CUBO, A Mathematical Journal Vol. 23, no. 03, pp. 385–409, December 2021 DOI: 10.4067/S0719-06462021000300385 Entropy solution for a nonlinear parabolic problem with homogeneous Neumann boundary condition involving variable exponents U. Traoré1 1 Laboratoire de Mathématiques et Informatique (LAMI), Université Joseph KI-ZERBO 03, BP 7021 Ouaga 03, Ouagadougou, Burkina Faso. urbain.traore@yahoo.fr ABSTRACT In this paper we prove the existence and uniqueness of an entropy solution for a non-linear parabolic equation with ho- mogeneous Neumann boundary condition and initial data in L1. By a time discretization technique we analyze the ex- istence, uniqueness and stability questions. The functional setting involves Lebesgue and Sobolev spaces with variable exponents. RESUMEN En este artículo probamos la existencia y unicidad de una solución de entropía para una ecuación parabólica no lineal con condiciones de borde Neumann homogéneas y data ini- cial en L1. Usando una técnica de discretización del tiempo, analizamos las preguntas de existencia, unicidad y estabili- dad. El contexto funcional involucra espacios de Lebesgue y Sobolev con exponentes variables. Keywords and Phrases: Nonlinear parabolic problem, variable exponents, entropy solution, Neumann-type boundary conditions, semi-discretization. 2020 AMS Mathematics Subject Classification: 35K55, 35K61, 35J60, 35Dxx. Accepted: 12 August, 2021 Received: 19 December, 2020 ©2021 U. Traoré. This open access article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. http://cubo.ufro.cl/ http://dx.doi.org/10.4067/S0719-06462021000300385 https://orcid.org/0000-0002-9729-4724 386 U. Traoré CUBO 23, 3 (2021) 1 Introduction and main result Let Ω be a smooth bounded open domain of Rd, (d ≥ 3) with Lipschitz boundary ∂Ω, T is a fixed positive number, in this paper we study the existence and uniqueness of an entropy solution for the following nonlinear parabolic problem (P)   ∂u ∂t − diva(x,∇u) + b(u) = f in QT = ]0,T[×Ω, a(x,∇u) .η = 0 on ∑ T = ]0,T[×∂Ω, u(0, .) = u0 in Ω, where f ∈ L1(QT ), b : R → R, a(x,ξ) : Ω × Rd → R is Carathéodory function and verifying some assumptions which will be given later, η denotes the unit vector normal on ∂Ω. The usual weak formulations of parabolic problems in the case where the initial data are in L1 do not ensure existence and uniqueness of solutions. For this reason, new formulations and types of solutions are given in order to obtain existence and uniqueness. For that, three notions of solution have been adopted: solutions named SOLA (Solution Obtained as the Limit of Approximations) defined by A. Dall’Aglio (see [10]); renormalized solutions defined by R. DiPerna and P.-L. Lions (see [12]); and entropy solutions defined by Ph. Bénilan et al. in [8]. In this paper, we will be interested in the entropy formulation. The stationary version of the problem for the problem (P) has been already studied by Bonzi et al. (cf. [9]), where they proved the existence and uniqueness of an entropy solution for the initial data in L1. The study of parabolic equations with variable exponents is a very active field (see [1, 2, 20, 21, 23, 27, 29]), in these papers, the authors consider the homogeneous Dirichlet boundary conditions, which permit them to use many results in the generalized Sobolev space W1,p(.)(Ω) and the many results concerned the differential equation in the literature to achieve there works. In particular in the case of p(x)-Laplace, where b ≡ 0, Bendahmane et al. (see [6]) have proved the existence and uniqueness of renormalized solution. We can also point out that the well-posedness of triply nonlinear degenerate elliptic- parabolic-hyperbolic problems: b(u)t − diva(x,∇ϕ(u)) +ψ(u) = f in a bounded domain with homogeneous Dirichlet boundary conditions by K. H. Karlsen et al. in [3]. Unfortunately, in this paper, due to the Neumann boundary condition, we cannot use the ideas developed in these papers and also some functional analysis results which play and important role in the a priori estimation, in particular the famous Poincaré inequality. To overcome these difficulties we apply a time discretization of given continuous problem by the Euler forward scheme. Let’s recall that this method has been used in the literature for the study CUBO 23, 3 (2021) Entropy solutions for nonlinear parabolic problems with... 387 of some nonlinear parabolic problems, we refer for example to [7, 13, 16, 17] for some details. This scheme is usually used to prove existence of solutions as well as to compute numerical approxima- tions. In this paper, our assumptions are the following:  p(.) : Ω → R is a continuous function such that1 < p− ≤ p+ < +∞, (1.1) where p− := ess inf x∈Ω p(x) and p+ := ess sup x∈Ω p(x) and b : Ω → R is a continuous, nondecreasing function, surjective such that b(0) = 0. (1.2) Also, we assume that a(x,ξ) : Ω × RN → RN is Carathéodory such that: • there exists a positive constant C1 with |a(x,ξ)| ≤ C1 ( j(x) + |ξ|p(x)−1 ) (1.3) for almost every x ∈ Ω and for every ξ ∈ RN, where j is a nonnegative function in Lp ′(.)