CUBO, A Mathematical Journal Vol. 24, no. 03, pp. 393–412, December 2022 DOI: 10.56754/0719-0646.2403.0393 Two nonnegative solutions for two-dimensional nonlinear wave equations Svetlin Georgiev1, B Mohamed Majdoub2,3 1 Department of Differential Equations, Faculty of Mathematics and Informatics, University of Sofia, Sofia, Bulgaria. svetlingeorgiev1@gmail.com B 2 Department of Mathematics, College of Science, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, Saudi Arabia. 3 Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia. mmajdoub@iau.edu.sa ABSTRACT We study a class of initial value problems for two-dimensional nonlinear wave equations. A new topological approach is applied to prove the existence of at least two nonnegative classical solutions. The arguments are based upon a recent theoretical result. RESUMEN Estudiamos una clase de problemas de valor inicial para ecuaciones de onda no lineales en dimensión dos. Se aplica un nuevo enfoque topológico para probar la existencia de al menos dos soluciones clásicas no negativas. Los argumentos se basan en un resultado teórico reciente. Keywords and Phrases: Hyperbolic Equations, positive solution, fixed point, cone, sum of operators. 2020 AMS Mathematics Subject Classification: 47H10, 58J20, 35L15. Accepted: 26 September, 2022 Received: 21 September, 2021 ©2022 S. Georgiev et al. This open access article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. http://cubo.ufro.cl/ http://dx.doi.org/10.56754/0719-0646.2403.0393 https://orcid.org/0000-0001-8015-4226 https://orcid.org/0000-0001-6038-1069 mailto:svetlingeorgiev1@gmail.com mailto:mmajdoub@iau.edu.sa 394 S. Georgiev & M. Majdoub CUBO 24, 3 (2022) 1 Introduction Global existence for nonlinear wave equations is an important mathematical topic. Mathemati- cians, including F. John, S. Kleinerman, L. Hörmander, etc., have made investigations to this subject. The first non-trivial long-time existence result was established by F. John and S. Klein- erman in [19], where it is proved the almost global existence for a class 3D quasilinear scalar wave equations. Global existence for 3D quasilinear wave equations was established firstly by S. Klein- erman in [20] and by D. Christodoulou, independently by S. Kleinerman, in [5]. The problem in 2D case is quite delicate. Introducing the ghost weight, in [1] was proved the global well-posedness for a class 2D nonlinear wave equations. Using a class Hardy-type inequality depending on the compact support of the initial data, in [21] was proved almost global existence for 2D case. Here we propose a new approach for investigations for classical solutions of a class 2D nonlinear wave equations. We investigate for existence of at least two positive solutions for the following IVP utt − ∆u = f(t, x, u, ut, ux), t > 0, x = (x1, x2) ∈ R2, u(0, x) = u0(x), x = (x1, x2) ∈ R2, (1.1) ut(0, x) = u1(x), x = (x1, x2) ∈ R2, where ∆u = ux1x1 + ux2x2, ux = (ux1, ux2). The initial value problem (1.1) has attracted considerable attention in the mathematical community and the well-posedness theory in the Sobolev spaces for polynomial type nonlinearities has been extensively studied. The case of exponential nonlinearity was recently investigated (see [18] and references therein). In particular, if the nonlinearity f and the initial data u0, u1 are smooth then the Cauchy problem (1.1) has a classical local (in time) solution. This follows from Duhamel’s formula via the usual fixed point argument in the