CUBO, A Mathematical Journal Vol. 23, no. 03, pp. 357–368, December 2021 DOI: 10.4067/S0719-06462021000300357 Basic asymptotic estimates for powers of Wallis’ ratios Vito Lampret1 1 University of Ljubljana, Ljubljana, 386 Slovenia, EU. vito.lampret@guest.arnes.si ABSTRACT For any a ∈ R, for every n ∈ N, and for n-th Wallis’ ratio wn := ∏n k=1 2k−1 2k , the relative error r0(a, n) := ( v0(a, n) − wan ) /wan of the approximation w a n ≈ v0(a, n) := (πn) −a/2 is estimated as ∣∣r0(a, n)∣∣ < 14n . The improvement wan ≈ v(a, n) := (πn)−a/2 ( 1 − a 8n + a 2 128n2 ) is also studied. RESUMEN Para cualquier a ∈ R, para todo n ∈ N, y para el n- ésimo cociente de Wallis wn := ∏n k=1 2k−1 2k , el error re- lativo r0(a, n) := ( v0(a, n) − w a n ) /wan de la aproximación wan ≈ v0(a, n) := (πn) −a/2 se estima como ∣∣r0(a, n)∣∣ < 1 4n . También se estima la mejora wan ≈ v(a, n) := (πn)−a/2 ( 1 − a 8n + a 2 128n2 ) . Keywords and Phrases: approximation, asymptotic, estimate, inequality, power, Wallis’ ratio. 2020 AMS Mathematics Subject Classification: 41A60, 65B10, 11Y60, 33E20, 33F05, 40A25. Accepted: 09 July, 2021 Received: 16 January, 2021 ©2021 V. Lampret. This open access article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. http://cubo.ufro.cl/ http://dx.doi.org/10.4067/S0719-06462021000300357 https://orcid.org/0000-0002-2921-3451 358 Vito Lampret CUBO 23, 3 (2021) 1 Introduction The sequence of Wallis1 ratios wn := n∏ k=1 2k − 1 2k = (2n − 1)!! (2n)!! = 4−n ( 2n n ) (1.1) is often encountered in pure and applied mathematics, in physics, and in several other exact sciences too. For example, the perimeter P(a, b) of an ellipse having semi-axes of length a and b ≤ a is given as P(a, b) = 4a ∫ π/2 0 √ 1 − ε2 sin2(τ) dτ = 2aπ ( 1 − ∞∑ k=1 w2k 2k − 1 ε2k ) (1.2) [20], where ε = √ 1 − b2 a2 , the eccentricity of an ellipse. Similarly, the period T of a simple pendulum, located in the gravitational field with the acceleration g and having the length L and the amplitude of the oscillation α ∈ (0, π), is determined by the formula T = 4 √ L g ∫ π/2 0 dτ√ 1 − ε2 sin2(τ) = 2π √ L g ( 1 + ∞∑ k=1 w2kε 2k ) (1.3) [21, p. 26], where ε = sin(α/2). Not only in mechanics, but also in other parts of physics, the Wallis ratio has several interesting roles, see for example [9] and [12]. In mathematics, the sequence of the Landau constants Gn, important in the theory of analytic functions, see [1], is also defined by the Wallis ratios as Gn := n∑ k=1 w2k (n ∈ N). (1.4) The Wallis ratio attracts mathematicians also because of its direct connections with Catalan num- bers cn := 1 n+1 ( 2n n ) , also important objects for pure and applied mathematics [15, 29]. In fact, the Wallis ratio, i.e. the sequence n 7→ wn, was investigated by many researches, see for example the papers [2, 3, 4, 5, 