CUBO, A Mathematical Journal Vol. 24, no. 02, pp. 239–261, August 2022 DOI: 10.56754/0719-0646.2402.0239 On an a priori L∞ estimate for a class of Monge-Ampère type equations on compact almost Hermitian manifolds Masaya Kawamura 1, B 1Department of General Education, National Institute of Technology, Kagawa College 355, Chokushi-cho, Takamatsu, Kagawa, Japan, 761-8058. kawamura-m@t.kagawa-nct.ac.jp B ABSTRACT We investigate Monge-Ampère type equations on almost Hermitian manifolds and show an a priori L∞ estimate for a smooth solution of these equations. RESUMEN Investigamos ecuaciones de tipo Monge-Ampère en va- riedades casi Hermitianas y mostramos una estimación L∞ a priori para una solución suave de estas ecuaciones. Keywords and Phrases: Monge-Ampère type equation, almost Hermitian manifold, Chern connection. 2020 AMS Mathematics Subject Classification: 32Q60, 53C15, 53C55. Accepted: 7 April, 2022 Received: 19 July, 2021 c©2022 M. Kawamura. This open access article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. http://cubo.ufro.cl/ http://dx.doi.org/10.56754/0719-0646.2402.0239 mailto:kawamura-m@t.kagawa-nct.ac.jp https://orcid.org/0000-0003-1303-4237 mailto:kawamura-m@t.kagawa-nct.ac.jp 240 M. Kawamura CUBO 24, 2 (2022) 1 Introduction Let (M2n,J,ω) be a compact almost Hermitian manifold of real dimension 2n with n ≥ 2. Let χ be a smooth real (1,1)-form on M. We define for a function u ∈ C2(M), χu := χ + √ −1∂∂̄u and [χ] := {χu|u ∈ C2(M)}, [χ]+ := {χ′ ∈ [χ]|χ′ > 0}, H(M,χ) := {u ∈ C2(M)|χu > 0} and Cα(ψ) := {[χ]|∃χ′ ∈ [χ]+,nχ′n−1 > (n − α)ψχ′n−α−1 ∧ ωα}. We consider the following fully nonlinear Monge-Ampère type equations, which are called the (n,n − α)-quotient equations for 1 ≤ α ≤ n: χnu = ψχ n−α u ∧ ωα with χu > 0, (1.1) where ψ is a smooth positive function. We will call a function u ∈ C2(M) admissible if it satisfies that u ∈ H(M,χ). When solutions u are admissible, the equations (1.1) are elliptic. Since the equation (1.1) is invariant under the addition of constants to u, we may assume that u satisfies the normalized condition such that sup M u = 0. (1.2) W. Sun has studied a class of fully nonlinear elliptic equations on closed Hermitian manifolds and derived some a priori estimates for these equations (cf. [5, 6]). In [5], W. Sun has proven a uniform a priori C∞ estimates of a smooth solution of the equation (1.1) and shown the existence of a solution of (1.1) on a closed Hermitian manifold. In [12], J. Zhang has shown that on a compact almost Hermitian manifold (M2n,J,ω), if there exists an admissible C-subsolution and an admissible supersolution for the equation (1.1) for χ = ω, there exists a pair of (u,b) with b ∈ R such that u ∈ H(M,ω), supM u = 0, ωnu = ebψωn−α ∧ ωα for 1 ≤ α ≤ n on M. L. Chen has studied a Hessian equation with its structure as a combination of elementary symmetric functions on a closed Kähler manifold and Chen has provided a sufficient and necessary condition for the solvability of this equation in [1]. Q. Tu and N. Xiang have investigated the Dirichlet problem for a class of Hessian type equation with its structure as a combination of elementary symmetric functions on a closed Hermitian manifold with smooth boundary and they have derived a priori estimates for the complex mixed Hessian equation in [9]. In this paper, we show that we have the a priori L∞ estimate for a smooth solution of the equation (1.1) on general almost Hermitian manifolds. CUBO 24, 2 (2022) On an a priori L∞ estimate for a class of Monge-Ampère type... 241 Theorem 1.1. Let (M,J,ω) be a compact almost Hermitian manifold of real dimension 2n with n ≥ 2 