space Hsloc × H s−1 loc , s > 2. Such an s guarantee that u, ut, ∇u are in L∞. Note that u ∈ Hsloc means that the H s norm over a ball centered at x0 and with radius 1 is uniformly bounded by a constant independent of x0. We refer the reader to [23] and references therein for more properties and information on nonlinear wave equations. In [17] is proved existence and uniqueness of generalized solutions of the first initial boundary value problem for strongly hyperbolic systems in bounded domains. In the case when f(t, x, u, ut, ux) = f(u(x)), t > 0, x ∈ R2, and u0(x) = u1(x) = 0, x ∈ R2, the problem (1.1) is investigated in [14] where the authors prove existence of at least one nontrivial classical solution of the problem (1.1). CUBO 24, 3 (2022) Two nonnegative solutions for two-dimensional nonlinear... 395 We make the following assumptions on the non-linearity and initial data trough the paper. (H1) u0, u1 ∈ C2(R2), 0 ≤ u0, |u0x1|, |u0x1x1|, |u0x2|, |u0x2x2| ≤ r, 0 ≤ u1, |u1x1|, |u1x1x1|, |u1x2|, |u1x2x2| ≤ r on R 2, where r > 0 is a given constant. (H2) f ∈ C([0, ∞) × R6), 0 ≤ f(t, x, w1, w2, w3, w4) ≤ l∑ j=1 (aj(t, x)|w1|pj + bj(t, x)|w2|pj + cj(t, x)|w3|pj + dj(t, x)|w4|pj ) , (t, x) ∈ [0, ∞) × R2, where aj, bj, cj, dj ∈ C([0, ∞) × R2), 0 ≤ aj, bj, cj, dj ≤ a, pj > 0, j ∈ {1, . . . , l}, where a > 0 and l ∈ N are given constants. Our main result reads as follows. Theorem 1.1. Suppose (H1) and (H2). Then the IVP (1.1) has at least two nonnegative classical solutions. To prove our main result we use a new topological approach. This approach can be used for investigations for existence of at least one and at least two classical solutions for initial value problems, boundary value problems and initial boundary value problems for some classes ordinary differential equations, partial differential equations and fractional differential equations (see [2, 3, 4, 7, 10, 12, 13, 15, 16] and references therein). So far, for the authors they are not known investigations for existence of multiple solutions for the IVP (1.1). The paper is organized as follows. In the next section, we give some auxiliary results. In Section 3, we prove our main result. In Section 4, we give an example. 396 S. Georgiev & M. Majdoub CUBO 24, 3 (2022) 2 Auxiliary Results Let X be a real Banach space. Definition 2.1. A mapping K : X → X is said to be completely continuous if it is continuous and maps bounded sets into relatively compact sets. The concept for k-set contraction is related to that of the Kuratowski measure of noncompactness which we recall for completeness. Definition 2.2. Let ΩX be the class of all bounded sets of X. The Kuratowski measure of non- compactness α : ΩX → [0, ∞) is defined by α(Y ) = inf  δ > 0 : Y = m⋃ j=1 Yj and diam(Yj) ≤ δ, j ∈ {1, . . . , m}   , where diam(Yj) = sup{∥x − y∥X : x, y ∈ Yj} is the diameter of Yj, j ∈ {1, . . . , m}. For the main properties of measure of noncompactness we refer the reader to [6]. Definition 2.3. For a given number k ≥ 0, a map K : X → X is said to be k-set contraction if it is continuous, bounded and α(K(Y )) ≤ kα(Y ) for any bounded set Y ⊂ X. Obviously, if K : X → X is a completely continuous mapping, then K is 0-set contraction. Definition 2.4. Let X and Y be real Banach spaces. A mapping K : X → Y is said to be expansive if there exists a constant h > 1 such that ∥Kx − Ky∥Y ≥ h∥x − y∥X for any x, y ∈ X. Definition 2.5. A closed, convex set P in X is said to be a cone if (1) αx ∈ P for any α ≥ 0 and for any x ∈ P, (2) x, −x ∈ P implies x = 0. CUBO 24, 3 (2022) Two nonnegative solutions for two-dimensional nonlinear... 