(Ω) with 1 p(x) + 1 p′(x) = 1; • there exists a positive constant C2 such that for every x ∈ Ω and every ξ1, ξ2 ∈ Rd with ξ1 ̸= ξ2, the following two inequalities hold (a(x,ξ1) − a(x,ξ2)) .(ξ1 − ξ2) > 0 (1.4) a(x,ξ) .ξ ≥ C2|ξ|p(x). (1.5) The rest of the paper is organized as follows: after some preliminary results in Section 2, we introduce the Euler forward scheme associated with the problem (P) in Section 3. We analyze the stability of the discretized problem and we study the existence of an entropy solution to the parabolic problem (P) in the Section 4. 2 Preliminaries We define the Lebesgue space with variable exponent Lp(.) (Ω) (see [11]) as the set of all measurable functions u : Ω → R for which the convex modular ρp(.) (u) := ∫ Ω |u|p(x) dx is finite. If the exponent is bounded, i.e., if p+ < +∞, then the expression ∥u∥p(.) := inf { λ > 0 : ρp(.) (u/λ) ≤ 1 } 388 U. Traoré CUBO 23, 3 (2021) defines a norm in Lp(.) (Ω) , called the Luxembourg norm. The space ( Lp(.) (Ω) ,∥.∥p(.) ) is a separable Banach space. Moreover, if 1 < p− ≤ p+ < +∞, then Lp(.) (Ω) is uniformly convex, hence reflexive and its dual space is isomorphic to Lp ′(.) (Ω) , where 1 p(x) + 1 p′ (x) = 1. Finally, we have the Hölder type inequality∣∣∣∣ ∫ Ω uvdx ∣∣∣∣ ≤ ( 1 p− + 1 (p−)′ ) ∥u∥p(.) ∥v∥p′(.) , (2.1) for all u ∈ Lp(.) (Ω) and v ∈ Lp ′(.) (Ω) . Let W1,p(.) (Ω) := { u ∈ Lp(.) (Ω) : |∇u| ∈ Lp(.) (Ω) } , which is Banach space equipped with the following norm ∥u∥1,p(.) := ∥u∥p(.) + ∥∇u∥p(.) . The space ( W1,p(.) (Ω) ,∥.∥1,p(.) ) is a separable and reflexive Banach space. An important role in manipulating the generalized Lebesgue and Sobolev spaces is played by the modular ρp(.) of the space L p(.) (Ω) . We have the following result. Proposition 2.1 (see [14, 28]). If un,u ∈ Lp(.) (Ω) and p+ < ∞, the following properties hold true: (i) ∥u∥p(.) > 1 ⇒ ∥u∥ p− p(.) < ρp(.) (u) < ∥u∥ p+ p(.) ; (ii) ∥u∥p(.) < 1 ⇒ ∥u∥ p+ p(.) < ρp(.) (u) < ∥u∥ p− p(.) ; (iii) ∥u∥p(.) < 1 (respectively = 1;> 1) ⇔ ρp(.) (u) < 1 (respectively = 1;> 1) ; (iv) ∥un∥p(.) → 0 (respectively → +∞) ⇔ ρp(.) (un) < 1 (respectively → +∞) ; (v) ρp(.) ( u/∥u∥p(.) ) = 1. For a measurable function u : Ω → R we introduce the following notation: ρ1,p(.) (u) = ∫ Ω |u|p(x) dx + ∫ Ω |∇u|p(x) dx. Proposition 2.2 (see [25, 26]). If u ∈ W1,p(.) (Ω) , the following properties hold true: (i) ∥u∥1,p(.) > 1 ⇒ ∥u∥ p− 1,p(.) < ρ1,p(.) (u) < ∥u∥ p+ 1,p(.) ; (ii) ∥u∥1,p(.) < 1 ⇒ ∥u∥ p+ 1,p(.) < ρp(.) (u) < ∥u∥ p− 1,p(.) ; (iii) ∥u∥1,p(.) < 1 (respectively = 1;> 1) ⇔ ρ1,p(.) (u) < 1 (respectively = 1;> 1) . CUBO 23, 3 (2021) Entropy solutions for nonlinear parabolic problems with... 389 Put p∂ (x) := (p(x)) ∂ =   (N − 1)p(x) N − p(x) , if p(x) < N ∞, if p(x) ≥ N. Proposition 2.3 (see [26]). Let p ∈ C ( Ω̄ ) and p− > 1. If q ∈ C (∂Ω) satisfies the condition 1 < q (x) < p∂ (x) ∀x ∈ ∂Ω, then, there is a compact embedding W1,p(.) (Ω) ↪→ Lq(.) (∂Ω) . In particular, there is a compact embedding W1,p(.) (Ω) ↪→ Lp(.) (∂Ω) . Following [29], we extend a variable exponent p : Ω → [1,+∞) to QT = [0,T] × Ω by setting p(t,x) = p(x) for all (t,x) ∈ QT . We may also consider the generalized Lebesgue space Lp(.) (Q) = { u : Q → R measurable such that ∫∫ Q |u(t,x)|p(x) d(t,x) < ∞ } endowed with the norm ∥u∥Lp(.)(QT ) := inf { λ > 0, ∫∫ QT ∣∣∣∣u(t,x)λ ∣∣∣∣p(x) d(t,x) < 1 } , which share the same properties as Lp(.) (Ω) . For a measurable set U in Rd, meas(U) denotes its measure, Ci and C will denote various positive constants. For a Banach space X and a < b, Lq(a,b;X) is the space of measurable functions u : [a,b] → X such that (∫ b a ∥u∥qX dt )1 q := ∥u∥Lq(a,b;X) < ∞. (2.2) For a given constant k > 0 we define the cut-off function Tk : R → R by Tk(s) :=   s if |s| ≤ kk sign(s) if |s| > k with sign(s) :=   1 if s > 0 0 if s = 0 −1 if s < 0. Let Jk : R → R+ defined by Jk(x) = ∫ x 0 Tk(s)ds (Jk is a primitive of Tk). We have (see [15])〈 ∂v ∂t ,Tk(s) 〉 = d dt (∫ Ω Jk(v)dx ) in L1(]0,T[) 390 U. Traoré CUBO 23, 3 (2021) which implies that ∫ t 0 〈 ∂v ∂t ,Tk(s) 〉 = ∫ Ω J(v(t))dx − ∫ Ω J(v(0))dx For all u ∈ W1,p(.) (Ω) we denote by τ (u) the trace of u on ∂Ω in the usual sense. In the sequel, we will identify at the boundary, u and τ (u) . Set T 1,p(.) (Ω) = { u : Ω → R, measurable such that Tk (u) ∈ W1,p(.) (Ω) , for any k > 0 } . Proposition 2.4 (see [8]). Let u ∈ T 1,p(.) (Ω) . Then there exists a unique measurable function v : Ω → RN such that ∇Tk (u) = vχ{|u| 0. The function v is denoted by ∇u. Moreover, if u ∈ W1,p(.) (Ω) then v ∈ ( Lp(.) (Ω) )N and v = ∇u in the usual sense. We denote by T 1,p(.)tr (Ω) (cf. [4, 5, 18, 19]) the set of functions u ∈ T 1,p(.) (Ω) such that there exists a sequence (un)n∈N ⊂ W 1,p(.) (Ω) satisfying the following conditions: i) un → u a.e. in Ω. ii) ∇Tk (un) → ∇Tk (u) in ( L1 (Ω) )N for any k > 0. iii) There exists a measurable function v on ∂Ω, such that un → v a.e. on ∂Ω. The function v is the trace of u in the generalized sense introduced in [4, 5]. In the sequel, the trace of u ∈ T 1,p(.)tr (Ω) on ∂Ω will be denoted by tr (u) . If u ∈ W1,p(.) (Ω) , tr (u) coincides with τ (u) in the usual sense. Moreover u ∈ T 1,p(.)tr (Ω) and for every k > 0, τ (Tk (u)) = Tk (tr (u)) and if φ ∈ W1,p(.) (Ω) ∩ L∞ (Ω) then (u − φ) ∈ T 1,p(.)tr (Ω) and tr (u − φ) = tr (u) − tr (φ) . 3 The semi-discrete problem In this section, we study the Euler forward scheme associated with the problem (P): (Pn)   Un − τdiv a(x,∇Un) + τb(Un) = τfn + Un−1 in Ω a(x,∇Un) .η = 0 on ∂Ω, U0 = u0 in Ω where Nτ = T, 0 < τ < 1, 1 ≤ n ≤ N and fn(.) = 1 τ ∫ nτ (n−1)τ f(s, .)ds in Ω. CUBO 23, 3 (2021) Entropy solutions for nonlinear parabolic problems with... 391 Definition 3.1. An entropy solution to the discretized problems (Pn) is a sequence (Un)0≤n≤N such that U0 = u0 ∈ L1 (Ω) and Un is defined by induction as an entropy solution to the problem  Un − τdiv a(x,∇Un) + τb(Un) = τfn + Un−1 in Ω a(x,∇Un) .η = 0 on ∂Ω i.e. Un ∈ T 1,p(.)tr (Ω), b(Un) ∈ L1(Ω), and for every k > 0 τ ∫ Ω a(x,∇Un).∇Tk(Un −φ)dx+ ∫ Ω (τb(Un) +Un)Tk(U n −φ)dx ≤ ∫ Ω (τfn +U n−1)Tk(U n −φ)dx (3.1) for all φ ∈ W1,p(.)(Ω) ∩ L∞(Ω). We have the following result Lemma 3.2. Let hypotheses (1.3) − (1.5) be satisfied. If (Un)0≤n≤N is an entropy solution of problems (Pn), then Un ∈ L1(Ω) for all n = 1, . . . ,N. Proof. For n = 1, we take φ = 0 in (3.1), to get, τ ∫ Ω a(x,∇U1).∇Tk(U1)dx + ∫ Ω (τb(U1) + U1)Tk(U 1)dx ≤ ∫ Ω (τf1 + u0)Tk(U 1)dx, which is equivalent to τ ∫ Ω a(x,∇Tk(U1))∇Tk(U1)dx + ∫ Ω τb(U1)Tk(U 1)dx + ∫ Ω U1Tk(U 1)dx ≤ ∫ Ω (τf1 + u0)Tk(U 1)dx, (3.2) By the assumption (1.5) and the properties of the function b, we have τ ∫ Ω a(x,∇Tk(U1))∇Tk(U1)dx + ∫ Ω τb(U1)Tk(U 1)dx ≥ 0, then it follows that ∫ Ω U1Tk(U 1)dx ≤ kτ ∥f1∥1 + k ∥u0∥1 . Since N∑ n=1 τ ∥fn∥1 ≤ ∥f∥1 . Then, it follows that ∫ Ω U1Tk(U 1)dx ≤ k(∥f∥1 + ∥u0∥1). (3.3) Since lim k→0 U1 Tk(U 1) k = |U1|. Then dividing (3.3) by k and letting k → 0; we deduce by Fatou’s lemma that∥∥U1∥∥ 1 ≤ (∥f∥1 + ∥u0∥1) (3.4) 392 U. Traoré CUBO 23, 3 (2021) Theorem 3.3. Let hypotheses (1.3) − (1.5) be satisfied. Then for all N ∈ N, the problems (Pn) have unique entropy solution Un ∈ T 1,p(.)tr (Ω) ∩ L1(Ω) for all n = 1, . . . ,N. Proof. The problem (P1) can be rewritten in the following form −τdiva(x,∇u) + b(u) = F1 in Ω a(x,∇u).η = 0 on ∂Ω with b(s) := τb(s) + s, F1 := τf1 + u0. From the assumption (H2), we have F1 ∈ L1(Ω), and using the properties of b, we obtain b is a continuous, nondecreasing function, surjective such that b(0) = 0. Hence, using [9, Theorem 4.3], we have the existence of unique entropy solution U1 ∈ T 1,p(.)tr (Ω), b ( U1 ) ∈ L1(Ω). Thanks to Lemma 3.2, by induction, we deduce that for n = 2, . . . ,N, the problem u − τdiva(x,∇u) + τα(u) = τfn + Un−1 in Ω a(x,∇u) .η = 0 on ∂Ω, has an unique entropy solution Un ∈ T 1,p(.)tr (Ω) ∩ L1(Ω), b(Un) ∈ L1(Ω). 4 Stability This section is devoted to the a priori estimates for the discrete entropy solution (Un)1≤n≤N. These result are essentials for the study of the convergence of the Euler forward scheme. Theorem 4.1. Let hypotheses (1.3)−(1.5) be satisfied. Then there exist positive constants C(u0,f), C(u0,f,Ω) depending on the data but not on N such that for all n = 1, . . . ,N, we have 1. ∥Un∥1 ≤ C(u0,f) 2. τ ∑n i=1 ∥∥b(Ui)∥∥ 1 ≤ C(u0,f) 3. ∑n i=1 ∥∥Ui − Ui−1∥∥ 1 ≤ C(,u0,f) 4. τ ∑n i=1 ρp(.)(∇Tk(U i)) ≤ kC(u0,f) 5. τ ∑n i=1 ∫ {|Ui|≤k} |∇U i|p−dx ≤ kC(u0,f,Ω) Proof. 1 and 2. For φ = 0 as a test function in (3.1), we have τ k ∫ Ω a(x,∇Tk(Ui))∇Tk(Ui)dx + ∫ Ω Ui Tk(U i) k dx + ∫ Ω τb(Ui) Tk(U i) k dx ≤ τ ∥fi∥1 + ∥∥Ui−1∥∥ 1 dx. CUBO 23, 3 (2021) Entropy solutions for nonlinear parabolic problems with... 393 Since ∫ Ω a(x,∇Tk(Ui))∇Tk(Ui)dx ≥ 0. Then, it follows that∫ Ω Ui Tk(U i) k dx + ∫ Ω τb(Ui) Tk(U i) k dx ≤ τ ∥fi∥1 + ∥∥Ui−1∥∥ 1 . Then letting k → 0 and using Fatou’s lemma, we deduce that ∥∥Ui∥∥ 1 + τ ∥∥b(Ui)∥∥ 1 ≤ τ ∥fi∥1 + ∥∥Ui−1∥∥ 1 . (4.1) Now, we sum (4.1) from i = 1 to n to obtain ∥Un∥1 + τ n∑ i=1 ∥∥b(Ui)∥∥ 1 ≤ ∥f∥1 + ∥u0∥1 (4.2) which give, the inequalities 1 and 2. 