6, 7, 8, 11, 14, 16, 22, 23, 26, 27, 28, 29, 31, 33]. In 2007 was presented [33] aesthetically pleasing double inequality 1 √ eπn ( 1 + 1 2n )n− 1 12n < wn ≤ 1 √ eπn ( 1 + 1 2n )n− 1 12n+16 , (1.5) true for all n ∈ N. In 2013 was demonstrated [10] the estimate√ e π ( 1 − 1 2n )n √ n − 1 n < wn ≤ 4 3 ( 1 − 1 2n )n √ n − 1 n , (1.6) 1John Wallis, 1616 – 1703 CUBO 23, 3 (2021) Basic asymptotic estimates for powers of Wallis’ ratios 359 true for n ≥ 2. In 2015 was derived [11] the inequalities( 2 3 )3/2 ( 1 − 1 2n )n+1/2 ( n − 3 2 )−1/2 ≤ wn < √ e π ( 1 − 1 2n )n+1/2 ( n − 3 2 )−1/2 , (1.7) valid for n ≥ 2. At the same time, in [28, Theorems 4.2 and 5.2] were presented the estimates wn > √ e πn ( 1 − 1 2n )n exp ( 1 24n2 + 1 48n3 + 1 160n4 + 1 960n5 ) (1.8) wn > √ e πn ( 1 − 1 2(n + 1/3) )n+1/3 (1.9) and wn < √ e πn ( 1 − 1 2(n + 1/3) )n+1/3 exp ( 1 144n3 ) , (1.10) all true for n ≥ 1. In the mentioned formulas for the perimeter of an ellipse and the period of a simple pendulum, as well as for the Landau sequence, see (1.2)–(1.4), we met the second powers of the Wallis ratios. This fact initiated our desire to approximate any power of the Wallis ratio. But, all the inequalities (1.5)–(1.10) are less suitable for estimating the power wan for a ∈ R. Fortunately, the approximation formula for the Wallis ratio, presented in [19], is more convenient for this task. In this contribution we shall show the first two steps how to approximate simply and accurately the powers of the Wallis ratios having real exponents. 2 Basic discussion The sequence of Wallis’ ratios was estimated recently [19] as wn = 1 √ π n exp ( − s̃r(n) + δr(n) ) (n ∈ N), (2.1) where s̃r(n) = r∑ i=1 (1 − 4−i)B2i i(2i − 1)n2i−1 (n, r ∈ N) (2.2) and, for any n, r ∈ N, the error δr(n) is estimated as − ∣∣B2r+2∣∣ (r + 1)(2r + 1)n2r+1 < (−1)rδr(n) < ∣∣B2r+2∣∣ 2(r + 1)(2r + 1)(2n)2r+1 . (2.3) Here B2 = 1 6 , B4 = − 130 , B6 = 1 42 , . . . are the Bernoulli numbers, defined by the identity x ex−1 ≡ ∑∞ j=0 Bj xj j! ( |x| < 2π ). We obtain the basic approximation by using r = 1, wan = (πn) −a/2 exp ( − as̃1(n) + aδ1(n) ) (a ∈ R, n ∈ N), (2.4) 360 Vito Lampret CUBO 23, 3 (2021) with, for n ∈ N, s̃1(n) := 1 8n > 0 (2.5) and − 1 180 n3 < − 1 2880 n3 < δ1(n) < 1 180 n3 . (2.6) Thus, due to (2.5), as̃1(n) = a 8n (a ∈ R, n ∈ N) . (2.7) Moreover, thanks to (2.5)–(2.6), we estimate, for n ∈ N, −s̃1(n) ± ∣∣δ1(n)∣∣ ≥ −s̃1(n) − ∣∣δ1(n)∣∣ > − 1 8n − 1 180n3 > − 1 7n (2.8) and −s̃1(n) ± ∣∣δ1(n)∣∣ ≤ −s̃1(n) + ∣∣δ1(n)∣∣ < − 1 8n + 1 180n3 < − 1 9n . (2.9) Therefore, − a 7n < a ( − s̃1(n) ± δ1(n) ) < − a 9n , for a > 0 and − a 7n > a ( − s̃1(n) ± δ1(n) ) > − a 9n , for a < 0. Thus, min { − a 7n , − a 9n } < a ( − s̃1(n) ± ∣∣δ1(n)∣∣) < max{− a7n, − a9n} (a ̸= 0, n ∈ N). (2.10) Hence, considering (2.4), together with the equality