397 Let P ⊂ X be a cone and define P∗ = P\{0}, Pr1 = { u ∈ P : ∥u∥ ≤ r1 } , Pr1,r2 = { u ∈ P : r1 ≤ ∥u∥ ≤ r2 } for positive constants r1, r2 such that 0 < r1 ≤ r2. The following result will be used to prove Theorem 1.1 . We refer the reader to [8] and [11] for more details. Theorem 2.6. Let P be a cone of a Banach space E; Ω a subset of P and U1, U2 and U3 three open bounded subsets of P such that U1 ⊂ U2 ⊂ U3 and 0 ∈ U1. Assume that T : Ω → P is an expansive mapping with constant h > 1, S : U3 → E is a k-set contraction with 0 ⩽ k < h − 1 and S(U3) ⊂ (I − T)(Ω). Suppose that (U2 \ U1) ∩ Ω ̸= ∅, (U3 \ U2) ∩ Ω ̸= ∅, and there exists u0 ∈ P∗ such that the following conditions hold: (i) Sx ̸= (I − T)(x − λu0), for all λ > 0 and x ∈ ∂U1 ∩ (Ω + λu0), (ii) there exists ϵ > 0 such that Sx ̸= (I − T)(λx), for all λ ≥ 1 + ϵ, x ∈ ∂U2 and λx ∈ Ω, (iii) Sx ̸= (I − T)(x − λu0), for all λ > 0 and x ∈ ∂U3 ∩ (Ω + λu0). Then T + S has at least two non-zero fixed points x1, x2 ∈ P such that x1 ∈ ∂U2 ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω or x1 ∈ (U2 \ U1) ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω. Note that (see [9]) the function G(t, x, τ, ξ) = − 1 2π H(t − τ − |x − ξ|)√ (t − τ)2 − |x − ξ|2 , t, τ > 0, x, ξ ∈ R2, where |x − ξ| = √ (x1 − ξ1)2 + (x2 − ξ2)2, is the Green function for the two-dimensional wave equation utt − ∆u = h(t, x), t > 0, x = (x1, x2) ∈ R2, u(0, x) = ut(0, x) = 0, x = (x1, x2) ∈ R2, where H(·) denotes the Heaviside function. Observe that G(t, x, τ, ξ) ≤ 0, t, τ > 0, x, ξ ∈ R2. 398 S. Georgiev & M. Majdoub CUBO 24, 3 (2022) A key lemma in our proof is the following. Lemma 2.7. For h1, h2, p > 0, we have∣∣∣∣ ∫ R2 ∫ ∞ 0 (h1 + h2τ) pG(t, x, τ, ξ)dτdξ ∣∣∣∣ ≤ (h1 + h2t)pI(t), (t, x) ∈ (0, ∞) × R2, (2.1) where I(t) = t3 + t2(1 + | log t|). Proof. Let h1, h2, p > 0 and t > 0. One has ∣∣∣∣ ∫ R2 ∫ ∞ 0 (h1 + h2τ) pG(t, x, τ, ξ)dτdξ ∣∣∣∣ ≤ 12π ∫ |x−ξ|≤t ∫ t−|x−ξ| 0 (h1 + h2τ) p√ (t − τ)2 − |x − ξ|2 dτdξ ≤ (h1 + h2t) p 2π ∫ |x−ξ|≤t ( log(t + √ t2 − |x − ξ|2) − log |x − ξ| ) dξ = (h1 + h2t) p 2π (∫ |x−ξ|≤t log(t + √ t2 − |x − ξ|2)dξ − ∫ |x−ξ|≤t log |x − ξ|dξ ) ≤ (h1 + h2t) p 2π ( log(2t) ∫ |x−ξ|≤t dξ − 2π ∫ t 0 r1 log r1dr1 ) = (h1 + h2t) p 2π ( πt2 log(2t) − π ( t2 log t − t2 2 )) ≤ (h1 + h2t) p 2 ( t2 log(1 + 2t) + t2| log t| + t2 2 ) ≤ (h1 + h2t) p 2 ( 2t3 + t2| log t| + t2 2 ) ≤ (h1 + h2t)p ( t3 + t2(1 + | log t|) ) . This gives (2.1) as desired. We make the change u = v + u0 + tu1. Then, we get the IVP vtt − ∆v = f(t, x, v + u0 + tu1, vt + u1, vx + u0x + tu1x) + ∆u0 + t∆u1 = f1(t, x, v, vt, vx), t > 0, x ∈ R2, (2.2) v(0, x) = vt(0, x) = 0, x ∈ R2. Lemma 2.8. Suppose (H2). If wk ∈ R, |wk| ≤ b, k ∈ {1, . . . , 4}, for some positive b, then f(t, x, w1, w2, w3, w4) ≤ 4a l∑ j=1 bpj . CUBO 24, 3 (2022) Two nonnegative solutions for two-dimensional nonlinear... 399 Proof. We have 0 ≤ f(t, x, w1, w2, w3, w4) ≤ l∑ j=1 (aj(t, x)|w1|pj + bj(t, x)|w2|pj + cj(t, x)|w3|pj + dj(t, x)|w4|pj ) ≤ l∑ j=1 (abpj + abpj + abpj + abpj ) = 4a l∑ j=1 bpj , (t, x, w1, w2, w3, w4) ∈ [0, ∞) × R6. This completes the proof. Let E = C2([0, ∞) × R2) and for any u ∈ E, denote ∥u∥ = max { ∥u∥∞, ∥ut∥∞, ∥utt∥∞∥uxj ∥∞, ∥uxjxj ∥∞, j ∈ {1, 2} } , provided that it is finite, where ∥v∥∞ = sup (t,x)∈[0,∞)×R2 |v(t, x)|. Lemma 2.9. Suppose (H1) and (H2). Let v ∈ E, ∥v∥ ≤ b, for some positive b. Then f(t, x, v + u0 + tu1, vt + u1, vx + u0x + tu1x) ≤ 4a l∑ j=1 (b + r(1 + t))pj , (t, x) ∈ [0, ∞) × R2. Proof. Let w1 = v + u0 + tu1, w2 = vt + u0 + tu1, w3 = ux1 + u0x1 + tu1x1, w4 = vx2 + u0x2 + tu1x2. Then |wj| ≤ b + r(1 + t), j ∈ {1, . . . , 4}, t ≥ 0. Hence and Lemma 2.8, we get the desired result. This completes the proof. 