3. For k ≥ 1, we take φ = Th(Ui −sign(Ui −Ui−1)), (h > 1) as a test function in (3.1), then letting h → ∞, for k ≥ 1, we obtain, τ lim h→∞ I(k,h) + ∥∥Ui − Ui−1∥∥ 1 ≤ τ ( ∥fi∥1 + ∥∥b(Ui)∥∥ 1 ) where I(k,h) := ∫ Ω a(x,∇Ui)∇Tk(Ui − Th(Ui − sign(Ui − Ui−1)))dx = ∫ Ωk,h∩Ω(k) a(x,∇Ui)∇Uidx and Ωk,h := { |Ui − Th(Ui − sign(Ui − Ui−1))| ≤ k } Ω(k) = { |Ui − sign(Ui − Ui−1)| > h } . Then by the hypothesis (1.3) , we have lim h→∞ I(k,h) ≥ 0. Then, it follows that ∥∥Ui − Ui−1∥∥ 1 ≤ kτ ( ∥fi∥1 + ∥∥b(Ui)∥∥ 1 ) . (4.3) Then, summing (4.3) from i = 1 to n and by the stability result 2, we obtain the stability result 3. 4. We take φ = 0 as a test function in 3.1 to get τ (∫ Ω |a(x,∇Tk(Ui))∇Tk(Ui)dx ) ≤ kτ(∥fi∥1 + ∥∥b(Ui)∥∥ 1 ) + k ∥∥Ui − Ui−1∥∥ 1 . 394 U. Traoré CUBO 23, 3 (2021) Therefore, using the assumption (1.5) it follows that τρp(x)(∇Tk(Ui)) ≤ C3[kτ(∥fi∥1 + ∥∥b(Ui)∥∥ 1 ) + k ∥∥Ui − Ui−1∥∥ 1 ]. (4.4) Now, summing (4.4) from i = 1 to n and using the stability results 1, 2, 3, we get τ n∑ i=1 ρp(x)(∇Tk(Ui)) ≤ C3k [ ∥f∥1 + τ n∑ i=1 ∥∥b(Ui)∥∥ 1 + n∑ i=1 ∥∥Ui − Ui−1∥∥ 1 ] ≤ kC(f,u0). (4.5) 5. According to (4.5), we get from the above estimate τ n∑ i=1 ∫ {|Ui|≤k} |∇Ui|p(x)dx ≤ kC(u0,f). (4.6) Now, note that∫ {|Ui|≤k} |∇Ui|p−dx = ∫ {|Ui|≤k, |∇Ui|> 1N } |∇Ui|p−dx + ∫ {|Ui|≤k |∇Ui|≤ 1N } |∇Ui|p−dx ≤ ∫ {|Ui|≤k, |∇Ui|> 1N } |∇Ui|p−dx + 1 N meas(Ω) ≤ ∫ {|Ui|≤k} |∇Ui|p(x)dx + 1 N meas(Ω). By the inequalities above, thanks to (4.6), we obtain τ n∑ i=1 ∫ {|Ui|≤k} |∇Ui|p−dx ≤ kC(u0,f) + n N meas(Ω) ≤ kC(u0,f) + meas(Ω) ≤ k(C(u0,f) + meas(Ω)) (4.7) for all k ≥ 1. 5 Convergence and existence result In this section, we prove the existence of an entropy solution of problem (P). First of all, we introduce the appropriate spaces for the entropy formulation of the nonlinear parabolic problem (P). We define the space: V = { v ∈ Lp−(0,T;W1,p(·)(Ω)) : ∇v ∈ (Lp(·)(QT ))d } , and T 1,p(·)(QT ) = { u : Ω × (0,T]; measurable | Tk(u) ∈ Lp−(0,T;W1,p(·)(Ω)) with ∇Tk(u) ∈ (Lp(·)(QT ))d for every k > 0 } . CUBO 23, 3 (2021) Entropy solutions for nonlinear parabolic problems with... 395 Definition 5.1. An entropy solution to problem (P) is a function u ∈ T 1,p(·)(QT )∩C(0,T;L1(Ω)) such that and for all k > 0 we have ∫ t 0 ∫ Ω a(x,∇u)∇Tk(u − φ) + ∫ t 0 ∫ Ω b(u)Tk(u − φ) ≤ − ∫ t 0 〈 ∂φ ∂s ,Tk(u − φ) 〉 + ∫ Ω Jk(u(0) − φ(0)) − ∫ Ω Jk(u(t) − φ(t)) + ∫ t 0 ∫ Ω fTk(u − φ) for all φ ∈ L∞(Q) ∩ V ∩ W1,1(0,T;L1(Ω)) and t ∈ [0,T]. Our main result is Theorem 5.2. Let hypotheses (H1)−(H3) be satisfied. Then the nonlinear parabolic problem (P) has an entropy solution. Proof. The proof is divided into two steps Step 1: The Rothe function. We introduce a piecewise linear extension:   uN(0) := u0, uN(t) := Un−1 + (Un − Un−1)t−t n−1 τ (5.1) for all t ∈]tn−1, tn], n = 1, · · · ,N, in Ω and a piecewise constant function   uN(0) := u0, uN(t) := Un, ∀t ∈]tn−1, tn], n = 1, · · · ,N, in Ω, (5.2) where tn := nτ and (Un)1≤n≤N an entropy solution of (Pn). By Theorem 3.3, for any N ∈ N; the solution (Un)N∈N of problems (Pn) is unique. Thus, uN and uN are uniquely defined. Consequently, by the Theorem 4.1, we deduce the existence of a constant C(T,u0,f) not depending on N such that for all N ∈ N, we have ∥∥uN − uN∥∥ L1(QT ) ≤ 1 N C(T,u0,f)∥∥uN∥∥ L1(QT ) ≤ C(T,u0,f)∥∥uN∥∥ L1(QT ) ≤ C(T,u0,f) (5.3)∥∥∥∥∂uN∂t ∥∥∥∥ L1(QT ) ≤ C(T,u0,f)∥∥b(uN)∥∥ L1(QT ) ≤ C(T,u0,f) 396 U. Traoré CUBO 23, 3 (2021) Moreover combining Proposition 2.1 and Young inequality, we get ∥∥∇Tk(UN)∥∥p−p(x) ≤ max { ρp(x)(∇Tk(UN)),ρ1,p(x)(∇TkUN) p− p+ } ≤ ρp(x)(∇Tk(UN)) + ρ1,p(x)(∇TkUN) p− p+ ≤ ρp(x)(∇Tk(UN)) + p− p+ ρp(x)(∇Tk(UN)) + 1 − p− p+ (5.4) ≤ 2ρp(x)(∇Tk(UN)) + 1. Thanks to Poincaré-Wirtinger inequality, we have ∥∥Tk(UN)∥∥p(x) ≤ Cmeas(Ω)∥∥∇Tk(UN)∥∥p(x) + k ∥1∥p(x) , which implies that ∥∥Tk(UN)∥∥p−p(x) ≤ 2p−−1 ((Cmeas(Ω))p− ∥∥∇Tk(UN)∥∥p−p(x) + kp− ∥1∥p−p(x)) , (5.5) then it follows that, ∥∥Tk(UN)∥∥p−1,p(x) ≤ 2p−−1 [(Cmeas(Ω))p− (2ρp(x)(∇Tk(UN)) + 1) + kp− ∥1∥p−p(x)] (5.6) +2ρp(x)(∇Tk(UN)) + 1. Therefore, ∫ T 0 ∥∥Tk(UN)∥∥p−1,p(.) dt ≤ 2p−−1 [ (Cmeas(Ω))p− ( 2 ∫ T 0 ρp(.)(∇Tk(UN))dt + T ) +Tkp− ∥1∥p− p(x) N∑] + 2 ∫ T 0 ρp(.)(∇Tk(UN))dt + T ≤ 2p−−1 [ (Cmeas(Ω))p− ( 2 N∑ n=1 ∫ nτ (n−1)τ ρp(.)(∇Tk(UN))dt + T ) +Tkp− ∥1∥p− p(.) N∑] + 2 N∑ n=1 ∫ nτ (n−1)τ ρp(.)(∇Tk(UN))dt + T (5.7) ≤ 2p−−1 [ (Cmeas(Ω))p− ( 2 N∑ n=1 τρp(.)(∇Tk(Un)) + T ) +Tkp− ∥1∥p− p(.) N∑] + 2 N∑ n=1 τρ1,p(.)