and u be a smooth admissible solution to (1.1). Suppose that χ ∈ Cα(ψ). Then there is a uniform a priori L∞ estimate for u depending only on (M,J,ω), χ, ψ. This paper is organized as follows: in section 2, we recall some basic definitions and computations on an almost Hermitian manifold (M,J,ω). In section 3, for an arbitrary chosen smooth function ϕ on M, we show the result that ∂∂∂̄ϕ and ∂̄∂∂̄ϕ depend only on the first derivative of ϕ and some geometric quantities of (M,J,ω). In section 4, we give a proof for Theorem 1.1. Notice that we assume the Einstein convention omitting the symbol of sum over repeated indexes in all this paper. 2 Preliminaries 2.1 The Nijenhuis tensor of the almost complex structure Let M be a 2n-dimensional smooth differentiable manifold. An almost complex structure on M is an endomorphism J of TM, J ∈ Γ(End(TM)), satisfying J2 = −IdT M , where TM is the real tangent vector bundle of M. The pair (M,J) is called an almost complex manifold. Let (M,J) be an almost complex manifold. We define a bilinear map on C∞(M) for X,Y ∈ Γ(TM) by 4N(X,Y ) := [JX,JY ] − J[JX,Y ] − J[X,JY ] − [X,Y ], (2.1) which is the Nijenhuis tensor of J. The Nijenhuis tensor N satisfies N(X,Y ) = −N(Y,X), N(JX,Y ) = −JN(X,Y ), N(X,JY ) = −JN(X,Y ), N(JX,JY ) = −N(X,Y ). For any (1,0)- vector fields W and V , N(V,W) = −[V,W ](0,1), N(V,W̄) = N(V̄ ,W) = 0 and N(V̄ ,W̄) = −[V̄ ,W̄ ](1,0) since we have 4N(V,W) = −2([V,W ] + √ −1J[V,W ]), 4N(V̄ ,W̄) = −2([V̄ ,W̄] − √ −1J[V̄ ,W̄ ]). An almost complex structure J is called integrable if N = 0 on M. Giving a complex structure to a differentiable manifold M is equivalent to giving an integrable almost complex structure to M (cf. [4]). A Riemannian metric g on M is called J-invariant if J is compatible with g, i.e., for any X,Y ∈ Γ(TM), g(X,Y ) = g(JX,JY ). In this case, the pair (J,g) is called an almost Hermitian structure. The complexified tangent vector bundle is given by T CM = TM ⊗R C for the real tangent vector bundle TM. By extending J C-linearly and g C-bilinearly to T CM, they are also defined on T CM and we observe that the complexified tangent vector bundle T CM can be decomposed as T CM = T 1,0M⊕T 0,1M, where T 1,0M, T 0,1M are the eigenspaces of J corresponding to eigenvalues √ −1 and − √ −1, respectively: T 1,0 M = {X − √ −1JX ∣∣X ∈ TM}, T 0,1M = {X + √ −1JX ∣∣X ∈ TM}. (2.2) 242 M. Kawamura CUBO 24, 2 (2022) Let ΛrM = ⊕ p+q=r Λ p,qM for 0 ≤ r ≤ 2n denote the decomposition of complex differential r-forms into (p,q)-forms, where Λp,qM = Λp(Λ1,0M) ⊗ Λq(Λ0,1M), Λ1,0M = {η + √ −1Jη ∣∣η ∈ Λ1M}, Λ0,1M = {η − √ −1Jη ∣∣η ∈ Λ1M} (2.3) and Λ1M denotes the dual of T CM. Let {Zr} be a local (1,0)-frame on (M,J) with an almost Hermitian metric g and let {ζr} be a local associated coframe with respect to {Zr}, i.e., ζi(Zj) = δij for i,j = 1, . . . ,n. Since g is almost Hermitian, its components satisfy gij = gīj̄ = 0 and gij̄ = gj̄i = ḡīj. Using these local frame {Zr} and coframe {ζr}, we have N(Zī,Zj̄) = −[Zī,Zj̄](1,0) =: Nkīj̄Zk, N(Zi,Zj) = −[Zi,Zj] (0,1) = Nk īj̄ Zk̄, and N = 1 2 Nk īj̄ Zk̄ ⊗ (ζi ∧ ζj) + 1 2 Nk īj̄ Zk ⊗ (ζī ∧ ζj̄). (2.4) Let (M,J,g) be an almost Hermitian manifold with dimR M = 2n. An affine connection D on T CM is called almost Hermitian connection if Dg = DJ = 0. For the almost Hermitian connection, we have the following Lemma (cf. [10, 13]). Lemma 2.1. Let (M,J,g) be an almost Hermitian manifold with dimR M = 2n. Then for any given vector valued (1,1)-form Θ = (Θi)1≤i≤n, there exists a unique almost Hermitian connection ∇ on (M,J,g) such that the (1,1)-part of the torsion is equal to the given Θ. If the (1,1)-part