim t→∞ |u(t) −u∗(t)| = 0. Consequently, all solutions of problem (1.1) are uniformly locally attractive. 4 An Example As an application of our results, we consider the following problem for a ψ-Hilfer fractional differ- ential equation   D 1 2 , 1 2 ;ψ 0+ u(t) v(t,u(t)) = w (t,u(t)) ,a.e. t ∈ R+, (ψ(t) −ψ(0)) 1 4 u(t) |t=0= 1, (4.1) where ψ : [0, 1] → R with ψ(t) = √ t + 3, v(t,u) = 1 (1 + t)(1 + |u|) ,   w(t,u) = β(ψ(t) −ψ(0)) −1 4 sin t 64(1 + √ t)(1 + |u|) , t ∈ (0,∞), u ∈ R, w(0,u) = 0, u ∈ R, CUBO 23, 1 (2021) Existence and attractivity results for ψ-Hilfer hybrid fractional. . . 157 and β = 9 √ π 16 . Clearly, the function w is continuous. The hypothesis (H2) is satisfied with  T(t) = β(ψ(t) −ψ(0)) −1 4 |sin t| 64(1 + √ t) , t ∈ (0,∞), T(0) = 0. In addition, we have (ψ(t) −ψ(0)) 1 4 ( I 1 2 ;ψ 0+ T ) (t) = (ψ(t) −ψ(0)) 1 4 Γ ( 1 2 ) ∫ t 0 ψ′(τ)(ψ(t) −ψ(τ)) −1 2 T(τ)dτ ≤ 1 4 (ψ(t) −ψ(0)) −1 4 → 0 as t →∞. Simple computations show that all conditions of Theorem 3.2 are satisfied. Consequently, our problem (4.1) has at least one solution defined on R+, and all solutions of this problem are uniformly locally attractive. 5 Conclusion In this paper, we provided some sufficient conditions ensuring the existence and the uniform locally attractivity of solutions of some ψ-Hilfer fractional differential equations. The technique used is based on Schauder’s fixed point theory theorem. References [1] S. Abbas, and M. Benchohra, Advanced Functional Evolution Equations and Inclusions, Dev. Math., vol. 39, Springer, Cham, 2015. [2] S. Abbas, and M. Benchohra, “Existence and stability of nonlinear fractional order Riemann- Liouville, Volterra-Stieltjes multi-delay integral equations”, J. Integ. Equat. Appl., vol. 25, pp. 143–158, 2013. [3] S. Abbas, M. Benchohra, and T. Diagana, “Existence and attractivity results for some frac- tional order partial integrodifferential equations with delay”, Afr. Diaspora J. Math., vol. 15, pp 87–100, 2013. [4] S. Abbas, M. Benchohra, and J. Henderson, “Existence and attractivity results for Hilfer fractional differential equations”, J. Math. Sci., vol. 243, 347–357, 2019. 158 F. Si bachir, S. Abbas, M. Benbachir, M. Benchohra & G. M. N’Guérékata CUBO 23, 1 (2021) [5] S. Abbas, M. Benchohra, and G. M. N’Guérékata, Advanced Fractional Differential and Integral Equations, Nova Sci. Publ., New York, 2015. [6] S. Abbas, M. Benchohra, and G. M.N’ Guérékata, Topics in Fractional Differential Equa- tions, Dev. Math., vol. 27, Springer, New York, 2015. [7] S. Abbas, M. Benchohra, and J. J. Nieto, “Global attractivity of solutions for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes partial integral equations”, Electron. J. Qual. Theory Differ. Equat, vol. 81, pp. 1–15, 2012. [8] R. Almeida, “Functional differential equations involving the [psi]-Caputo fractional deriva- tive”, Fractal and Fractional, vol. 4, no. 2, pp 1–8, 2020. [9] B. Ahmad, S. K. Ntouyas, and J. Tariboon, “A nonlocal hybrid boundry value problem of Caputo fractional integro-differential equations”, Acta Math. Sci. vol. 36, pp. 1631–1640, 2016. [10] R. Almeida, “A Caputo, fractional derivative of a function with respect to another function”, Comm. Nonlinear Sci. Numer. Simulat. vol. 44, pp. 460–481, 2017. [11] C. Corduneanu, Integral Equations and Stability of Feedback Systems, Acad. Press, New York, 1973. [12] B. C. Dhage, and