(Tk(U n)) + T. Consequently from stability result 4 it follows that ∥∥Tk(uN)∥∥Lp− (0,T ;W 1,p(x)(Ω)) ≤ C(T,k,u0,f,p−). (5.8) Lemma 5.3. Let hypotheses (1.3) − (1.5) be satisfied. Then the sequence (uN)N∈N converges in measure and a.e. in QT . CUBO 23, 3 (2021) Entropy solutions for nonlinear parabolic problems with... 397 Proof. Let ε,r,k be positive numbers. For N,M ∈ N, we have the inclusion { |uN − uM| > r } ⊂ { |uN| > k } ∪ { |uM| > k } ∪ { |uN| ≤ k, |uM| ≤ k, |uN − uM| > r } . Firstly, we have meas { |uN| > k } ≤ 1 k ∥∥uN∥∥ L1(QT ) ≤ 1 k C(T,u0,f). (5.9) Similarly, we have meas { |uM| > k } ≤ 1 k ∥∥uN∥∥ L1(QT ) ≤ 1 k C(T,u0,f). (5.10) Therefore, for k large enough, we have meas( { |uM| > k } ∪ { |uM| > k } ) ≤ ε 2 . (5.11) Secondly, by the Proposition 2.1 and Young inequality, we have ∥∥∥∇Tk(uN )∥∥∥ Lp(.)(QT ) ≤ max {(∫ T 0 ∫ Ω |∇Tk(uN )|p(x)dxdt ) 1 p− ; (∫ T 0 ∫ Ω |∇Tk(uN )|p(x)dxdt ) 1 p+ } ≤ (∫ T 0 ∫ Ω |∇Tk(uN )|p(x)dxdt ) 1 p− + (∫ T 0 ∫ Ω |∇Tk(uN )|p(x)dxdt ) 1 p+ and also, we have∫ T 0 ∫ Ω |∇Tk(uN )|p(x)dxdt = ∫ T 0 ρp(.)(Tk(∇u N )) = N∑ n=1 ∫ nτ (n−1)τ ρp(.)(∇Tk(U N ))dt ≤ N∑ n=1 τρp(.)(∇Tk(U n )). Therefore, using the stability result 4 and Proposition 2.1, it follows∥∥∥∇Tk(uN )∥∥∥ (Lp(x)(QT )) d ≤ (kC(u0, f)) 1 p− + (kC(u0, f)) 1 p+ . (5.12) Since by the Poincaré-Wirtinger inequality, we have∥∥∥Tk(uN )∥∥∥ Lp(x)(QT ) ≤ Cmeas(Ω) ∥∥∥∇Tk(uN )∥∥∥ Lp(x)(QT ) + k ∥1∥ Lp(x)(QT ) , then by (5.12), we get∥∥∥Tk(uN )∥∥∥ Lp(x)(QT ) ≤ Cmeas(Ω) ( (kC(u0, f)) 1 p− + (kC(u0, f)) 1 p+ ) + k ∥1∥ |Lp(x)(QT ). (5.13) Hence, the sequences (Tk(uN ))N∈N are bounded in Lp(.)(QT ). Then, there exists a subsequence, still denoted by (Tk(uN ))N∈N, that is a Cauchy sequence in Lp(.)(QT ) and in measure. Thus, there exists N0 ∈ N such that for all N, M ≥ N0, we have meas ({ |uN | ≤ k, |uM | ≤ k, |uN − uM | > r }) < ε 2 . (5.14) Then, by (5.11) and (5.14), (uN )N∈N converges in measure. Therefore there exists an element u ∈ M(QT ) such that u N → u a.e. in QT . 398 U. Traoré CUBO 23, 3 (2021) Now, by (5.12) (∇Tk(uN))N∈N is uniformly bounded in, (Lp(.)(QT ))d. (5.15) Hence there exists a subsequence, still denoted by (∇Tk(uN))N∈N converges weakly to an element V in Lp(.)(QT ). Since Tk(u N) converges weakly to Tk(u) in Lp(.)(QT ). Then ∇Tk(uN) converges weakly to ∇Tk(u) in (Lp(.)(QT ))d. (5.16) and by (5.8) we conclude that Tk(u) ∈ Lp−(0,T;W1,p(.)(Ω)) for all k > 0. In the sequel, we need the following Lemma (see [22]). Lemma 5.4. Let (vn)n≥1 be a sequence of measurable functions in Ω. If (vn)n≥1 converges in measure to v and is uniformly bounded in Lp(.)(Ω) for some 1 << p(.) ∈ L∞(Ω), then (vn)n≥1 → v strongly in L1(Ω). Now, we have the following result Lemma 5.5. Let hypotheses (1.3) − (1.5) be satisfied. Then (i) (∇Tk(uN))N∈N converges in measure to ∇Tk(u); (ii) (a(x,Tk(uN)))N∈N converges strongly to a(x,∇Tk(u)) in (L1(QT ))d and weakly in (Lp ′(.) (QT )) d. Proof. (i) Let h ≥ 1, from the Hölder type inequality, we have meas { |∇Tk(uN) − ∇Tk(u)| > h } ≤ 1 h ∫ QT |∇Tk(uN) − ∇Tk(u)|dxds ≤ 1 h ( 1 p− + 1 p+ )∥∥∇Tk(uN) − ∇Tk(u)∥∥p(.) ∥1∥p′(.) (5.17) ≤ 1 h ( 1 p− + 1 (p−)′ )(∥∥∇Tk(uN)∥∥p(.) + ∥∇Tk(u)∥p(.))∥1∥p′(.) . So by (5.15), meas { |∇Tk(uN) − ∇Tk(u)| > h } → 0 as h → ∞ for any fixed k > 0 and the proof of (i) is complete. As a consequence of (i), up to a subsequence, we can assume that ∇Tk(uN) → ∇Tk(u) a.e in QT . (ii) Since a(x,ξ) is continuous with respect to ξ ∈ RN, then by (i) we deduce that (a(x,Tk(u N)))N∈N converges in measure to a(x,∇Tk(u)) and a.e. in QT . CUBO 23, 3 (2021) Entropy solutions for nonlinear parabolic problems with... 399 Moreover, using the hypotheses (1.3) and (5.12) one shows that (a(x,∇Tk(uN)))N∈N is uniformly bounded in (Lp ′(.)(QT )) d. Consequently, in the one part thanks to Lemma 5.4 it follows that (a(x,Tk(uN)))N∈N → a(x,∇Tk(u)) strongly in ( L1(QT ) )d . On the other part, we can extract a subsequence still denoted by (a(x,∇Tk(uN)))N∈N such that a(x,∇Tk(uN)) ⇀ ζk in (Lp ′(.)(QT )) d. Since each of the convergence implies the weak L1- convergence, ζk can be identified with a(x,∇Tk(u)), thus a(x,∇Tk(u)) ∈ (Lp ′(.)(QT )) d. This com- pletes the proof. Lemma 5.6. (uN)N∈N converges a.e. in ΣT . Proof. We know that the trace operator is compact from W1,1 (Ω) into L1 (∂Ω) , then there exists a constant C such that∫ T 0 ∥∥Tk(uN(t)) − Tk(u(t))∥∥L1(∂Ω) dt ≤ C ∫ T 0 ∥∥Tk(uN(t)) − Tk(u(t))∥∥W 1,1(Ω) dt. Since W1,p(.) (Ω) ↪→ W1,1 (Ω) for all p(.) ≥ 1, then by the Hölder type inequality, we deduce that Tk(u N(t)) → Tk(u) in L1 (ΣT ) and a.e. on ΣT . So, there exists A ⊂ ΣT such that Tk(uN(t)) converges to Tk(u(t)) on ΣT \ A with meas(A) = 0. For every k > 0, we set Ak = {(t,x) ∈ ΣT : |Tk(u(t))| < k} , and B = ΣT \ ∞⋃ k=1 Ak. We have, by Hölder’s inequality meas (B) ≤ 1 k ∫ B |Tk (u)|dσ ≤ 1 k ∫ T 0 ∥Tk(u)∥L1(∂Ω) dt ≤ 1 k ∫ T 0 ∥Tk (u)∥W 1,1(Ω) dt (5.18) ≤ 1 k ∫ T 0 ∫ Ω (|Tk (u) | + |∇Tk (u) |) ≤ 1 k ( 1 p− + 1 (p−)′ ) ∥1∥Lp′(x)(QT ) ( ∥Tk (u)∥Lp(x)(QT ) + ∥∇Tk (u)∥(Lp(x)(QT ))d ) . Thanks to (5.12) and (5.13), for all k > 0, we have ∥∥Tk (uN)∥∥Lp(x)(Q) + ∥∥∇Tk (uN)∥∥(Lp(x)(Q))d ≤ 2(k 1p− + k 