min(−S) = − max(S), for every S ⊆ R, we derive the following theorem. Theorem 2.1. For a ∈ R ∖ {0} and n ∈ N, the following double inequality holds: (πn)−a/2 exp ( − max { a 7n , a 9n }) < wan < (πn) −a/2 exp ( − min { a 7n , a 9n }) . (2.11) Figure 1 shows2 the graphs of the function a 7→ wa2 and its approximation (dashed line) a 7→ (π · 2)−a/2. -2 -1 1 2 1 2 3 4 5 6 7 n=2 -0.10 -0.05 0.05 0.10 0.95 1.00 1.05 1.10 n=2 Figure 1: The graphs of the function a 7→ wa2 and its approximation (dashed line) a 7→ (π · 2)−a/2. 2All graphics and calculations in this paper are made using the Mathematica [32] computer system. CUBO 23, 3 (2021) Basic asymptotic estimates for powers of Wallis’ ratios 361 Example 2.2. For any n ∈ N we have (πn)−50 exp ( − 100 7n ) < w100n < (πn) −50 exp ( − 100 9n ) , (πn)50 exp ( 100 9n ) < w−100n < (πn) 50 exp ( 100 7n ) . From Theorem 2.1 there follows the next corollary. Corollary 2.3. For every a ∈ R ∖ {0} and for any positive integer n ≥ a we have wan > 6 7 (πn)−a/2 . (2.12) Proof. For k ≥ a > 0, using (2.11), we obtain3 wak > (πk) −a/2 exp ( − a 7k ) > (πk)−a/2(1 − a 7k ) ≥ ( πk)−a/2(1 − 1 7 ) = 6 7 (πk)−a/2. Furthermore, for a < 0, due to (2.11), we estimate wak > (πk)−a/2 exp ( − a 9k ) = (πk)−a/2 exp ( |a| 9k ) > (πk)−a/2 · 1. Lemma 2.4. Let real numbers α, β, v and w satisfy the inequalities αβ ≥ 0, β ≤ 1 2 , v > 0 and eαv < w < eβv. Then we have |v − w| < 3 2 v · max{|α|, |β|}. Proof. Supposing that all conditions of Lemma 2.4 are satisfied, we have only two possibilities α < β ≤ 0 or 0 ≤ α < β, together with the estimate (eα − 1)v < w − v < (eβ − 1)v. Therefore, in case α ≤ 0, we have (1 − eα)v > v − w > (1 − eβ)v ≥ 0. Thus, see Footnote 3, |v−w| < −α = |α|. Additionally, using the first order Taylor’s formula and the estimate 0 ≤ β ≤ 1 2 , in case α ≥ 0, we obtain, 0 ≤ (eα − 1)v < −(v − w) < (eβ − 1)v < β + 1 2 eββ2 ≤ β + 1 2 e1/2 1 2 β < 3 2 β. Hence, in both cases we have |v − w| < v · max{|α|, 3 2 |β|}. Corollary 2.5 (relative error). For every a ∈ R ∖ {0} and for any positive integer n ≥ a the relative error r0(a, n) := ( wan − v0(a, n) ) /wan of the approximation w a n ≈ v0(a, n) := (πn)−a/2 is roughly estimated as ∣∣r0(a, n)∣∣ < 1 4n . Proof. Thanks to Theorem 2.1 and Lemma 2.4, using the notations α = − max { a 7n , a 9n } , β = − min { a 7n , a 9n } , v = v0(a, n) = (πn) −a/2 and w = wan, we obtain∣∣v0(a, n) − wan∣∣ < 32(πn)−a/2 · max {∣∣max{ a 7n , a 9n }∣∣ , ∣∣min{ a 7n , a 9n }∣∣}. Thus, according to the identity max { |max {x, y}| , |min {x, y}| } = max { |x|, |y| } , we get ∣∣v0(a, n) − wan∣∣ < 32(πn)−a/2 · |a|7n . 3considering the well-known estimate ex > 1 + x, true for x ∈ R ∖ {0}. 