V. Lakshmikantham, “Basic results on hybrid differential equations”, Nonlinear Anal.: Hybrid Systems vol. 4, pp. 414-424, 2010. [13] K. Diethelm, The analysis of fractional differential equations, Lecture Notes in Mathematics, Springer–verlag Berlin Heidelberg, 2010. [14] S. Ferraoun, and Z. Dahmani, “Existence and stability of solutions of a class of hybrid fractional differential equations involving R-L-operator”, J. Interd. Math., pp. 1–19, 2020. [15] A. Granas , J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. [16] J. P. Kharade and K. D. Kucche, “On the impulsive implicit ψ -Hilfer fractional differential equations with delay”, Math. Methods Appl. Sci., vol. 43, no 4, pp. 1938–1952, 2019. [17] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math Stud., 204, Elsevier, Amsterdam, 2006. [18] K. D. Kucche, A. D. Mali, and J. V Sousa, “On the nonlinear Ψ-Hilfer fractional differential equations”. Comput. Appl. Math., vol. 38, no. 2, paper no. 73, 25 pp, 2019. [19] V. Lakshmikantham, and J. Vasundhara Devi, “Theory of fractional differential equations in a Banach space”, Eur. J. Pure Appl. Math. vol. 1, pp. 38–45, 2008. CUBO 23, 1 (2021) Existence and attractivity results for ψ-Hilfer hybrid fractional. . . 159 [20] V. Lakshmikantham, and A. S. Vatsala, “Basic theory of fractional differential equations”, Nonlin. Anal., vol. 69, pp. 2677-2682, 2008. [21] V. Lakshmikantham, and A. S. Vatsala, “General uniqueness and monotone iterative tech- nique for fractional differential equations”, Appl. Math. Lett., vol. 21, pp. 828–834, 2008. [22] K. Oldham, and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974. [23] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Acad. Press, 1999. [24] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon Breach, Tokyo-Paris-Berlin, 1993. [25] H. Sugumarana, R. W. Ibrahimb, and K. Kanagarajana, “On ψ−Hilfer fractional differential equation with complex order”, Universal J. Math. Appl., vol. 1, no. 1, pp. 33–38, 2018. [26] S. Sun, Y. Zhao, Z. Han, and Y. Li, “The existence of solutions for boundary value problem of fractional hybrid differential equations”, Commun. Nonlinear Sci. Numer. Simulat., vol. 17, pp. 4961–4967, 2012. [27] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to the Dynamics of Particles, Fields, and Media, Springer, Beijing-Heidelberg, 2010. [28] J. Vanterler da C. Sousa, J. A. Tenreiro Machado, and E. Capelas de Oliveira, “The ψ−Hilfer fractional calculus of variable order and its applications”, Comput. Appl. Math., vol. 39, no. 296, pp. 1–38, 2020. [29] J. Vanterler da C. Sousa, and E. Capelas de Oliveira, “On the ψ-Hilfer fractional derivative”, Commun. Nonlinear Sci. Numer. Simulat., vol. 60, pp. 72–91, 2018. [30] J. Vanterler da C. Sousa, and E. Capelas de Oliveira, “On the -fractional integral and appli- cations”, Comput. Appl. Math., vol. 38, no. 4, pp. 1–22, 2019. [31] Y. Zhao, S. Sun, Z. Han, and Q. Li, “Theory of fractional hybrid differential equations”, Comput. Math. Appl., vol. 62, pp. 1312–1324, 2011. [32] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014. [33] Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier, Acad. Press, 2016. [34] Y. Zhou, J. Wang, and L. Zhang, Basic Theory of Fractional Differential Equations, Second Edition, World Scientific, Singapore, 2017. Introduction Preliminaries Existence and Attractivity Results An Example Conclusion