1p+ ) (5.19) ×max { C(u0,p+,f,g) 1 p+ ,C(u0,p+,f,g) 1 p+ } 400 U. Traoré CUBO 23, 3 (2021) We now use the Fatou’s lemma in (5.19) to get ∥Tk (u)∥Lp(x)(Q) + ∥∇Tk (u)∥(Lp(x)(Q))d ≤ 2 ( k 1 p− + k 1 p+ ) ×max { C(u0,p+,f,g) 1 p+ ,C(u0,p+,f,g) 1 p+ } , and (5.18) becomes meas (B) ≤ 2 ( 1 k 1− 1 p− + 1 k 1− 1 p+ ) max { C(u0,p+,f,g) 1 p+ ,C(u0,p+,f,g) 1 p+ } . (5.20) Therefore, we get by letting k → ∞ in (5.20) that meas (B) = 0. Let us now define on ∂Ω, the function v by v(t,x) = Tk(u(t))(x) if (x,t) ∈ Ak. We take (x,t) ∈ ΣT \ (A ∪ B); then there exists k > 0 such that (x,t) ∈ Ak and we have uN (t,x) − v (t,x) = (uN (t,x) − Tk(uN(t))(x)) + (Tk(uN(t))(x) − Tk(u(t))(x)). Since (x,t) ∈ Ak, we have ∣∣Tk(uN(t))(x)∣∣ < k from which we deduce that Tk(uN(t))(x) = uN (t,x) . Therefore, uN (t,x) − v (t,x) = (Tk(uN(t))(x) − Tk(u(t))(x)) → 0, as N → ∞. This means that ( uN ) converges to v a.e. on ΣT . Lemma 5.7. The sequence (uN)N∈N converges to u in C(0,T;L1(Ω)). Proof. Let (tn = nτN)Nn=1 and (t m = mτM) M n=1 be two partitions of the interval [0,T] and let (uN(t),uN(t)), (uM(t);uM(t)); be the semi-discrete solutions defined by (5.1), (5.2) and corre- sponding to the respective partitions. Let φ ∈ L∞(Ω) ∩ V ∩ W1,1(0,T;L1(Ω)). We rewrite (3.1) in the forms ∫ t 0 〈 ∂uN ∂s ,Tk(u N − φ) 〉 ds + ∫ t 0 ∫ Ω a(x,∇uN).∇Tk(uN − φ)dxds + ∫ t 0 ∫ Ω b(uN)Tk(u N − φ)dxds ≤ ∫ t 0 ∫ Ω fNTk(u N − φ)dxds (5.21) and ∫ t 0 〈 ∂uM ∂s ,Tk(u M − φ) 〉 ds + ∫ t 0 ∫ Ω a(x,∇uM).∇Tk(uM − φ)dxds + ∫ t 0 ∫ Ω b(uM)Tk(u M − φ)dxds ≤ ∫ t 0 ∫ Ω fMTk(u M − φ)dxds (5.22) CUBO 23, 3 (2021) Entropy solutions for nonlinear parabolic problems with... 401 where fN(t,x) = fn(x) ∀t ∈]tn−1, tn] fM(t,x) = fm(x) ∀t ∈]tm−1, t m ] Let h > 1, in inequality (5.21) we take φ = Th(uM) and in inequality (5.22) we take φ = Th(uN). Summing both inequalities, we get, for k = 1,∫ t 0 〈 ∂(uN − uM) ∂s ,T1(u N − uM) 〉 ds + IN,M(h) + ∫ t 0 ∫ Ω b(uN)T1(u N − Th(uM))dxds + ∫ t 0 ∫ Ω b(uM)T1(u M − Th(uN))dxds ≤ ∫ t 0 〈 ∂(uN − uM) ∂s ,T1(u N − uM) 〉 − 〈 ∂uN ∂s ,T1(u N − Th(uM)) 〉 ds (5.23) − ∫ t 0 〈 ∂uM ∂s ,T1(u M − Th(uN)) 〉 ds + ∫ t 0 ∫ Ω [fNT1(u N − Th(uM)) + fMT1(uM − Th(uN))]dxds where IN,M(h) = ∫ t 0 ∫ Ω a(x,∇uN).∇T1(uN − Th(uM))dxds + ∫ t 0 ∫ Ω a(x,∇uM).∇T1(uM − Th(uN))dxds. We have∣∣∣∣ ∫ t 0 〈 ∂(uN − uM) ∂s ,T1(u N − uM) 〉 ds ∣∣∣∣ ≤ ∥∥∥∥∂(uN − uM)∂s ∥∥∥∥ L1(QT ) ∥∥T1(uN − uM)∥∥L∞(QT ) ≤ 2C(T,f,u0) ∥∥T1(uN − uM)∥∥L∞(QT ) . Since lim N,M→∞ ∥∥T1(uN − uM)∥∥L∞(QT ) = 0. Then it follows that lim h→∞ lim N,M→∞ ∫ t 0 〈 ∂(uN − uM) ∂s ,T1(u N − uM) 〉 ds = 0. (5.24) Similarly, we show that lim h→∞ lim N,M→∞ (∫ t 0 〈 ∂uN ∂s ,T1(u N − Th(uM)) 〉 + 〈 ∂uM ∂s ,T1(u M − Th(uN)) 〉 ds ) = 0 lim h→∞ lim N,M→∞ ∫ t 0 ∫ Ω [fNT1(u N − Th(uM)) + fMT1(uM − Th(uN))]dxds = 0 402 U. Traoré CUBO 23, 3 (2021) and lim h→∞ lim N,M→∞ ∫ t 0 ∫ Ω b(uN)T1(u N − Th(uM))dxds + ∫ t 0 ∫ Ω b(uM)T1(u M − Th(uN))dxds = 0. Then, letting N, M → ∞ and h → ∞, in (5.23)we get lim h→∞ lim N,M→∞ ∫ t 0 〈 ∂(uN − uM) ∂s ,T1(u N − uM) 〉 ds + lim h→∞ lim N,M→∞ IN,M(h) ≤ 0. (5.25) Since 〈 ∂v ∂t ,Tk(v) 〉 = d dt ∫ Ω Jk(v) in L1(]0,T[), inequality (5.25) becomes lim N,M→∞ ∫ Ω J1(u N(t) − uM(t))dx + lim h→∞ lim N,M→∞ IN,M(h) ≤ 0. (5.26) Now, we show that lim h→∞ lim N,M→∞ IN,M(h) ≥ 0. We consider the decomposition IN,M(h) = 4∑ i=1 Li(h), where Li(h) = ∫ t 0 ∫ Ωi(h) a(x,∇uN).∇T1(uN − Th(uM))dxds + ∫ t 0 ∫ Ωi(h) a(x,∇uM).∇T1(uM − Th(uN))dxds and Ω1(h) = { |uN| ≤ h, |uM| ≤ h } Ω2(h) = { |uN| ≤ h, |uM| > h } Ω3(h) = { |uN| > h, |uM| ≤ h } Ω4(h) = { |uN| > h, |uM| > h } . On the one hand, thanks to assumption (1.4) we have L1(h) = ∫ t 0 ∫ Ω11(h) [a(x,∇uN) − a(x,∇uM)].∇(uN − uM)dxds ≥ 0. Therefore lim h→∞ lim N,M→∞ L1(h) ≥ 0. On the other hand, we have L2(h) = ∫ t 0 ∫ Ω12(h) a(x,∇uN).∇uNdxds + ∫ t 0 ∫ Ω22(h) a(x,∇uM).∇(uM − uN)dxds ≥ − ∫ t 0 ∫ Ω22(h) a(x,∇uM).∇uNdxds, CUBO 23, 3 (2021) Entropy solutions for nonlinear parabolic problems with... 403 where Ω12(h) = { |uN| ≤ h, |uM| > h, |uN − hsign(uM)| ≤ 1 } , Ω22(h) = { |uN| ≤ h, |uM| > h, |uN − uM| ≤ 1 } . Now, taking φ = Th(uN) in (5.21), we deduce that lim h→∞ lim N→∞ ∫ t 0 ∫ {h≤|uN |≤h+k} a(x,∇uN).∇uN = 0. This implies lim h→∞ lim N→∞ ∫ t 0 ∫ {h≤|uN |≤h+k} |∇uN|p(x) = 0, k > 0. (5.27) By the Young inequality, we have∣∣∣∣∣ ∫ t 0 ∫ Ω22(h) a(x,∇uM).∇uNdxds ∣∣∣∣∣ ≤ ∫ t 0 ∫ Ω22(h) |∇uM|p(x)−1|∇uN|dxds ≤ ∫ t 0 ∫ {h≤|uM |≤h+1} 1 p′(x) |∇uM|p(x)dxds + ∫ t 0 ∫ {h−1≤|uN |≤h} 1 p(x) |∇uM|p(x)dxds ≤ ∫ t 0 ∫ {h≤|uM |≤h+1} 1 p′− |∇uM|p(x)dxds + ∫ t 0 ∫ {h−1≤|uN |≤h} 1 p− |∇uM|p(x)dxds. Thus (5.27) gives lim N,M→∞ ∫ t 0 ∫ t 0 ∫ Ω22(h) a(x,∇uM).