400 S. Georgiev & M. Majdoub CUBO 24, 3 (2022) Lemma 2.10. Suppose (H1) and (H2). Let v ∈ E, ∥v∥ ≤ b, for some positive b. Then |f1(t, x, v, vt, vx)| ≤ 4a l∑ j=1 (b + r(1 + t))pj + 2r(1 + t), (t, x) ∈ [0, ∞) × R2. Proof. By (H1), we get |∆u0| ≤ 2r, |∆u1| ≤ 2r on R2. Using Lemma 2.9, we obtain |f1(t, x, v, vt, vx)| ≤ f(t, x, v + u0 + tu1, vt + u1, vx + u0x + tu1x) + |∆u0| + t|∆u1| ≤ 4a l∑ j=1 (b + r(1 + t))pj + 2r(1 + t), (t, x) ∈ [0, ∞) × R2. This completes the proof. Now, applying Lemma 2.10 and (2.1), we obtain the following result. Lemma 2.11. Suppose (H1) and (H2). Then ∣∣∣∣ ∫ R2 ∫ ∞ 0 G(t, x, τ, ξ)f1(τ, ξ, v(τ, ξ), vt(τ, ξ), vx(τ, ξ))dτdξ ∣∣∣∣ ≤  4a l∑ j=1 (b + r(1 + t))pj + 2r(1 + t)  I(t) ≤  4a l∑ j=1 (2(b + r))pj + 4a l∑ j=1 (2r)pj tpj + 2r(1 + t)  I(t), (t, x) ∈ [0, ∞) × R2. Take a nonnegative function g ∈ C([0, ∞) × R2). Suppose that v ∈ E is a solution to the integral equation. 0 = 1 8 ∫ t 0 ∫ x1 0 ∫ x2 0 (x1 − s1)2(x2 − s2)2(t − t1)2g(t1, s1, s2)v(t1, s1, s2)ds2ds1dt1 − 1 16π ∫ t 0 ∫ x1 0 ∫ x2 0 (x1 − s1)2(x2 − s2)2(t − t1)2g(t1, s1, s2) ∫ ∞ −∞ ∫ ∞ −∞ ∫ ∞ 0 G(t1, s1, s2, t2, ξ1, ξ2) × f1(t2, ξ1, ξ2, v(t2, ξ1, ξ2), vt(t2, ξ1, ξ2), vx(t2, ξ1, ξ2))dt2dξ2dξ1ds2ds1dt1, (2.3) t ≥ 0, (x1, x2) ∈ R2. We differentiate three times in t, three times in x1 and three times in x2 the equation (2.3) and we obtain 0 = g(t, x)v(t, x) − 1 2π g(t, x) ∫ R2 ∫ ∞ 0 G(t, x, τ, ξ)f1(τ, ξ, v(τ, ξ), vt(τ, ξ), vx(τ, ξ))dτdξ, CUBO 24, 3 (2022) Two nonnegative solutions for two-dimensional nonlinear... 401 t ≥ 0, x ∈ R2, whereupon 0 = v(t, x) − 1 2π ∫ R2 ∫ ∞ 0 G(t, x, τ, ξ)f1(τ, ξ, v(τ, ξ), vt(τ, ξ), vx(τ, ξ))dτdξ, t ≥ 0, x ∈ R2. Hence, using the Green function, we conclude that v is a solution of the IVP (2.2). Thus, any solution v ∈ E of the integral equation (2.3) is a solution to the IVP (2.2). (H3) Let m > 0 be large enough and A, r1, L1, R1 be positive constants that satisfy the following conditions r1 < L1 < R1, r1 < r, R1 > ( 2 5m + 1 ) L1, A  R1 + 4a l∑ j=1 (2(R1 + r)) pj + 4a l∑ j=1 (2r)pj + 2r   < L1 20 . (H4) There exists a nonnegative function g ∈ C([0, ∞) × R2) such that q(t, x1, x2) = ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)g(t1, s1, s2) × ( 1 + |x1 − s1| + (x1 − s1)2 )( 1 + |x2 − s2| + (x2 − s2)2 ) × ( 1 + (t − t1) + (t − t1)2 )1 +  1 + t1 + l∑ j=1 t pj 1  I(t1)  ds2ds1dt1 ≤ A, (t, x1, x2) ∈ [0, ∞) × R2. In the last section we will give an example for the constants m, A, r, L1, R1 and R and for a function g that satisfy (H3) and (H4). For v ∈ E, define the operator Fv(t, x1, x2) = 1 8 ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x1 − s1)2(x2 − s2)2(t − t1)2g(t1, s1, s2) × v(t1, s1, s2)ds2ds1dt1 − 1 16π ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x1 − s1)2(x2 − s2)2(t − t1)2g(t1, s1, s2) × ∫ ∞ −∞ ∫ ∞ −∞ ∫ ∞ 0 G(t1, s1, s2, t2, ξ1, ξ2) × f1(t2, ξ1, ξ2, v(t2, ξ1, ξ2), vt(t2, ξ1, ξ2), vx(t2, ξ1, ξ2))dt2dξ2dξ1ds2ds1dt1, (t, x1, x2) ∈ [0, ∞) × R2. Lemma 2.12. Suppose (H1)–(H3). Then, for v ∈ E, ∥v∥ ≤ b, for some positive b, we have ∥Fv∥ ≤ A  b + 4a l∑ j=1 (2(b + r))pj + 4a l∑ j=1 (2r)pj + 2r   . 