362 Vito Lampret CUBO 23, 3 (2021) Hence, using Corollary 2.3,∣∣v0(a, n) − wan∣∣ wan < 3 2 (πn)−a/2 |a| 7n · 7 6 (πn)a/2 = |a| 4n . Figure 2 shows, on the left – the graph of the actual relative error function a 7→ r0(a, n) and on the right – the graphs of the functions a 7→ r0(a, n) and a 7→ |a| 4×1000 (dashed line). -10 000 -5000 -2000 2000 4000 0.1 0.2 0.3 0.4 0.5 0.6 0.7 a b b=r0Ha,1000L -8 -6 -4 -2 2 4 6 8 0.0005 0.0010 0.0015 0.0020 a b b=r0Ha,1000L b= a 4´1000 Figure 2: Left – the graph of the actual relative error function a 7→ r0(a, 1000); Right – the graphs of the actual relative error a 7→ r0(a, 1000) and its approximation (dashed line) a 7→ |a| 4×1000 . 3 Improvement The relations (2.4)–(2.6) can be exploited more accurately to derive the next theorem. Theorem 3.1. For any a ∈ R and every integer n ≥ |a| 8 , we have wan = v(a, n) + ε(a, n), (3.1) where v(a, n) := (πn)−a/2 ( 1 − a 8n + a2 128n2 ) , (3.2) and the error ε(a, n) is estimated as ∣∣ε(a, n)∣∣ ≤ ε∗(a, n) := (πn)−a/2 [ a2 100 + 1 18 exp ( − min { a 7n , a 9n })] |a| 10n3 (3.3) ≤ (πn)−a/2 ( a2 100 + 1 18 exp (|a| 7n )) |a| 10n3 ≤ ε∗∗(a, n) := (πn)−a/2 ( a2 + 35 2 ) |a| (10n)3 . (3.4) Proof. Using the second order Taylor’s formula, we have exp ( − as̃1(n) ) = exp ( − a 8n ) = 1 − a 8n + 1 2 ( − a 8n )2 + R2(a, n) (3.5) CUBO 23, 3 (2021) Basic asymptotic estimates for powers of Wallis’ ratios 363 with R2(a, n) = 1 6 exp ( −ϑ · a 8n )( − a 8n )3 , for some ϑ = ϑ(a, n) ∈ (0, 1). Therefore, for a ∈ R and n ≥ |a| 8 , ∣∣R2(a, n)∣∣ ≤ 1 6 exp ( |a| 8n ) · ( |a| 8n )3 ≤ e 6 · |a|3 512n3 ≤ |a|3 1000n3 . (3.6) Similarly, exp ( aδ1(n) ) = 1 + exp ( ϑ · aδ1(n) ) · aδ1(n), (3.7) for some ϑ = ϑ(a, n) ∈ (0, 1). Thanks to (3.7), (2.10) and (2.6), we estimate, using some θ = θ(a, n) ∈ (0, 1),∣∣∣exp( − as̃1(n) + aδ1(n)) − exp( − as̃1(n))︸ ︷︷ ︸ =∆(a,n) ∣∣∣ = exp( − as̃1(n)) · ∣∣exp(θ · aδ1(n)) · aδ1(n)∣∣ ≤ exp ( − as̃1(n) ) · exp ( |aδ1(n)| ) · ∣∣aδ1(n)∣∣ = exp ( a ( − s̃1(n) ± |δ1(n)| )) |a| ∣∣δ1(n)∣∣ (2.10) ≤ (2.6) exp ( max { − a 7n , − a 9n }) · |a| 180n3 . (3.8) Consequently, according to (2.4) and (3.5), we obtain wan (2.4) = (πk)−a/2 ( exp ( −as̃1(n)+aδ1(n) )) (3.5) = (πn)−a/2 ( 1 − a 8n + a2 128n2 + R2(a, n)︸ ︷︷ ︸ =exp(−as̃1(n)) +∆(a, n) ) , where, considering (3.6) and (3.8), for a ∈ R and n ≥ |a| 8 , we estimate the error ε(a, n) := (πn)−a/2 ( R2(a, n) + ∆(a, n) ) as ∣∣ε(a, n)∣∣ ≤ (πn)−a/2 [ |a|3 1000n3 + exp ( − min { a 7n , a 9n }) |a| 180n3 ] = (πn)−a/2 [ a2 100 + 1 18 exp ( − min { a 7n , a 9n })] |a| 10n3 ≤ (πn)−a/2 [ a2 100 + 1 18 exp (|a| 8n · 8 7 )] |a| 10n3 ≤ (πn)−a/2 ( a2 100 + 1 18 exp ( 1 · 8 7 )) |a| 10n3 ≤ (πn)−a/2 ( a2 100 + 7 40 ) |a| 10n3 . Remark 3.2. The sequence n 7→ Wn := 12n+1 (∏n k=1 2k 2k−1 )2 , called the Wallis sequence, is closely connected to the sequence of the Wallis ratios wn by the identity Wn = w −2 n /(2n + 1). So, Wn can be estimated easily using Theorem 3.1, e.g. its consequence (3.14). 