of the torsion of an almost Hermitian connection vanishes everywhere, then the connection is called the second canonical connection or the Chern connection. We will refer the connection as the Chern connection and denote it by ∇. Now let ∇ be the Chern connection on M. We denote the structure coefficients of Lie bracket by [Zi,Zj] = B r ijZr + B r̄ ijZr̄, [Zi,Zj̄] = B r ij̄ Zr + B r̄ ij̄ Zr̄, [Zī,Zj̄] = B r īj̄ Zr + B r̄ īj̄ Zr̄. We have Bkij = −Bkji since [Zi,Zj] = −[Zj,Zi]. Notice that J is integrable if and only if the Br̄ij’s vanish. For any p-form ψ, there holds that dψ(X1, . . . ,Xp+1) = p+1∑ i=1 (−1)i+1Xi(ψ(X1, . . . ,X̂i, . . . ,Xp+1)) + ∑ i 0, ∀ 1 ≤ i ≤ k} and 0 ≤ l < k ≤ n, 0 ≤ s < r, r ≤ k, s ≤ l, we have [ Sk(λ) Ck n Sl(λ) Cln ] 1 k−l ≤ [ Sr(λ) Cr n Ss(λ) Csn ] 1 r−s . (4.2) 250 M. Kawamura CUBO 24, 2 (2022) In this section, the positive constant C may be changed from line to line, but it depends on the allowed data. Proof of Theorem 1.1. It suffices to show the following key inequality: ∫ M |∂e− p 2 u|2gωn ≤ Cp ∫ M e−puωn (4.3) for p large enough. Lemma 4.2. Let u be a smooth admissible solution to the Monge-Ampère type equation (1,1). Then, there are uniform constants C, p0 such that for any p ≥ p0, we have the inequality (4.3). Proof. Without loss of generality, we may assume that nχn−1 > (n − α)ψχn−α−1 ∧ ωα, (4.4) and there exist uniform positive constants λ,Λ > 0 such that λω ≤ χ ≤ Λω. (4.5) As the local expression (4.1): χnu χ n−α u ∧ ωα = Cαn Sn(χu) Sn−α(χu) = ψ, we locally have that C α n−1 Sn−1(χu) Sn−α−1(χu) = χn−1u χ n−α−1 u ∧ ωα and which implies that the following inequality nχn−1u > (n − α)ψχn−α−1u ∧ ωα (4.6) is equivalent to Sn−1(χu) Sn−α−1(χu) > Sn(χu) Sn−α(χu) (4.7) since we have locally that n − α n · ψ = n − α n · Cαn Sn(χu) Sn−α(χu) = Cαn−1 Sn(χu) Sn−α(χu) . Note that we may apply Lemma 4.1 to χu since χu > 0. Applying the inequality (4.2), we have [ Sn(χu) Cn n Sn−α(χu) C n−α n ] 1 α ≤ [ Sn−1(χu) C n−1 n Sn−α−1(χu) C n−α−1 n ] 1 α , which can be written by Sn(χu) Sn−α(χu) ≤ C n−α−1 n C n−1 n C n−α n Sn−1(χu) Sn−α−1(χu) = n − α n(α + 1) Sn−1(χu) Sn−α−1(χu) < Sn−1(χu) Sn−α−1(χu) , CUBO 24, 2 (2022) On an a priori L∞ estimate for a class of Monge-Ampère type... 251 where we used that n−α n(α+1) < 1. Therefore, the inequality (4.7) holds and as a consequence, we have the inequality (4.6). We estimate that I := ∫ M e −pu((χnu − χn) − ψ(χn−αu ∧ ωα − χn−α ∧ ωα)) = ∫ M e−pu ( χnu χ n−α u ∧ ωα − χ n χn−α ∧ ωα ) χn−α ∧ ωα ≤ C ∫ M e−puωn. (4.8) On the other hand, we have that by Stokes’ theorem, I = ∫ 1 0 ∫ M e −pu d dt (χntu − ψχn−αtu ∧ ωα)dt = ∫ 1 0 ∫ M e −pu √ −1∂∂̄u ∧ (nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα)dt = ∫ 1 0 ∫ M d(e−pu √ −1∂̄u ∧ (nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα))dt − ∫ 1 0 ∫ M √ −1∂e−pu ∧ ∂̄u ∧ (nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα)dt + ∫ 1 0 ∫ M √ −1e−pu∂̄u ∧ ∂(nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα)dt = p ∫ 1 0 ∫ M e −pu √ −1∂u ∧ ∂̄u ∧ (nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα)dt −1 p ∫ 1 0 ∫ M √ −1∂̄e−pu ∧ ∂(nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα)dt = p ∫ 1 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ (nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα)dt −1 p ∫ 1 0 ∫ M d( √ −1e−pu∂(nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα))dt + 1 p ∫ 1 0 ∫ M e −pu √ −1∂̄∂(nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα))dt = p ∫ 1 0 ∫ M e −pu √ −1∂u ∧ ∂̄u ∧ (nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα)dt −1 p ∫ 1 0 ∫ M e−pu √ −1∂∂̄(nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα)dt, (4.9) where