402 S. Georgiev & M. Majdoub CUBO 24, 3 (2022) Proof. Using Lemma 2.11 and (H3), we get |Fv(t, x1, x2)| ≤ 1 8 ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x1 − s1)2(x2 − s2)2(t − t1)2g(t1, s1, s2) × |v(t1, s1, s2)|ds2ds1dt1 + 1 16π ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x1 − s1)2(x2 − s2)2(t − t1)2g(t1, s1, s2) × ∣∣∣∣ ∫ ∞ −∞ ∫ ∞ −∞ ∫ ∞ 0 G(t1, s1, s2, t2, ξ1, ξ2) × f1(t2, ξ1, ξ2, v(t2, ξ1, ξ2), vt(t2, ξ1, ξ2), vx(t2, ξ1, ξ2))dt2dξ2dξ1 ∣∣∣∣ds2ds1dt1 ≤ bA + 4a l∑ j=1 (2(b + r))pj ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x1 − s1)2(x2 − s2)2(t − t1)2 × g(t1, s1, s2)I(t1)ds2ds1dt1 + 4a l∑ j=1 (2r)pj ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x1 − s1)2(x2 − s2)2(t − t1)2 × g(t1, s1, s2)t pj 1 I(t1)ds2ds1dt1 + 2r ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x1 − s1)2(x2 − s2)2(t − t1)2 × g(t1, s1, s2)(1 + t1)I(t1)ds2ds1dt1 ≤ A  b + 4a l∑ j=1 (2(b + r))pj + 4a l∑ j=1 (2r)pj + 2r   , (t, x1, x2) ∈ [0, ∞) × R2, and ∣∣∣∣ ∂∂tFv(t, x1, x2) ∣∣∣∣ ≤ 14 ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x1 − s1)2(x2 − s2)2(t − t1)g(t1, s1, s2) × |v(t1, s1, s2)|ds2ds1dt1 + 1 8π ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x1 − s1)2(x2 − s2)2(t − t1)g(t1, s1, s2) × ∣∣∣∣ ∫ ∞ −∞ ∫ ∞ −∞ ∫ ∞ 0 G(t1, s1, s2, t2, ξ1, ξ2) × f1(t2, ξ1, ξ2, v(t2, ξ1, ξ2), vt(t2, ξ1, ξ2), vx(t2, ξ1, ξ2))dt2dξ2dξ1 ∣∣∣∣ds2ds1dt1 ≤ bA + 4a l∑ j=1 (2(b + r))pj ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x1 − s1)2(x2 − s2)2(t − t1) × g(t1, s1, s2)I(t1)ds2ds1dt1 CUBO 24, 3 (2022) Two nonnegative solutions for two-dimensional nonlinear... 403 + 4a l∑ j=1 (2r)pj ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x1 − s1)2(x2 − s2)2(t − t1) × g(t1, s1, s2)t pj 1 I(t1)ds2ds1dt1 + 2r ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x1 − s1)2(x2 − s2)2(t − t1) × g(t1, s1, s2)(1 + t1)I(t1)ds2ds1dt1 ≤ A  b + 4a l∑ j=1 (2(b + r))pj + 4a l∑ j=1 (2r)pj + 2r   , (t, x1, x2) ∈ [0, ∞) × R2, and ∣∣∣∣ ∂2∂t2 Fv(t, x1, x2) ∣∣∣∣ ≤ 14 ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x1 − s1)2(x2 − s2)2g(t1, s1, s2) × |v(t1, s1, s2)|ds2ds1dt1 + 1 8π ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x1 − s1)2(x2 − s2)2g(t1, s1, s2) × ∣∣∣∣ ∫ ∞ −∞ ∫ ∞ −∞ ∫ ∞ 0 G(t1, s1, s2, t2, ξ1, ξ2) × f1(t2, ξ1, ξ2, v(t2, ξ1, ξ2), vt(t2, ξ1, ξ2), vx(t2, ξ1, ξ2))dt2dξ2dξ1 ∣∣∣∣ds2ds1dt1 ≤ bA + 4a l∑ j=1 (2(b + r))pj ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x1 − s1)2(x2 − s2)2 × g(t1, s1, s2)I(t1)ds2ds1dt1 + 4a l∑ j=1 (2r)pj ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x1 − s1)2(x2 − s2)2 × g(t1, s1, s2)t pj 1 I(t1)ds2ds1dt1 + 2r ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x1 − s1)2(x2 − s2)2 × g(t1, s1, s2)(1 + t1)I(t1)ds2ds1dt1 ≤ A  b + 4a l∑ j=1 (2(b + r))pj + 4a l∑ j=1 (2r)pj + 2r   , (t, x1, x2) ∈ [0, ∞) × R2, and ∣∣∣∣ ∂∂x1 Fv(t, x1, x2) ∣∣∣∣ ≤ 14 ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)|x1 − s1|(x2 − s2)2(t − t1)2g(t1, s1, s2) × |v(t1, s1, s2)|ds2ds1dt1 + 1 8π ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)|x1 − s1|(x2 − s2)2(t − t1)2g(t1, s1, s2) 404 S. Georgiev & M. Majdoub CUBO 24, 3 (2022) × ∣∣∣∣ ∫ ∞ −∞ ∫ ∞ −∞ ∫ ∞ 0 G(t1, s1, s2, t2, ξ1, ξ2) × f1(t2, ξ1, ξ2, v(t2, ξ1, ξ2), vt(t2, ξ1, ξ2), vx(t2, ξ1, ξ2))dt2dξ2dξ1 ∣∣∣∣ds2ds1dt1 ≤ bA + 4a l∑ j=1 (2(b + r))pj ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)|x1 − s1|(x2 − s2)2(t − t1)2 × g(t1, s1, s2)I(t1)ds2ds1dt1 + 4a l∑ j=1 (2r)pj ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)|x1 − s1|(x2 − s2)2(t − t1)2 × g(t1, s1, s2)t pj 1 I(t1)ds2ds1dt1 + 2r ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)|x1 − s1|(x2 − s2)2(t − t1)2 × g(t1, s1, s2)(1 + t1)I(t1)ds2ds1dt1 ≤ A  b + 4a l∑ j=1 (2(b + r))pj + 4a l∑ j=1 (2r)pj + 2r   , (t, x1, x2) ∈ [0, ∞) × R2, and ∣∣∣∣ ∂2∂x21 Fv(t, x1, x2) ∣∣∣∣ ≤ 14 ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x2 − s2)2(t − t1)2g(t1, s1, s2) × |v(t1, s1, s2)|ds2ds1dt1 + 1 8π ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x2 − s2)2(t − t1)2g(t1, s1, s2) × ∣∣∣∣ ∫ ∞ −∞ ∫ ∞ −∞ ∫ ∞ 0 G(t1, s1, s2, t2, ξ1, ξ2) × f1(t2, ξ1, ξ2, v(t2, ξ1, ξ2), vt(t2, ξ1, ξ2), vx(t2, ξ1, ξ2))dt2dξ2dξ1 ∣∣∣∣ds2ds1dt1 ≤ bA + 4a l∑ j=1 (2(b + r))pj ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x2 − s2)2(t − t1)2 × g(t1, s1, s2)I(t1)ds2ds1dt1 + 4a l∑ j=1 (2r)pj ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x2 − s2)2(t − t1)2 × g(t1, s1, s2)t pj 1 I(t1)ds2ds1dt1 + 2r ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)(x2 − s2)2(t − t1)2 × g(t1, s1, s2)(1 + t1)I(t1)ds2ds1dt1 CUBO 24, 3 (2022) Two nonnegative solutions for two-dimensional nonlinear... 405 ≤ A  b + 4a l∑ j=1 (2(b + r))pj + 4a l∑ j=1 (2r)pj + 2r   , (t, x1, x2) ∈ [0, ∞) × R2. As above, one can obtain ∣∣∣∣ ∂∂x2 Fv(t, x1, x2) ∣∣∣∣ ≤ A  b + 4a l∑ j=1 (2(b + r))pj + 4a l∑ j=1 (2r)pj + 2r   , (t, x1, x2) ∈ [0, ∞) × R2, and ∣∣∣∣ ∂2∂x22 Fv(t, x1, x2)| ≤ A  b + 4a l∑ j=1 (2(b + r))pj + 4a l∑ j=1 (2r)pj + 2r   , (t, x1, x2) ∈ [0, ∞) × R2. Consequently ∥Fv∥ ≤ A  b + 4a l∑ j=1 (2(b + r))pj + 4a l∑ j=1 (2r)pj + 2r   . This completes the proof. 3 Proof of the Main Result Let P̃ = {u ∈ E : u ≥ 0 on [0, ∞) × R2}. With P we will denote the set of all equi-continuous families in P̃. Note that Fv ≥ 0 for any v ∈ P. Let ϵ > 0. For v ∈ E, define the operators Tv(t, x) = (1 + mϵ)v(t, x) − ϵ L1 10 , Sv(t, x) = −ϵFv(t, x) − mϵv(t, x) − ϵ L1 10 , (t, x) ∈ [0, ∞) × R2. Note that any fixed point v ∈ E of the operator T + S is a solution to the IVP (2.2). Define U1 = Pr1 = {v ∈ P : ∥v∥ < r1}, U2 = PL1 = {v ∈ P : ∥v∥ < L1}, U3 = PR1 = {v ∈ P : ∥v∥ < R1}, 406 S. Georgiev & M. Majdoub CUBO 24, 3 (2022) R2 = R1 + A m  R1 + 4a l∑ j=1 (2(R1 + r)) pj + 4a l∑ j=1 (2r)pj + 2r   + L1 5 , Ω = PR2 = {v ∈ P : ∥v∥ ≤ R2}. 1. For v1, v2 ∈ Ω, we have ∥Tv1 − Tv2∥ = (1 + mϵ)∥v1 − v2∥, whereupon T : Ω → E is an expansive operator with a constant 1 + mϵ > 1. 2. For v ∈ PR1, we get ∥Sv∥ ≤ ϵ∥Fv∥ + mϵ∥v∥ + L1 10 ≤ ϵ ( A  R1 + 4a l∑ j=1 (2(R1 + r)) pj + 4a l∑ j=1 (2r)pj + 2r   + mR1 + L1 10 ) . Therefore S(PR1) is uniformly bounded. Since S : PR1 → E is continuous, we have that S(PR1) is equi-continuous. Consequently S : PR1 → E is a 0-set contraction. 3. Let v1 ∈ PR1. Set v2 = v1 + 1 m Fv1 + L1 5m . Note that by the second inequality of (H3) and by Lemma 2.12, it follows that ϵFv+ϵL1 5 ≥ 0 on [0, ∞) × R2. We have v2 ≥ 0 on [0, ∞) × R2 and ∥v2∥ ≤ ∥v1∥ + 1 m ∥Fv1∥ + L1 5m ≤ R1 + A m ( R1 + 4a l∑ j=1 (2(R1 + r)) pj + 4a l∑ j=1 (2r)pj + 2r ) + L1 5 = R2. Therefore v2 ∈ Ω and −ϵmv2 = −ϵmv1 − ϵFv1 − ϵ L1 10 − ϵ L1 10 or (I − T)v2 = −ϵmv2 + ϵ L1 10 = Sv1. Consequently S(PR1) ⊂ (I − T)(Ω). 4. Suppose that there exists an v0 ∈ P∗ such that T(v−λv0) ∈ P, v ∈ ∂Pr1, v ∈ ∂Pr1 ⋂ (Ω+λu0) CUBO 24, 3 (2022) Two nonnegative solutions for two-dimensional nonlinear... 407 and Sv = v − λv0 for some λ ≥ 0. Then r1 = ∥v − λv0∥ = ∥Sv∥ ≥ −Sv(t, x) = ϵFv(t, x) + ϵmv(t, x) + ϵ L1 10 ≥ ϵ L1 20 , (t, x) ∈ [0, ∞) × R2, because by the second inequality of (H3) and by Lemma 2.12, it follows that ϵFv + ϵL1 20 ≥ 0 on [0, ∞) × R2. 