364 Vito Lampret CUBO 23, 3 (2021) Remark 3.3. According to Theorem 3.1, the constant π can be easily approximated using certain rational functions R∓(n). For example, from (3.14) we get, for any n ∈ N, 1 n ( w−2n − 1 5n2 )( 1 + 1 4n + 1 32n2 )−1 < π < 1 n ( w−2n + 1 5n2 )( 1 + 1 4n + 1 32n2 )−1 . Directly from Theorem 3.1 and Corollary 2.3, from (3.4) and (2.12), we read the next corollary. Corollary 3.4 (relative error). For every a ∈ R and for any positive integer n ≥ |a| the relative error of the approximation wan ≈ v(a, n), r(a, n) := wan − v(a, n) wan , (3.9) is a priori estimated as ∣∣r(a, n)∣∣ ≤ r∗(a, n) := (a2 + 13 2 ) 7|a| 6(10n)3 . (3.10) For any a ∈ R and all integers n ≥ |a| the rough estimate r∗(a, n) < 8.2 h holds true. Figure 3 shows the graphs of the actual relative error functions a 7→ r(a, n), for n ∈ {10, 100}. -10 -5 5 10 0.0001 0.0002 0.0003 a b b = rHa,10L -100 -50 50 100 0.0001 0.0002 0.0003 a b b = rHa,100L Figure 3: The graphs of the actual relative error functions a 7→ r(a, n) for n ∈ {10, 100} . Figures 4–5 compare the actual relative error functions a 7→ r(a, n) and their approximations a 7→ r∗(a, n), for n ∈ {1, 3, 10, 100}. -1.0 -0.5 0.5 1.0 0.002 0.004 0.006 0.008 n=1 a b b = rHa,1L b = r * Ha,1L -3 -2 -1 1 2 3 0.0005 0.0010 0.0015 0.0020 n=3 a b b = rHa,3L b = r * Ha,3L Figure 4: The graphs of the actual relative error functions a 7→ r(a, n) and their approximations a 7→ r∗(a, n), for n ∈ {1, 3} . CUBO 23, 3 (2021) Basic asymptotic estimates for powers of Wallis’ ratios 365 -10 -5 5 10 0.0002 0.0004 0.0006 0.0008 n=10 a b = rHa,10L b = r * Ha,10L -100 -50 50 100 0.0002 0.0004 0.0006 0.0008 0.0010 n=100 a b b = rHa,100L b = r * Ha,100L Figure 5: The graphs of the actual relative error functions a 7→ r(a, n) and their approximations a 7→ r∗(a, n), for n ∈ {10, 100} . Using a ∈ {1, −1, 2, −2, 1 2 , π, −2π} in Theorem 3.1, considering (3.1) and (3.4), we obtain several inequalities for Wallis’ ratios, presented in the next corollary. Corollary 3.5. For every4 positive integer n we have 1 √ π n ( 1 − 1 8n + 1 128n2 ) − 1 95 n7/2 < wn < 1 √ π n ( 1 − 1 8n + 1 128n2 ) + 1 95 n7/2 , (3.11) √ π n ( 1 + 1 8n + 1 128n2 ) − 1 30 n5/2 < 1 wn < √ π n ( 1 + 1 8n + 1 128n2 ) + 1 30 n5/2 , (3.12) 1 π n ( 1 − 1 4n + 1 32n2 ) − 1 73 n4 < w2n < 1 π n ( 1 − 1 4n + 1 32n2 ) + 1 73 n4 , (3.13) (π n) ( 1 + 1 4n + 1 32n2 ) − 1 7 n2 < 1 w2n < (π n) ( 1 + 1 4n + 1 32n2 ) + 1 7 n2 , (3.14) 1 4 √ π n ( 1 − 1 16n + 1 512n2 ) − 1 150n13/4 < √ wn < 1 4 √ π n ( 1 − 1 16n + 1 512n2 ) + 1 150n13/4 , (3.15) 1 (π n)π/2 ( 1 − π 8n + π 2 128n2 ) − 1 70n3+π/2 < wπn < 1 (π n)π/2 ( 1 − π 8n + π 2 128n2 ) + 1 70n3+π/2 , (3.16) (π n)π ( 1 + π 4n + π 2 32n2 ) − 14 nπ−3 < w−2πn < (π n) π ( 1 + π 4n + π 2 32n2 ) + 14 nπ−3 . (3.17) Remark 3.6. In case a > 0, the inequalities in Corollary 3.5 can be slightly improved using (3.3) instead of (3.4). For example, due to (3.3), we have, for a ∈ {1, 2}, |ε(1, n)| ≤ ε∗(1, n) = (π n)−1/2 ( 1 100 + 1 18 · 1 ) 1 10n3 < 1 270n7/2 |ε(2, n)| ≤ ε∗(2, n) = (π n)−1 ( 1 25 + 1 18 · 1 ) 2 10n3 < 1 164n4 . 