
Decision Making: Applications in Management and Engineering 
Vol. 5, Issue 1, 2022, pp. 290-308.  
ISSN: 2560-6018 
eISSN: 2620-0104  

 DOI: https://doi.org/10.31181/dmame191221060l 

* Corresponding author. 
   E-mail addresses: rs_bulendralimboo@dibru.ac.in (B. Limboo), palashdutta@dibru.ac.in (P. 
Dutta) 

A Q-RUNG ORTHOPAIR BASIC PROBABILITY 
ASSIGNMENT AND ITS APPLICATION IN MEDICAL 

DIAGNOSIS 

Bulendra Limboo1* and Palash Dutta2 

1 Department of Mathematics, Dibrugarh University, Assam, India 
 

Received: 3 May 2021;  
Accepted: 1 November 2021;  
Available online: 20 December 2021. 

 
Original scientific paper 

Abstract: Dempster-Shafer theory is widely used in decision-making and 
considered as one of the potential mathematical tools in order to fuse the 
evidence. However, existing studies in this theory show disadvantage due to 
conflicting nature of standard evidence set and the combination rule of 
evidence. In this paper, we have constructed the framework of q-rung 
evidence set to address the issue of conflicts based on the q-rung fuzzy 
number due to its more comprehensive range of advantage compared to the 
other fuzzy or discrete numbers. The proposed q-rung evidence set has the 
flexibility in assessing a parameter through the q-rung orthopair basic 
probability assignment consisting of membership and non-membership belief 
degree. Moreover, as the proposed q-rung orthopair basic probability 
assignment consists of pair of belief degrees, the possibility of conflicts cannot 
be ignored entirely. In this regard, a new association coefficient measure is 
introduced where each component of the belief degrees is modified through 
the weighted average mass technique. This paper uses various concept such 
as fuzzy soft sets, Deng entropy, association coefficient measure and score 
function for decision-making problem. Firstly, to obtain the initial q-rung 
belief function, we have implemented the Intuitionistic fuzzy soft set to assess 
the parameter of the alternatives and Deng entropy to find the uncertainty of 
the parameters. Secondly, the association coefficient measure is used to avoid 
the conflict through the modified form of evidence. Finally, we combined the 
evidence and found the score value of the Intuitionistic fuzzy numbers for the 
ranking of the alternatives based on the score values of alternatives. This 
study is validated with the case study in the medical diagnosis problem from 
the existing paper and compared the ranking of alternatives based on the 
score function of belief measures of the alternatives.  
 

Key words: Fuzzy soft set, q-rung belief function, Association coefficient 
measure, Medical diagnosis. 
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1. Introduction 

Decision-making in real life problems depends on the knowledge and information 
of the parameters, which affects the decision alternatives. In order to model the 
information with less uncertainty, various theories are discussed in literature to deal 
with the uncertainty in which Probability theory, Fuzzy set theory, and evidence 
theory are a few of them that are very popular in decision-making. Fuzzy set theory 
was first introduced by L. Zadeh in 1965, and it was further generalized into Interval-
valued fuzzy set (Gorzałczany, 1987)., Intuitionistic fuzzy set (Atanassov, 1986), 
Pythagorean fuzzy set (Yager, 2013), q-rung fuzzy set (Yager, 2016), and Picture 
fuzzy set (Cuong, 2015), etc. The extended theories of fuzzy sets are applied in 
various directions by integrating with the fuzzy soft set theory, Dempster-Shafer 
theory, and multi-criteria decision-making. Molodtsov, (1999) proposed soft set 
theory for the adequate parametrization of the parameters, and fuzzy soft set was 
later developed by Maji et al. (2001). The proposed theories are widely used in 
decision-making problem. Das et al. (2013) studied intuitionistic multi-fuzzy sets in 
group decision-making. Çelik & Yamak, (2013) applied fuzzy soft set theory in 
medical diagnosis using fuzzy arithmetic operations. Peng et al. (2015) used 
Intuitionistic fuzzy soft set in the decision-making after the introduction of 
Intuitionistic fuzzy soft (Maji, 2001). We have also developed the concept of Bell-
shaped fuzzy soft sets (Dutta & Limboo, 2017) and applied it in medical diagnosis. 
Das et al. (2017) proposed robust decision-making using intuitionistic fuzzy 
numbers. Krishankumar et al. (2019) proposed the q-rung orthopair fuzzy set with 
partially known weight in the evaluation of renewable energy sources. Hussain et al. 
(2020) proposed the q‐Rung orthopair fuzzy soft average aggregation operator and 
their application in multicriteria decision‐making. Mishra et al. (2021) extended the 
fuzzy decision-making framework using hesitant fuzzy sets for the drug selection of 
coronavirus disease (COVID-19). 