5. Suppose that for any ϵ1 > 0 small enough there exist a u ∈ ∂PL and λ1 ≥ 1 + ϵ1 such that λ1u ∈ PR1 and Su = (I − T)(λ1u). (3.1) In particular, for ϵ1 > 2 5m , we have u ∈ ∂PL, λ1u ∈ PR1, λ1 ≥ 1 + ϵ1 and (3.1) holds. Since u ∈ ∂PL and λ1u ∈ PR1, it follows that( 2 5m + 1 ) L < λ1L = λ1∥u∥ ≤ R1. Moreover, −ϵFu − mϵu − ϵ L 10 = −λ1mϵu + ϵ L 10 , or Fu + L 5 = (λ1 − 1)mu. From here, 2 L 5 ≥ ∥∥∥∥Fu + L5 ∥∥∥∥ = (λ1 − 1)m∥u∥ = (λ1 − 1)mL and 2 5m + 1 ≥ λ1, which is a contradiction. Therefore all conditions of Theorem 2.6 hold. Hence, the IVP (2.2) has at least two solutions v1 and v2 so that r1 < ∥v1∥ < L1 < ∥v2∥ < R1, and u = v1 + u0 + tu1, w = v2 + u0 + tu1 408 S. Georgiev & M. Majdoub CUBO 24, 3 (2022) are two different positive solutions of the IVP (1.1). This completes the proof. 4 An Example Let l = 1, p1 = 3 5 , R1 = r = 1, a = 200, L1 = 1 2 , r1 = 1 100 , m = 1050, ϵ = 50, A = 1 1010 , R = 100. Then R1 > ( 2 5m + 1q ) L1, r1 < L1 < R1, r1 < L1 20 . Also, A  R1 + 4a l∑ j=1 (2(R1 + r)) pj + 4a l∑ j=1 (2r)pj + 2r   = 1 1010 ( 1 + 800 · (4)2 + 800 · 4 + 2 ) < 1 40 = L1 20 . Consequently (H3) holds. Now, we will construction the function g in (H4). Let h(x) = log 1 + s11 √ 2 + s22 1 − s11 √ 2 + s22 , l(s) = arctan s11 √ 2 1 − s22 , s ∈ R. Then h′(s) = 22 √ 2s10(1 − s22) (1 − s11 √ 2 + s22)(1 + s11 √ 2 + s22) , l′(s) = 11 √ 2s10(1 + s20) 1 + s40 , s ∈ R. Therefore −∞ < lim s→±∞ (1 + s + s2)h(s) < ∞, −∞ < lim s→±∞ (1 + s + s2)l(s) < ∞. Hence, there exists a positive constant C1 so that (1 + s + s2) ( 1 44 √ 2 log 1 + s11 √ 2 + s22 1 − s11 √ 2 + s22 + 1 22 √ 2 arctan s11 √ 2 1 − s22 ) ≤ C1, s ∈ R. CUBO 24, 3 (2022) Two nonnegative solutions for two-dimensional nonlinear... 409 Note that by [22, p. 707, Integral 79], we have ∫ dz 1 + z4 = 1 4 √ 2 log 1 + z √ 2 + z2 1 − z √ 2 + z2 + 1 2 √ 2 arctan z √ 2 1 − z2 . Let Q(s) = s10 (1 + s44)(1 + s + s2)2(1 + ((1 + s + s2)I(s))2) , s ∈ R, and g1(t, x1, x2) = Q(t)Q(x1)Q(x2), t ∈ [0, ∞), x1, x2 ∈ R. Then there exists a constant C2 > 0 so that C2 ≥ ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)g1(t1, s1, s2) × ( 1 + |x1 − s1| + (x1 − s1)2 )( 1 + |x2 − s2| + (x2 − s2)2 ) × ( 1 + (t − t1) + (t − t1)2 )( 1 + (1 + t1 + t 2 1)I(t1) ) ds2ds1dt1, (t, x1, x2) ∈ [0, ∞) × R2. Now, we take g(t, x1, x2) = 1 1020C2 g1(t, x1, x2), (t, x1, x2) ∈ [0, ∞) × R2. Then A = 1 1010 ≥ ∫ t 0 ∫ x1 0 ∫ x2 0 sign(x1)sign(x2)g(t1, s1, s2) × ( 1 + |x1 − s1| + (x1 − s1)2 )( 1 + |x2 − s2| + (x2 − s2)2 ) × ( 1 + (t − t1) + (t − t1)2 )( 1 + (1 + t1 + t 2 1)I(t1) ) ds2ds1dt1, (t, x1, x2) ∈ [0, ∞) × R2. Now, consider the IVP utt − ux1x1 − ux2x2 = w(t)u 3 5 , (t, x1, x2) ∈ (0, ∞) × R2, u(0, x) = ut(0, x) = 0, (x1, x2) ∈ R2, (4.1) where w(t) =   10(9t2 − 9t + 2) t ∈ [0, 1] 20 t > 1. 410 S. Georgiev & M. Majdoub CUBO 24, 3 (2022) Here l = 1, a1(t, x1, x2) = |w(t)| ≤ a = 200, b1(t, x1, x2) = c1(t, x1, x2) = d1(t, x1, x2) = 0, (t, x1, x2) ∈ [0, ∞) × R2, and u0(x) = u1(x) = 0 ≤ 1 = r, (x1, x2) ∈ R2. We have that (H1) and (H2) hold. The IVP (4.1) has two nonnegative solutions u1(t, x) = 0, (t, x) ∈ [0, ∞) × R2, and u2(t, x) =   (t(1 − t))5 (t, x) ∈ [0, 1] × R2 0 (t, x) ∈ (1, ∞) × R2. Acknowledgements The authors thank the reviewers for the careful reading of the manuscript and helpful comments. CUBO 24, 3 (2022) Two nonnegative solutions for two-dimensional nonlinear... 