we have used that d = A + ∂ + ∂̄ + Ā, ∂̄(e−pu √ −1∂̄u ∧ (nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα)) = 0, A(e−pu √ −1∂̄u ∧ (nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα)) = 0, Ā(e−pu √ −1∂̄u ∧ (nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα)) = 0, ∂( √ −1e−pu∂(nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα)) = 0, 252 M. Kawamura CUBO 24, 2 (2022) A( √ −1e−pu∂(nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα)) = 0, Ā( √ −1e−pu∂(nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα)) = 0 and from (2.9), ∂̄∂(nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα) = −(∂∂̄ + AĀ + ĀA)(nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα) = −∂∂̄(nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα) since we have A(nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα) = Ā(nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα) = 0. We compute that for 0 ≤ t ≤ 1, −1 p ∫ M e−pu √ −1∂∂̄(nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα) = −1 p ∫ M e−pu √ −1∂ ( n(n − 1)χn−2tu ∧ (∂̄χ + √ −1t∂̄∂∂̄u) − (n − α)∂̄ψ ∧ χn−α−1tu ∧ ωα −(n − α)(n − α − 1)ψχn−α−2tu ∧ (∂̄χ + √ −1t∂̄∂∂̄u) ∧ ωα − α(n − α)ψχn−α−1tu ∧ ωα−1 ∧ ∂̄ω ) = −1 p ∫ M √ −1e−pu { n(n − 1)(n − 2)χn−3tu ∧ (∂χ + t √ −1∂∂∂̄u) ∧ (∂̄χ + t √ −1∂̄∂∂̄u) +n(n − 1)χn−2tu ∧ (∂∂̄χ + t √ −1∂∂̄∂∂̄u) − (n − α)∂∂̄ψ ∧ χn−α−1tu ∧ ωα +(n − α)(n − α − 1)∂̄ψ ∧ χn−α−2tu ∧ (∂χ + t √ −1∂∂∂̄u) ∧ ωα +α(n − α)∂̄ψ ∧ χn−α−1tu ∧ ωα−1 ∧ ∂ω −(n − α)(n − α − 1)∂ψ ∧ χn−α−2tu ∧ (∂̄χ + t √ −1∂̄∂∂̄u) ∧ ωα −(n − α)(n − α − 1)(n − α − 2)ψχn−α−3tu ∧ (∂χ + t √ −1∂∂∂̄u) ∧ (∂̄χ + t √ −1∂̄∂∂̄u) ∧ ωα −(n − α)(n − α − 1)ψχn−α−2tu ∧ (∂∂̄χ + t √ −1∂∂̄∂∂̄u) ∧ ωα −α(n − α)(n − α − 1)ψχn−α−2tu ∧ (∂̄χ + t √ −1∂̄∂∂̄u) ∧ ωα−1 ∧ ∂ω −α(n − α)∂ψ ∧ χn−α−1tu ∧ ωα−1 ∧ ∂̄ω −α(n − α)(n − α − 1)ψχn−α−2tu ∧ (∂χ + t √ −1∂∂∂̄u) ∧ ωα−1 ∧ ∂̄ω −α(n − α)(α − 1)ψχn−α−1tu ∧ ωα−2 ∧ ∂ω ∧ ∂̄ω −α(n − α)ψχn−α−1tu ∧ ωα−1 ∧ ∂∂̄ω } ≥ −C p ∫ M e−puχ n−3 tu ∧ ω3 − C p ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χn−3tu ∧ ω2 − C ∫ M e−puχ n−2 tu ∧ ω2 −C p ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χn−2tu ∧ ω −C p ∫ M e−puχ n−α−1 tu ∧ ωα+1 − C p ∫ M e−puχ n−α−2 tu ∧ ωα+2 −C p ∫ M e −pu √ −1∂u ∧ ∂̄u ∧ χn−α−2tu ∧ ωα+1 − C p ∫ M e −pu χ n−α−3 tu ∧ ωα+3 − C p ∫ M e −pu √ −1∂u ∧ ∂̄u ∧ χn−α−3tu ∧ ωα+2, (4.10) CUBO 24, 2 (2022) On an a priori L∞ estimate for a class of Monge-Ampère type... 253 where we have used that for instance, by applying (3.12), ∫ M √ −1e−puχn−2tu ∧ t √ −1∂∂̄∂∂̄u = ∫ M √ −1e−puχn−2tu ∧ t √ −1(T1 ∗ ∂u + T2 ∗ ∂̄u) ≤ C ∫ M e −pu χ n−2 tu ∧ √ −1∂u ∧ ∂̄u ∧ ω + C ∫ M e −pu χ n−2 tu ∧ ω2, (4.11) ∫ M ∂̄ψ ∧ χn−α−2tu ∧ t √ −1∂∂∂̄u ∧ ωα = ∫ M ∂̄ψ ∧ χn−α−2tu ∧ t √ −1T3 ∗ ∂̄u ∧ ωα ≤ C ∫ M χ n−α−2 tu ∧ √ −1∂u ∧ ∂̄u ∧ ωα+1 + C ∫ M χ n−α−2 tu ∧ ωα+2, (4.12) ∫ M √ −1e−puχn−3tu ∧ ∂χ ∧ t √ −1∂̄∂∂̄u ∧ ω = ∫ M √ −1e−puχn−3tu ∧ ∂χ ∧ t √ −1T4 ∗ ∂u ∧ ω ≤ C ∫ M e−puχ n−3 tu ∧ √ −1∂u ∧ ∂̄u ∧ ω + C ∫ M e−puχ n−3 tu ∧ ω3. (4.13) Since we have assumed that χ,χu > 0, then we have that χtu > 0 for any 0 ≤ t ≤ 1. Now we introduce the following crucial inequalities (cf. [6]): Lemma 4.3. For any 0 < t ≤ 1, 1 < l ≤ n, one has that l l − 1 ∫ t 0 ∫ M e−pu √ −1∂u∧∂̄u∧χl−1su ∧ωn−lds ≥ λ ∫ t 0 ∫ M e−pu √ −1∂u∧∂̄u∧χl−2su ∧ωn−l+1ds, (4.14) and for any 0 < t ≤ 1, 1 ≤ k ≤ n, one has that k + 1 k ∫ t 0 χksu ∧ ωn−kds ≥ λ ∫ t 0 χk−1su ∧ ωn−k+1ds, (4.15) where λ > 0 is the uniform constant in (4.5). Proof. By using integration by parts and G̊arding’s inequality as in [6, (2.22)], we have that by using χ ≥ λω, ∫ t 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χl−1su ∧ ωn−lds = ∫ t 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χl−2su ∧ (χ + s √ −1∂∂̄u) ∧ ωn−lds ≥ λ ∫ t 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χl−2su ∧ ωn−l+1ds + 1 l − 1 ∫ t 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ s d ds χl−1su ∧ ωn−lds ≥ λ ∫ t 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χl−2su ∧ ωn−l+1ds − 1 l − 1 ∫ t 0 ∫ M e −pu √ −1∂u ∧ ∂̄u ∧ χl−1su ∧ ωn−lds, (4.16) 254 M. Kawamura CUBO 24, 2 (2022) where we used that ∫ t 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ s d ds χl−1su ∧ ωn−lds = t ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χl−1tu ∧ ωn−l − ∫ t 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χl−1su ∧ ωn−lds ≥ − ∫ t 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χl−1su ∧ ωn−lds. The inequality (4.16) gives the desired one (4.14). Next we compute that by using integration by parts and G̊arding’s inequality as in [6, (3.7)], for 1 ≤ k ≤ n, using χ ≥ λω, ∫ t 0 χ k su ∧ ωn−kds = ∫ t 0 χ k−1 su ∧ (χ + s √ −1∂∂̄u) ∧ ωn−kds ≥ λ ∫ t 0 χ k−1 su ∧ ωn−k+1ds + 1 k ∫ t 0 s d ds (χksu ∧ ωn−k)ds = λ ∫ t 0 χ k−1 su ∧ ωn−k+1ds + t k χ k tu ∧ ωn−k − 1 k ∫ t 0 χ k su ∧ ωn−kds ≥ λ ∫ t 0 χ k−1 su ∧ ωn−k+1ds − 1 k ∫ t 0 χ k su ∧ ωn−kds, which implies the inequality (4.15). By applying these inequalities (4.14) and (4.15) for t = 1 to the estimate (4.10), we obtain that −1 p ∫ 1 0 ∫ M e −pu √ −1∂∂̄(nχn−1tu − (n − α)ψχn−α−1tu ∧ ωα)dt ≥ − C p ∫ 1 0 ∫ M e −pu χ n−1 tu ∧ ωdt − C p ∫ 1 0 ∫ M e −pu √ −1∂u ∧ ∂̄u ∧ χn−1tu dt. (4.17) Combining (4.17) with (4.9), we have that I ≥ p ∫ 1 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ {( n − C p2 ) χ n−1 tu − (n − α)ψχn−α−1tu ∧ ωα } dt −C p ∫ 1 0 ∫ M e −pu χ n−1 tu ∧ ωdt. (4.18) By the concavity of hyperbolic polynomials, for 0 < τ < 1, 1 ≤ k ≤ n, we have (cf. [6, (2.13)]) 1 τ S 1 k k (χτtu) + ( 1 − 1 τ ) S 1 k k (χ) ≥ S 1 k k (χtu), which gives Sk(χτtu) ≥ τkSk(χtu). For τ = 1 2 , k = n − 1, we obtain that ∫ 1 0 ∫ M e−puχ n−1 tu ∧ ωdt ≤ 2n−1 ∫ 1 0 ∫ M e−puχ n−1 tu 2 ∧ ωdt = 2n ∫ 1 2 0 ∫ M e −pu χ n−1 tu ∧ ωdt. (4.19) CUBO 24, 2 (2022) On an a priori L∞ estimate for a class of Monge-Ampère type... 255 By combining (4.8), (4.18) and (4.19), we have that p ∫ 1 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ {( n − C p2 ) χ n−1 tu − (n − α)ψχn−α−1tu ∧ ωα } dt ≤ C ∫ M e −pu ω n + C p ∫ 1 2 0 ∫ M e −pu χ n−1 tu ∧ ωdt. (4.20) Since we have χtu > 0 and nχ n−1 tu − (n − α)ψχn−α−1tu ∧ ωα > 0 for any 0 ≤ t ≤ 1, we can choose a sufficiently large p so that nχ n−1 tu − (n − α)ψχn−α−1tu ∧ ωα − C p2 χ n−1 tu > 0. Then we have that by the concavity of the quotient equation, for some 0 < δ < 1, we have (cf. [6, (3.10)]) nχ n−1 tu − (n − α)ψχn−α−1tu ∧ ωα > n { 1 − 1 (1 + δ − tδ)α } χ n−1 tu , hence for sufficiently large p, ∫ 1 0 ∫ M e −pu √ −1∂u ∧ ∂̄u ∧ {( n − C p2 ) χ n−1 tu − (n − α)ψχn−α−1tu ∧ ωα } dt ≥ ∫ 1 2 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ {( n − C p2 ) χ n−1 tu − (n − α)ψχn−α−1tu ∧ ωα } dt ≥ ∫ 1 2 0 n { 1 − C np2 − 1 (1 + δ − tδ)α } ∫ M e −pu √ −1∂u ∧ ∂̄u ∧ χn−1tu dt ≥ n { 1 − C np2 − 1 (1 + δ 2 )α } ∫ 1 2 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χn−1tu dt. (4.21) On the other hand, we compute by Stokes’ theorem, 1 p ∫ 1 2 0 ∫ M e −pu χ n−1 tu ∧ ωdt = 1 p ∫ 1 2 0 ∫ t 0 d ds ( ∫ M e−puχn−1su ∧ ω ) dsdt + 1 2p ∫ M e−puχn−1 ∧ ω = n − 1 p ∫ 1 2 0 ∫ t 0 ∫ M e−pu √ −1∂∂̄u ∧ χn−2su ∧ ωdsdt + 1 2p ∫ M e−puχn−1 ∧ ω = n − 1 p ∫ 1 2 0 ∫ t 0 ∫ M d(e−pu √ −1∂̄u ∧ χn−2su ∧ ω)dsdt −n − 1 p ∫ 1 2 0 ∫ t 0 ∫ M √ −1∂e−pu ∧ ∂̄u ∧ χn−2su ∧ ωdsdt + n − 1 p ∫ 1 2 0 ∫ t 0 ∫ M e −pu √ −1∂̄u ∧ ∂(χn−2su ∧ ω)dsdt + 1 2p ∫ M e −pu χ n−1 ∧ ω 256 M. Kawamura CUBO 24, 2 (2022) = (n − 1) ∫ 1 2 0 ∫ t 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χn−2su ∧ ωdsdt −n − 1 p2 ∫ 1 2 0 ∫ t 0 ∫ M √ −1∂̄e−pu ∧ ∂(χn−2su ∧ ω)dsdt + 1 2p ∫ M e −pu χ n−1 ∧ ω = (n − 1) ∫ 1 2 0 ∫ t 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χn−2su ∧ ωdsdt −n − 1 p2 ∫ 1 2 0 ∫ t 0 ∫ M d( √ −1e−pu∂(χn−2su ∧ ω))dsdt + n − 1 p2 ∫ 1 2 0 ∫ t 0 ∫ M e−pu √ −1∂̄∂(χn−2su ∧ ω)dsdt + 1 2p ∫ M e−puχn−1 ∧ ω = (n − 1) ∫ 1 2 0 ∫ t 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χn−2su ∧ ωdsdt −n − 1 p2 ∫ 1 2 0 ∫ t 0 ∫ M e −pu √ −1∂∂̄(χn−2su ∧ ω)dsdt + 1 2p ∫ M e −pu χ n−1 ∧ ω, (4.22) where we used that as in the computation in (4.9), d(e−pu √ −1∂̄u∧χn−2su ∧ω) = (∂+∂̄+A+Ā)(e−pu √ −1∂̄u∧χn−2su ∧ω) = ∂(e−pu √ −1∂̄u∧χn−2su ∧ω), d( √ −1e−pu ∧∂(χn−2su ∧ω)) = (∂+∂̄+A+Ā)( √ −1e−pu∧∂(χn−2su ∧ω)) = ∂̄( √ −1e−pu ∧∂(χn−2su ∧ω)), and ∂̄∂(χn−2su ∧ ω) = −(∂∂̄ + AĀ + ĀA)(χn−2su ∧ ω) = −∂∂̄(χn−2su ∧ ω). Applying (3.12), we estimate that as in (4.11)-(4.13) such as ∫ M √ −1e−puχn−3su ∧ s √ −1∂∂̄∂∂̄u ∧ ω ≤ C ∫ M e−puχn−3su ∧ √ −1∂u ∧ ∂̄u ∧ ω2 + C ∫ M e−puχn−3su ∧ ω3, (4.23) ∫ M e−puχn−4su ∧ s √ −1∂∂∂̄u ∧ ∂̄χ ∧ ω ≤ C ∫ M e −pu χ n−4 su ∧ √ −1∂u ∧ ∂̄u ∧ ω3 + C ∫ M e −pu χ n−4 su ∧ ω4, (4.24) ∫ M e−puχn−4su ∧ ∂χ ∧ s √ −1∂̄∂∂̄u ∧ ω2 ≤ C ∫ M e−puχn−4su ∧ √ −1∂u ∧ ∂̄u ∧ ω3 + C ∫ M e−puχn−4su ∧ ω4. (4.25) Then we estimate that by applying these estimates (4.23)-(4.25) and the inequalities (4.14)-(4.15), n − 1 p2 ∫ t 0 ∫ M e−pu √ −1∂∂̄(χn−2su ∧ ω)ds = n − 1 p2 ∫ t 0 ∫ M e−pu √ −1∂((n − 2)χn−3su ∧ (∂̄χ + s √ −1∂̄∂∂̄u) ∧ ω)ds = n − 1 p2 ∫ t 0 ∫ M e−pu √ −1 { (n − 2)(n − 3)χn−4su ∧ (∂χ + s √ −1∂∂∂̄u) ∧ (∂̄χ + s √ −1∂̄∂∂̄u) ∧ ω +(n − 2)χn−3su ∧ (∂∂̄χ + s √ −1∂∂̄∂∂̄u) ∧ ω + (n − 2)χn−3su ∧ (∂̄χ + s √ −1∂̄∂∂̄u) ∧ ∂ω CUBO 24, 2 (2022) On an a priori L∞ estimate for a class of Monge-Ampère type... 257 +(n − 2)χn−3su ∧ (∂χ + s √ −1∂∂∂̄u) ∧ ∂̄ω + χn−2su ∧ ∂∂̄ω } ds ≤ C p2 ∫ t 0 ∫ M e −pu χ n−4 su ∧ ω4ds + C p2 ∫ t 0 ∫ M e −pu χ n−4 su ∧ √ −1∂u ∧ ∂̄u ∧ ω3ds + C p2 ∫ t 0 ∫ M e −pu χ n−3 su ∧ ω3ds + C p2 ∫ t 0 ∫ M e −pu χ n−3 su ∧ √ −1∂u ∧ ∂̄u ∧ ω2ds + C p2 ∫ t 0 ∫ M e−puχn−2su ∧ ω2ds ≤ C1 p2 ∫ t 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χn−2su ∧ ωds + C2 p2 ∫ t 0 ∫ M e−puχn−2su ∧ ω2ds. (4.26) By choosing p sufficiently large such that C1 p2 < n − 1, C2 p < λ · n−1 n , by combining (4.22) with (4.26), and applying (4.15) for t = 1 2 , k = n − 1 such that ∫ 1 2 0 ∫ M e −pu χ n−2 tu ∧ ω2dt ≤ 1 λ · n n − 1 ∫ 1 2 0 ∫ M e −pu χ n−1 tu ∧ ωdt, we obtain that for 0 ≤ t ≤ 1 2 , 1 p ∫ 1 2 0 ∫ M e −pu χ n−1 tu ∧ ωdt ≤ (n − 1) ∫ 1 2 0 ∫ t 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χn−2su ∧ ωdsdt + 1 2p ∫ M e−puχn−1 ∧ ω + C1 p2 ∫ 1 2 0 ∫ t 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χn−2su ∧ ωdsdt + C2 p2 ∫ 1 2 0 ∫ t 0 ∫ M e−puχn−2su ∧ ω2dsdt ≤ (n − 1) ∫ 1 2 0 ∫ M e −pu √ −1∂u ∧ ∂̄u ∧ χn−2tu ∧ ωdt + 1 2p · λ(n − 1) n ∫ 1 2 0 ∫ M e−puχ n−2 tu ∧ ω2dt + 1 2p ∫ M e−puχn−1 ∧ ω ≤ (n − 1) ∫ 1 2 0 ∫ M e −pu √ −1∂u ∧ ∂̄u ∧ χn−2tu ∧ ωdt + 1 2p ∫ 1 2 0 ∫ M e−puχ n−1 tu ∧ ωdt + 1 2p ∫ M e−puχn−1 ∧ ω (4.27) which implies that we have by applying (4.14) for t = 1 2 , l = n, 1 2p ∫ 1 2 0 ∫ M e −pu χ n−1 tu ∧ ωdt ≤ (n − 1) ∫ 1 2 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χn−2tu ∧ ωdt + 1 2p ∫ M e−puχn−1 ∧ ω ≤ n λ ∫ 1 2 0 ∫ M e −pu √ −1∂u ∧ ∂̄u ∧ χn−1tu dt + 1 2p ∫ M e −pu χ n−1 ∧ ω. (4.28) Therefore, by combining (4.28) with (4.20), (4.21), we obtain that [ np { 1 − C np2 − 1 (1 + δ 2 )α } − C 2n λ ] ∫ 1 2 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χn−1tu dt ≤ C ∫ M e −pu ω n + C p ∫ M e −pu χ n−1 ∧ ω ≤ C ∫ M e −pu ω n . (4.29) 258 M. Kawamura CUBO 24, 2 (2022) We choose p sufficiently large such that [ n { 1 − C np2 − 1 (1 + δ 2 )α } − C 2n λp ] > 0. By applying (4.14) for t = 1 2 repeatedly, we obtain ∫ 1 2 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χn−1tu dt ≥ λ n − 1 n ∫ 1 2 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χn−2tu ∧ ωdt ≥ λ2 n − 1 n n − 2 n − 1 ∫ 1 2 0 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ χn−3tu ∧ ω2dt · · · ≥ λ n−1 n 1 2 ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ ωn−1. (4.30) By combining (4.29) with (4.30), we finally obtain that for sufficiently large p, p ∫ M e−pu √ −1∂u ∧ ∂̄u ∧ ωn−1 ≤ C ∫ M e−puωn, which tells us that there exists a sufficiently large p0 such that for all p ≥ p0, the desired inequality (4.3) holds. The rest of the proof is similar to the ones in [7, 8]. In the following, we give a brief proof for reader’s convenience. We introduce the definition of Gauduchon metrics on almost complex manifolds. Definition 4.4. Let (M2n,J) be an almost complex manifold. A metric g is called a Gauduchon metric on M if g is an almost Hermitian metric whose associated real (1,1)-form ω = √ −1gij̄ζi∧ζj̄ satisfies d∗(Jd∗ω) = 0, where d∗ is the adjoint of d with respect to g, which is equivalent to d(Jd(ωn−1)) = 0, or ∂∂̄(ωn−1) = 0. One has the following well-known result. Proposition 4.5 (cf. [2, Theorem 2.1], [3]). Let (M2n,J,ω) be a compact almost Hermitian manifold with n ≥ 2. Then there exists a smooth function σ, unique up to addition of a constant, such that the conformal almost Hermitian metric eσω is Gauduchon. Thanks to Proposition 4.5, there exists a smooth function σ : M → R with supM σ = 0 such that ωG := e σω is Gauduchon on M. Lemma 4.6 (cf. [8, Lemma 2.3]). Let M be a compact almost complex manifold of real dimension 2n (n ≥ 2) with a Gauduchon metric ωG. If φ is a smooth nonnegative function on M with ∆Gφ ≥ −C0, where ∆G is the Laplacian operator with respect to ωG, then there exists a positive constant C1, C2 depending only on (M,ωG) and C0 such that ∫ M |∂φ p+1 2 |2ωGω n G ≤ C1p ∫ M φpωnG (4.31) for any p ≥ 1, and sup M φ ≤ C2 max { ∫ M φωnG,1 } . (4.32) CUBO 24, 2 (2022) On an a priori L∞ estimate for a class of Monge-Ampère type... 259 Proof. We compute for p ≥ 1, by Stokes’ theorem, ∫ M |∂φ p+1 2 |2ωGω n G = n ∫ M √ −1∂φ p+1 2 ∧ ∂̄φ p+1 2 ∧ ωn−1G = n(p + 1)2 4 ∫ M √ −1φp−1∂φ ∧ ∂̄φ ∧ ωn−1 G = n(p + 1)2 4p ∫ M √ −1∂(φp) ∧ ∂̄φ ∧ ωn−1G = n(p + 1)2 4p ∫ M √ −1(∂ + ∂̄ + A + Ā)(φp∂̄φ ∧ ωn−1G ) −n(p + 1) 2 4p ∫ M φp √ −1∂∂̄φ ∧ ωn−1 G + n(p + 1) 4p ∫ M √ −1∂̄(φp+1) ∧ ∂ωn−1 G = −(p + 1) 2 4p ∫ M φpn √ −1∂∂̄φ ∧ ωn−1G ωnG ωnG + n(p + 1) 4p ∫ M √ −1(∂ + ∂̄ + A + Ā)(φp+1∂ωn−1G ) −n(p + 1) 4p ∫ M φp+1 √ −1∂̄∂ωn−1 G = (p + 1)2 4p ∫ M φ p(−∆Gφ)ωnG ≤ C1p ∫ M φ p ω n G, (4.33) where we used that (∂̄ + A + Ā)(φp∂̄φ ∧ ωn−1G ) = 0, (∂ + A + Ā)(φp+1∂ω n−1 G ) = 0, and that ∂̄∂ω n−1 G = −(∂∂̄ + AĀ + ĀA)ωn−1 G = −∂∂̄ωn−1 G = 0 since we have Aωn−1 G = Āωn−1 G = 0. We apply the Sobolev inequality: for β := n n−1 > 1, and for any smooth function f, ( ∫ M f 2β ω n ) 1 β ≤ C ( ∫ M |∂f|2gωn + ∫ M f 2 ω n ) . (4.34) Taking ω = ωG and f = φ q 2 , where we put q := p + 1, then for q ≥ 2, we have that ( ∫ M φqβωnG ) 1 β ≤ Cq max { ∫ M φqωnG,1 } . By repeatedly replacing q by qβ and iterating, after setting q = 2, then we obtain that sup M φ ≤ C max {( ∫ M φ2ωnG ) 1 2 ,1 } ≤ C max {( sup M φ ) 1 2 ( ∫ M φωnG ) 1 2 ,1 } , which gives us the desired estimate (4.32). By applying the inequality (4.3) and the Sobolev inequality (4.34), for any p ≥ p0, we obtain that ‖e−u‖Lpβ ≤ C 1 p p 1 p ‖e−u‖Lp, 260 M. Kawamura CUBO 24, 2 (2022) and by the standard iteration, we have that e−p0 infM u ≤ C ∫ M e−p0uωn. (4.35) We need the following lemma, whose proof goes in the same way