Dempster-Shafer theory has been applied with its discrete basic probability 
assignment, a generalization of classical probability theory, and was first introduced 
in the year 1967 (Dempster, 1967; Shafer, 1976). In literature, this theory offers 
various applications in decision-making problems of many fields of sensor data 
fusion (Jiang et al. 2016; Xiao & Qin, 2018; Xiao, 2019), medical diagnosis (Li et al. 
2015; Xiao, 2018; Chen et al. 2019), target recognition (Pan & Deng, 2019), multi-
criteria decision-making (Li & Deng, 2019) etc., though it has produced some conflicts 
in the evidence combination rule (Zadeh, 1978). The conflicts and counterinitiatives 
nature of evidence have been addressed for several decades. Researchers developed 
another form of combination rule (Dubois & Prade, 1986; Yager, 1987; Inagaki, 1991; 
Zhang, 1994) after realising that the conflicts can be resolved by either the method of 
pre-processing or modifying the basic probability assignment (BPA) before applying 
Dempster’s combination rule (Murphy, 2000; Deng et al. 2004; Jiang, 2016; Xiao & 
Qin, 2018). In the application of medical diagnosis, Li et al. (2015) used fuzzy soft set 
(FSS) and Dempster-Shafer theory (DST) in medical diagnosis problem and compared 
the result of the case study that put forward in Basu et al. (2012) with the earlier 
technique. Wang et al. (2016) proposed a method of using ambiguity measure, fuzzy 
soft set and Dempster-Shafer theory in the medical diagnosis. Xiao, (2018) proposed 
the fuzzy preference relation and fuzzy soft set technique in medical diagnosis. Chen 
et al. (2019) proposed the weighted average mass technique in medical diagnosis and 
compared with the earlier method. Zhou et al. (2020) proposed a novel divergence 
measure of Pythagorean fuzzy set (PFS) connecting the belief function and PFS with 
the application in the medical diagnosis.  
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In evidence theory, Interval-valued and fuzzy form of BPA is more efficient than 
the precise BPA to reflect the uncertainty of a parameters. In this regard, Yager, 
(2001) put forward interval-valued belief structure (IBS) and Yager, (2014) proposed 
the intuitionistic view of the Dempster-Shafer belief structure. Song et al. (2015) 
proposed a new distance measure between Intuitionistic beliefs functions based on 
the new similarity measure of IFS with its properties. Apart from this, Li & Deng, 
(2019) proposed the concept of Intuitionistic evidence set in the form of support and 
non-support belief degree of BPAs and applied the concept in multi-criteria decision-
making (MCDM). Gao & Deng, (2020) introduced the quantum model of the mass 
function and established the relationship between quantum mass function and 
classical mass function with examples. Xiao, (2020) generalizes the DST by 
introducing the complex basic probability assignment and applied it in medical 
diagnosis problem to show the efficiency of the proposed algorithm. Kar et al. (2021) 
used picture fuzzy set based fusion operator and Dempster-Shafer theory in the 
medicine selection of covid 19 disease. In this paper, the main motivation and 
contributions of the paper are as follows: 

 To address the issue of conflict in evidence theory is still an open issue and 
the assessment of the alternatives from human cognitive subjective 
knowledge in more flexible way is always helpful in precise decision-making 
process. 