411 References [1] S. Alinhac, “The null condition for quasilinear wave equations in two space dimensions I”, Invent. Math., vol. 145, no. 3, pp. 597–618, 2001. [2] L. Benzenati, S. G. Georgiev and K. Mebarki, “Existence of positive solutions for some kinds of BVPs in Banach spaces”, submitted for publication. [3] L. Benzenati and K. Mebarki, “Multiple positive fixed points for the sum of expansive map- pings and k-set contractions”, Math. Methods Appl. Sci., vol. 42, no. 13, pp. 4412–4426, 2019. [4] L. Benzenati, K. Mebarki and R. Precup, “A vector version of the fixed point theorem of cone compression and expansion for a sum of two operators”, Nonlinear Stud., vol. 27, no. 3, pp. 563–575, 2020. [5] D. Christodoulou, “Global solutions of nonlinear hyperbolic equations for small data”, Comm. Pure Appl. Math., vol. 39, no. 2, pp. 267–282, 1986. [6] K. Deimling, Nonlinear functional Analysis, Heidelberg: Springer Berlin, 1985. [7] S. Djebali and K. Mebarki, “Fixed Point Theory for Sums of Operators”, J. Nonlinear Convex Anal., vol. 19, no. 6, pp. 1029–1040, 2018. [8] S. Djebali and K. Mebarki, “Fixed point index for expansive perturbation of k-set contraction mappings”, Topol. Methods Nonlinear Anal., vol. 54, no. 2, pp. 613–640, 2019. [9] D. Duffy, Green’s function with Applications, 1st edition, Boca Raton: Chapman & Hall/CRC Press, 2001. [10] S. G. Georgiev and Z. Khaled, Multiple fixed-point theorems and applications in the theory of ODEs, FDEs and PDEs, Monographs and research notes in mathematics, Boca Raton: CRC Press, 2020. [11] S. Georgiev, A. Kheloufi and K. Mebarki, “Classical solutions for the Korteweg-De Vries equation”, New Trends in Nonlinear Analysis and Applications, to be published. [12] S. G. Georgiev and K. Mebarki, “Existence of positive solutions for a class ODEs, FDEs and PDEs via fixed point index theory for the sum of operators”, Comm. Appl. Nonlinear Anal., vol. 26, no. 4, pp. 16–40, 2019. [13] S. G. Georgiev and K. Mebarki, “On fixed point index theory for the sum of operators and applications in a class ODEs and PDEs”, submitted for publication. 412 S. Georgiev & M. Majdoub CUBO 24, 3 (2022) [14] S. Georgiev and K. Mebarki, “Leggett-Williams fixed point theorem type for sums of two operators and application in PDEs”, Differ. Equ. Appl., vol. 13, no. 3, pp. 321–344, 2021. [15] S. G. Georgiev, K. Mebarki and Kh. Zennir, “Existence of solutions for a class of nonlinear hyperbolic equations”, submitted for publication. [16] S. G. Georgiev, K. Mebarki and Kh. Zennir, “Existence of solutions for a class IVP for nonlinear wave equations”, submitted for publication. [17] N. M. Hung, “Asymptotic behaviour of solutions of the first boundary-value problem for strongly hyperbolic systems near a conical point at the boundary of the domain”, Sb. Math., vol. 190, no. 7, pp. 1035–1058, 1999. [18] S. Ibrahim, M. Majdoub and N. Masmoudi, “Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity”, Comm. Pure Appl. Math., vol. 59, no. 11, pp. 1639–1658, 2006. [19] F. John and S. Klainerman, “Almost global existence to nonlinear wave equations in three space dimensions”, Comm. Pure Appl. Math., vol. 37, no. 4, pp. 443–455, 1984. [20] S. Klainerman, “The null condition and global existence to nonlinear wave equations”, Lec- tures in Appl. Math., vol. 23, pp. 293–326, 1986. [21] Z. Lei, T. C. Sideris and Y. Zhou, “Almost Global existence for two dimensional incompressible isotropic elastodynamics”, Trans. Amer. Math. Soc., vol. 367, no. 11, pp. 8175–8197, 2015. [22] A. Polyanin and A. Manzhirov, Handbook of integral equations, Boca Raton: CRC Press, 1998. [23] C. D. Sogge, Lectures on nonlinear wave equations, 2nd Edition, Boston: International press, Inc., 2013. Introduction Auxiliary Results Proof of the Main Result An Example