∇uNdxds = 0, which implies that lim h→∞ lim N,M→∞ L2(h) ≥ 0. Similarly, we show that lim h→∞ lim N,M→∞ (L3(h) + L4(h)) ≥ 0. Therefore lim h→∞ lim N,M→∞ IN,M(h) ≥ 0. Thus (5.26) becomes lim N,M→∞ ∫ Ω J1(u N(t) − uM(t))dx = 0. (5.28) Since 1 2 ∫ {|uN −uM |≤1} |uN(t) − uM(t)|2dx + ∫ {|uN −uM |≥1} |uN(t) − uM(t)|dx ≤ ∫ Ω J1(u N(t) − uM(t)); 404 U. Traoré CUBO 23, 3 (2021) we have ∫ {|uN −uM |≥1} |uN(t) − uM(t)|dx = ∫ {|uN −uM |≤1} |uN(t) − uM(t)|dx + ∫ {|uN −uM |≥1} |uN(t) − uM(t)|dx ≤ CΩ (∫ {|uN −uM |≤1} |uN(t) − uM(t)|2dx )1 2 + ∫ {|uN −uM |≥1} |uN(t) − uM(t)|dx ≤ C2(Ω) (∫ Ω J1(u N(t) − uM(t))dx )1 2 + ∫ Ω J1(u N(t) − uM(t))dx. By (5.26), we deduce that (uN)N∈N is a Cauchy sequence in C(0,T;L1(Ω)). Hence (uN)N∈N converges to u in C(0,T;L1(Ω)). Step 2: Existence of entropy solution. Now, we prove that the limit function u is an entropy solution of the problem (P). Since uN(0) = U0 = u0 for all N ∈ N, we have u(0, .) = u0, and inequality (5.21) implies∫ t 0 〈 ∂uN ∂s ,Tk(u N − φ) − Tk(uN − φ) 〉 ds + ∫ t 0 ∫ Ω a(x,∇uN).∇Tk(uN − φ)dxds + ∫ t 0 ∫ Ω b(uN)Tk(u N − φ)dxds (5.29) ≤ ∫ t 0 〈 φ ∂s ,Tk(u N − φ) − Tk(uN − φ) 〉 ds + ∫ Ω Jk(u N(0) − φ(0))dx − ∫ Ω Jk(u N(t) − φ(t))dx + ∫ t 0 ∫ Ω fNTk(u N − φ)dxds. Let k = k + ∥φ∥∞ . Then∫ t 0 ∫ Ω a(x,∇uN).∇Tk(uN − φ)dxds = ∫ t 0 ∫ Ω a(x,∇Tk(u N)).∇Tk(Tk(u N) − φ)dxds = ∫ t 0 ∫ Ω [a(x,∇Tk(u N)).∇Tk(u N) −a(x,∇Tk(u N)).∇φ]1Q(N,k)dxds, where Q(N,k) = { |Tk(u N) − φ| ≤ k } . Thus, the inequality (5.29) becomes ∫ t 0 〈 ∂uN ∂s ,Tk(u N − φ) − Tk(uN − φ) 〉 ds − ∫ t 0 ∫ Ω a(x,∇Tk(u N)).∇φ1Q(N,k) + ∫ t 0 ∫ Ω [a(x,∇Tk(u N)).∇Tk(u N)]1Q(N,k) + ∫ t 0 ∫ Ω b(uN)Tk(u N − φ)dxds (5.30) ≤ − ∫ t 0 〈 ∂φ ∂s ,Tk(u N − φ) 〉 ds + ∫ Ω Jk(u N(0) − φ(0))dx − ∫ Ω Jk(u N(t) − φ(t))dx + ∫ t 0 ∫ Ω fNTk(u N − φ)dxds. CUBO 23, 3 (2021) Entropy solutions for nonlinear parabolic problems with... 405 On the one hand, thanks to Lemma 5.5 a(x,∇Tk(u N)) converges weakly to a(x,∇Tk(u)) in( Lp ′(.) (Ω) )d . Therefore, lim N→∞ ∫ t 0 ∫ Ω a(x,∇Tk(u N)).∇φ1Q(N,k) = ∫ t 0 ∫ Ω a(x,∇Tk(u)).∇φ1Q(k), (5.31) where Q(k) = { |Tk(u) − φ| ≤ k } . Moreover, a(x,∇Tk(u N)).∇Tk(u N) is nonnegative and converges a.e. in QT to a(x,∇Tk(u)).∇Tk(u) (see Lemma 5.5). Therefore by Fatou’s lemma, we obtain lim inf N→∞ ∫ t 0 ∫ t 0 ∫ Ω [a(x,∇Tk(u N)).∇Tk(u N)]1Q(N,k)dxds ≥ ∫ t 0 ∫ t 0 ∫ Ω [a(x,∇Tk(u)).∇Tk(u)]1Q(k)dxds. For the fourth term of (5.30), we have∫ t 0 ∫ Ω b(uN)Tk(u N −φ)dxds = ∫ t 0 ∫ Ω (b(uN)−b(φ))Tk(uN −φ)dxds+ ∫ t 0 ∫ Ω b(φ)Tk(u N −φ)dxds. The quantity (b(uN) − b(φ))Tk(uN − φ) is is nonnegative and since for all s ∈ R, s 7→ b(s) is continuous, we obtain (b(uN) − b(φ))Tk(uN − φ) → (b(u) − b(φ))Tk(uN − φ) a.e. in Ω. Then, it follows by Fatou’s lemma that lim inf N→∞ ∫ t 0 ∫ Ω (b(uN) − b(φ))Tk(uN − φ)dxds ≥ ∫ t 0 ∫ Ω (b(u) − b(φ))Tk(u − φ)dxds. We have b(φ) ∈ L1(QT ). Since Tk(uN − φ) converges weakly−∗ to Tk(u − φ) and b(φ) ∈ L1(QT ), it follows that lim inf N→∞ ∫ t 0 ∫ Ω b(φ)Tk(u N − φ)dxds ≥ ∫ t 0 ∫ Ω b(φ)Tk(u − φ)dxds. By Lemma 5.7 , we deduce that uN(t) → u(t) in L1(Ω) for all t ∈ [0,T], which implies that∫ Ω Jk(u N(t) − φ(t))dx → ∫ Ω Jk(u(t) − φ(t))dx ∀t ∈ [0,T]. (5.32) We follow the method used in the proof of equality (5.24) to show that lim N→∞ ∫ t 0 〈 ∂uN ∂s ,Tk(u N − φ) − Tk(uN − φ) 〉 ds = 0. (5.33) Finally, letting N → ∞ and using the above results, the continuity of b and the facts that fN → f in L1(QT ), Tk(u N − φ) → Tk(u − φ) in L ∞(QT ), we deduce that u is an entropy solution of the nonlinear parabolic problem (P). 406 U. Traoré CUBO 23, 3 (2021) 6 Conclusion In this paper we prove the existence and uniqueness of an entropy solution for a non- linear parabolic equation with homogeneous Neumann boundary conditions and initial data in L1 by a time discretization technique. This method turns out to be better suited for the study of parabolic problems under Neumann- type boundary conditions. However, this technique assumes that the associated elliptic problem is well posed. This study opens up new perspectives, we could always in the context of the Sobolev space with variable exponents look at the problem with measure data or consider the function b as maximal monotone graph. CUBO 23, 3 (2021) Entropy solutions for nonlinear parabolic problems with... 407 References [1] M. Abdellaoui, E. Azroul, S. Ouaro and U. Traoré, “Nonlinear parabolic capacity and renor- malized solutions for PDEs with diffuse measure data and variable exponent”, An. Univ. Craiova Ser. Mat. Inform., vol. 46, no. 2, pp. 269–297, 2019. [2] M. Abdellaoui and E. Azroul, “Nonlinear parabolic equations with data soft measure data”, J. Nonlinear Evol. Equ. Appl., vol. 2019, no. 7, pp. 115–133, 2020. [3] B. Andreianov, M. Bendahmane, K. H. Karlsenc and S. Ouaro, “Well-posedness results for triply nonlinear degenerate parabolic equations.”, vol. 247, no. 1, pp. 277–302, 2009. [4] F. Andreu, J. M. Mazón, S. Segura de Léon and J. Toledo, “Existence