4For 1 ≤ n < |a| the inequalities are approved directly. 366 Vito Lampret CUBO 23, 3 (2021) References [1] H. Alzer, “Inequalities for the constants of Landau and Lebesgue”, J. Comput. Appl. Math., vol. 139, no. 2, pp. 215–230, 2002. [2] T. Burić and N. Elezović, “Bernoulli polynomials and asymptotic expansions of the quotient of gamma functions”, J. Comput. Appl. Math., vol. 235, no. 11, pp. 3315–3331, 2011. [3] T. Burić and N. Elezović, “New asymptotic expansions of the quotient of gamma functions”, Integral Transforms and Spec. Funct., vol. 23, no. 5, pp. 355–368, 2012. [4] C.-P. Chen and F. Qi, “The best bounds in Wallis’ inequality”, Proc. Amer. Math. Soc., vol. 133, no. 2, pp. 397–401, 2005. [5] V. G. Cristea, “A direct approach for proving Wallis ratio estimates and an improvement of Zhang-Xu-Situ inequality”, Studia Univ. Babeş-Bolyai Math., vol. 60, no. 2, pp. 201–209, 2015. [6] S. Dumitrescu, “Estimates for the ratio of gamma functions using higher order roots”, Stud. Univ. Babeş-Bolyai Math., vol. 60, pp. 173–181, 2015. [7] N. Elezović, L. Lin and L. Vukšić, “Inequalities and asymptotic expansions of the Wallis sequence and the sum of the Wallis ratio”, J. Math. Inequal., vol. 7, no. 4, pp. 679–695, 2013. [8] N. Elezović, “Asymptotic expansions of gamma and related functions, binomial coefficient, inequalities and means”, J. Math. Inequal., vol. 9, no. 4, pp. 1001–1054, 2015. [9] T. Friedmann and C. R. Hagen, “Quantum mechanical derivation of the Wallis formula for π”, J. Math. Phys., vol. 56, no. 11, 3 pages, 2015. [10] S. Guo, J.-G. Xu and F. Qi, “Some exact constants for the approximation of the quantity in the Wallis’ formula”, J. Inequal. Appl., vol. 2013 , no. 67, 7 pages, 2013. [11] S. Guo, Q. Feng, Y.-Q. Bi and Q.-M. Luo; “A sharp two-sided inequality for bounding the Wallis ratio”, J. Inequal. Appl., vol. 2015, no. 43, 5 pages, 2015. [12] P. Haggstrom, Quantum mechanical derivation of the Wallis formula for Pi, https: //gotohaggstrom.com/QuantummechanicalderivationoftheWallisformulaforPi.pdf, 2020. [13] M. D. Hirschhorn, “Comments on the paper: “Wallis sequence estimated through the Euler- Maclaurin formula: even from the Wallis product π could be computed fairly accurately” by V. Lampret”, Austral. Math. Soc. Gaz., vol. 32, no. 3, pp. 194, 2005. [14] D. K. Kazarinoff, “On Wallis’ formula”, Edinburgh Math. Notes, no. 40, pp. 19–21, 1956. https://gotohaggstrom.com/Quantum mechanical derivation of the Wallis formula for Pi.pdf https://gotohaggstrom.com/Quantum mechanical derivation of the