as in the Hermitian case. Lemma 4.7 (cf. [7, Lemma 3.2], [8, Lemma 2.2]). Let f be a smooth function on a compact almost Hermitian manifold (M,J,ω). Write dµ := ω n ∫ M ωn . If there exists a constant C1 such that e− infM f ≤ eC1 ∫ M e−fdµ, (4.36) then |{f ≤ inf M f + C1 + 1}| ≥ e−C1 4 , (4.37) where | · | denotes the volume of the set with respect to dµ. We apply Lemma 4.6 to f = p0u, and then since we have the inequality (4.35), there exist uniform constants C, δ > 0 such that |{u ≤ inf M u + C}| ≥ δ. (4.38) Now, we define φ := u − infM u. Since it satisfies that ∆Gφ = e−σ∆φ > −C, where ∆ is the Laplacian operator with respect to ω, we may apply Lemma 4.3 to the function φ. From the Poincaré inequality and the estimate (4.31) with p = 1, we obtain that ‖φ − φ‖L2 ≤ C ( ∫ M |∂φ|2ωGω n G ) 1 2 ≤ C‖φ‖ 1 2 L1 , (4.39) where we put φ := 1∫ M ωn G ∫ M φωnG. By making use of (4.38), the set S := {φ ≤ C} satisfies that |S|G ≥ δ, where | · |G denotes the volume of a set with respect to ωnG. Therefore, we obtain that δφ ≤ ∫ S φωnG ≤ ∫ S (|φ − φ| + C)ωnG ≤ ∫ M |φ − φ|ωnG + C, which gives that by applying (4.39), ‖φ‖L1 ≤ C(‖φ − φ‖L1 + 1) ≤ C(‖φ − φ‖L2 + 1) ≤ C(‖φ‖ 1 2 L1 + 1). Hence, φ is uniformly bounded in L1, and from (4.32) and (1.2), we obtain a uniform bound of u in the L∞ norm. Acknowledgments This work was supported by JSPS KAKENHI Grant Number JP21K13798. CUBO 24, 2 (2022) On an a priori L∞ estimate for a class of Monge-Ampère type... 261 References [1] L. Chen, “Hessian equations of Krylov type on Kähler manifolds”, preprint, arXiv:2107.12035v3, 2021. [2] J. Chu, V. Tosatti and B. Weinkove, “The Monge-Ampère equation for non-integrable almost complex structures”, J. Eur. Math. Soc., vol. 21, no. 7, pp. 1949–1984, 2019. [3] P. Gauduchon, “Le théorème de l’excentricité nulle”, C. R. Acad. Sci. Paris Sér. A-B, vol. 285, no. 5, pp. A387–A390, 1977. [4] A. Newlander and L. Nirenberg, “Complex analytic coordinates in almost complex manifolds”, Ann. of Math. (2), vol. 65, pp. 391–404, 1957. [5] W. Sun, “On a class of fully nonlinear elliptic equations on closed Hermitian manifolds”, J. Geom. Anal., vol. 26, no. 3, pp. 2459–2473, 2016. [6] W. Sun, “On a class of fully nonlinear elliptic equations on closed Hermitian manifolds II: L∞ estimate”, Comm. Pure Appl. Math., vol. 70, no. 1, pp. 172–199, 2017. [7] V. Tosatti and B. Weinkove, “Estimates for the complex Monge-Ampère‘ equation on Hermi- tian and balanced manifolds”, Asian J. Math., vol. 14, pp. 19–40, 2010. [8] V. Tosatti and B. Weinkove, “The complex Monge-Ampère equation on compact Hermitian manifolds”, J. Amer. Math. Soc., vol. 23, pp. 1187–1195, 2010. [9] Q. Tu and N. Xiang, “The Dirichlet problem for mixed Hessian equations on Hermitian manifolds”, preprint, arXiv:2201.05030v1, 2022. [10] L. Vezzoni, “On Hermitian curvature flow on almost complex manifolds”, Differential Geom. Appl., vol. 29, no. 5, pp. 709–722, 2011. [11] C.-J. Yu, “Nonpositively curved almost Hermitian metrics on products of compact almost complex manifolds”, Acta Math. Sin., vol. 31, no. 1, pp. 61–70, 2015. [12] J. Zhang, “Monge-Ampère type equations on almost Hermitian manifolds”, preprint, arXiv:2101.00380, 2022. [13] T. Zheng, “An almost complex Chern-Ricci flow”, J. Geom. Anal., vol. 28, no. 3, pp. 2129– 2165, 2018. https://arxiv.org/pdf/2107.12035.pdf https://arxiv.org/pdf/2201.05030.pdf https://arxiv.org/pdf/2101.00380.pdf Introduction Preliminaries The Nijenhuis tensor of the almost complex structure The torsion and the curvature on almost complex manifolds Some results for a smooth function on almost Hermitian manifolds Proof of Theorem 1.1