and uniqueness for a degenerate parabolic equation with L1 data”, Trans. Amer. Math. Soc., vol. 351, no. 1, pp. 285–306, 1999. [5] F. Andreu, N. Igbida, J. M. Mazón and J. Toledo, “L1 existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions”, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol. 20, no. 1, pp. 61–89, 2017. [6] M. Bendahmane, P. Wittbold and A. Zimmermann, “Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1 data”, J. Differential Equations, vol. 249, no. 6, pp. 1483–1515, 2010. [7] F. Benzekri and A. El Hachimi, “Doubly nonlinear parabolic equations related to the p- Laplacian operator: Semi-discretization”, Electron. J. Differential Equations, vol. 2003, no. 113, pp. 1–14, 2003. [8] P. Bénilan, L. Boccardo, T. Gallouët, M. Pierre and J. L. Vazquez, “An L1 theory of existence and uniqueness of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), vol. 22, no. 2, pp. 214–273, 1995. [9] B. K. Bonzy, I. Nyanquini and S. Ouaro, “Existence and uniqueness of weak and entropy solutions for homogeneous Neumann boundary-value problems involving variable exponents”, Electron. J. Differential Equations, vol. 2012, no. 12, pp. 1–19, 2012. [10] A. Dall’Aglio, “Approximated solutions of equations with L1 data. Application to the H- convergence of quasi-linear parabolic equations”, Ann. Mat. Pura Appl.(4), vol. 170, pp. 207– 240, 1996. [11] L. Diening, P. Harjulehto, P. Hästö and M. R�užička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, New York: Springer-Verlag Heidelberg, 2011. 408 U. Traoré CUBO 23, 3 (2021) [12] R. J. DiPerna and P.-L. Lions, “On the Cauchy problem for Boltzmann equations: global existence and weak stability”, Ann. of Math. (2), vol. 130, no. 2, pp. 321–366, 1989. [13] A. Eden, B. Michaux and J.-M. Rakotoson, “Semi-discretized nonlinear evolution equations as discrete dynamical systems and error analysis”, Indiana Univ. Math. J., vol. 39, no. 3, pp. 737–783, 1990. [14] X. L. Fan and D. Zhao, “On the generalized Orlicz-Sobolev space Wk,p(x)(Ω)”, Journal of Gansu Education College, vol. 12, no. 1, pp. 1–6, 1998. [15] G. Gagneux and M. Madaune-Tort, Analyse mathématique de modèles non linéaires de l’ingénierie pétrolière, Mathématiques et Applications 22, Berlin: Springer, 1996. [16] A. El Hachimi and M. R. Sidi Ammi, “Thermistor problem: a nonlocal parabolic problem”, in Differential Equations and Mechanics. Electron. J. Diff. Eqns., vol. 2004, no. 11, 2004, pp. 117–128. [17] A. El Hachimi, J. Igbida and A. Jamea, “Existence result for nonlinear parabolic problems with L1-data”, Appl. Math. (Warsaw), vol. 37, no. 4, pp. 483–508, 2010. [18] S. Ouaro, S. Soma, “Weak and entropy solutions to nonlinear Neumann boundary value- problems with variable exponents”, Complex Var. Elliptic Equ., vol. 56, nos. 7-9, pp. 829–851, 2011. [19] S. Ouaro, A. Tchousso, “Well-posedness result for a nonlinear elliptic problem involving vari- able exponent and Robin type boundary condition”, Afr. Diaspora J. Math., vol. 11, no. 2, pp. 36–64, 2011. [20] S. Ouaro and A. Ouédraogo, “Nonlinear parabolic problems with variable exponent and L1- data”, Electron. J. Differential Equations, vol. 2017, no. 32, pp. 1–32, 2017. [21] S. Ouaro and U. Traoré, “Nonlinear parabolic problem with variable exponent and measure data”, J. Nonlinear Evol. Equ. Appl., vol. 2020, no. 5, pp. 65–93, 2020. [22] M. Sanchón and J. M. Urbano, “Entropy solution for p(x)-Laplace equation”, Trans. Amer. Math. Soc., vol. 361, no. 2, pp. 6387–6404, 2009. [23] H. Redwane, “Nonlinear parabolic equation with variable exponents and diffuse measure data”, J. Nonl. Evol. Equ. Appl., vol. 2019, no. 6, pp. 95–114, 2020. [24] M. R�užička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, vol. 1748, Berlin: Springer-Verlag, 2000. CUBO 23, 3 (2021) Entropy solutions for nonlinear parabolic problems with... 409 [25] L.-L. Wang, Y.-H. Fan, W.-G. Ge, “Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator”, Nonlinear Anal., vol. 71, no. 9, pp. 4259–4270, 2009. [26] J. Yao, “Solutions for Neumann boundary value problems involving p(x)-Laplace operator”, Nonlinear Anal., vol. 68, no. 5, pp. 1271–1283, 2008. [27] C. Zhang, S. Zhou, “Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and L1 data”, Journal of Differential Equations, vol. 248, no. 6, pp. 1376–1400, 2010. [28] D. Zhao, W. J. Qiang, X. L. Fan, “On generalized Orlicz spaces Lp(x)(Ω)”, J. Gansu Sci., vol. 9, no. 2, pp. 1–7, 1997 [in Chinese]. [29] A. Zimmermann, “Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1 data”, Ph. D. Thesis, T. U. Berlin, 2010. Introduction and main result Preliminaries The semi-discrete problem Stability Convergence and existence result Conclusion