Wallis formula for Pi.pdf CUBO 23, 3 (2021) Basic asymptotic estimates for powers of Wallis’ ratios 367 [15] T. Koshy, Catalan numbers with applications, New York: Oxford University Press, 2009. [16] A. Laforgia and P. Natalini, “On the asymptotic expansion of a ratio of gamma functions”, J. Math. Anal. Appl., vol. 389, no. 4, pp. 833–837, 2012. [17] V. Lampret, “An asymptotic approximation of Wallis’ sequence”, Cent. Eur. J. Math., vol. 10, no. 2, pp. 775–787, 2012. [18] V. Lampret, “Wallis’ sequence estimated accurately using an alternating series”, J. Number Theory, vol. 172, pp. 256–269, 2017. [19] V. Lampret, “A simple asymptotic estimate of Wallis’ ratio using Stirling’s factorial formula”, Bull. Malays. Math. Sci. Soc., vol. 42, no. 6, pp. 3213–3221, 2019. [20] V. Lampret, “The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin’s series”, Cubo, vol. 21, no. 2, pp. 51–64, 2019. [21] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics: Mechanics, 3ed, Oxford: Butterworth-Heinemann, 1986. [22] C. Mortici, “Sharp inequalities and complete monotonicity for the Wallis ratio”, Bull. Belg. Math. Math. Soc. Simon Stevin, vol. 17, no. 5, pp. 929–936, 2010. [23] C. Mortici, “A new method for establishing and proving new bounds for the Wallis ratio”, Math. Inequal. Appl., vol. 13, no. 4, pp. 803–815, 2010. [24] C. Mortici, “Refinements of Gurland’s formula for pi”, Comput. Math. Appl., vol. 62, no. 6, pp. 2616–2620, 2011. [25] C. Mortici, “Sharp bounds of the Landau constants”, Math. Comp., vol. 80, no. 274, pp. 1011–1015, 2011. [26] C. Mortici, “Completely monotone functions and the Wallis ratio”, Appl. Math. Lett., vol. 25, no. 4, pp. 717–722, 2012. [27] C. Mortici and V. G. Cristea, “Estimates for Wallis’ ratio and related functions”, Indian J. Pure Appl. Math., vol. 47, no. 3, pp. 437–447, 2016. [28] F. Qi and C. Mortici, “Some best approximation formulas and the inequalities for the Wallis ratio”, Appl. Math. Comput., vol. 253, pp. 363–368, 2015. [29] F. Qi, “An improper integral, the beta function, the Wallis ratio, and the Catalan numbers”, Probl. Anal. Issues Anal., vol. 7(25), no. 1, pp. 104–115, 2018. [30] D. V. Slavić, “On inequalities for Γ(x + 1)/Γ(x + 1/2)”, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., no. 498–541, pp. 17–20, 1975. 368 Vito Lampret CUBO 23, 3 (2021) [31] J.-S. Sun and C.-M. Qu, “Alternative proof of the best bounds of Wallis’ inequality”, Commun. Math. Anal., vol. 2, no. 1, pp. 23–27, 2007. [32] S. Wolfram, Mathematica, version 7.0, Wolfram Research, Inc., 1988–2009. [33] X.-M. Zhang, T. Q. Xu and L. B. Situ “Geometric convexity of a function involving gamma function and application to inequality theory”, JIPAM. J. Inequal. Pure Appl. Math., vol. 8, no. 1, art. 17, 9 pages, 2007. Introduction Basic discussion Improvement