 We have introduced a new form of evidence theory called q-rung evidence 
set of classical evidence theory in the form of pair of support and non-
support degree of basic probability assignment. The q-RoBPA is effective 
due to its flexibility offered to decision maker for the assessment of the 
alternatives based on the support as well as non-support degree of belief in 
the assessment of a problem. 

 Since, the proposed q-rung orthopair BPA is based on the pair of two belief 
degree, therefore their conflict nature cannot be fully ignored. For this, we 
have further proposed an association coefficient measure to handle the 
uncertainty involved in the q-Rung basic probability assignment (q-RoBPA). 

 The present method is based on the use of novel q-RoBPA and association 
coefficient measure in the medical diagnosis case study that put forward in 
Basu et al. (2012) and compared its belief measure with the existing method 
to show its efficiency and superiority.  

The present paper is organised as follows: In the section 2, the basic overview of 
the preliminary concepts of Dempster-Shafer theory, and some theories related to 
uncertainty measure viz. Deng entropy, distance measure and association coefficient 
measure with related property are put forward in section 3. Section 4 carried out the 
fundamental ideas of fuzzy set theory and fuzzy soft set with related properties. In 
section 5, we have proposed the new form of evidence theory and introduced an 
association coefficient measure to handle the uncertainty in the process of conflict 
management. In section 6, we have put forward an algorithm to implement the 
proposed association coefficient measure on the q-rung orthopair basic probability 
assignment and also, an application in medical diagnosis is carried out in section 7. 
Section 8 concludes the paper. 

2. Preliminaries 

In this section, we have put forward some fundamental concepts of DST and 
uncertainty measure of evidence. 
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2.1. Dempster-Shafer Theory: Basic Concept 

Definition 1 (Dempster, 1967; Shafer, 1976): Let 1 2{ , ,..., }NX x x x be a collection 

of  mutually exclusive and exhaustive elements and the collection of all the 
hypotheses 

iF  is defined by the power set of X  such that 

1 1 22 { ,{ },...,{ },{ , },..., }X

nx x x x X . Then, X  is called as the frame of discernment 

(FOD) such that 
1 2 22 { , ,..., ,..., }N

X

iF F F F . 

Definition 2 (Dempster, 1967; Shafer, 1976): The basic probability assignment 

(BPA) is a function  : 2 [0,1]Xm   that satisfies the condition 

( ) 0m    and 
 

( ) 1
i

i

F X

m F


   (1) 

where the collection 
1 2 22 { , ,..., ,..., }N

X

iF F F F  is 2N possible propositions. 

 
Definition 3 (Dempster, 1967; Shafer, 1976): The belief measure of F  on X  is a 

function : 2 [0,1]XBel   which satisfies the condition 

( ) 0Bel   , ( ) ( )
i

i

F F

Bel F m F


    (2) 

Plausibility measure of F  is also a function : 2 [0,1]XPl   which satisfies the 

condition 

( ) 0Pl   , ( ) ( )
i

i

F F

Pl F m F
 

    (3) 

Definition 4 (Dempster, 1967): The Dempster’s combination rule for combining 

two BPAs 1m and 2m  is a joint function 1 2 : 2 [0,1]Xm m  defined as 

 
 

1 2 1 2

1
( ) ( ) ( )

1
i j

i j

F F F

m m F m F m F
K  

 


  (4) 

In addition,  1 2 ( ) 0m m    and 
1 2( ) ( )

i j

i j

F F

K m F m F
 

  represents the conflict 

coefficient between 1m
 
and 2m . Two pieces of evidence are said to be in conflict 

whenever 1K  . The counter-intuitiveness and conflicts of BPAs are reduced and 
managed with the help of various methods of uncertainty measure. 

3. Some Uncertainty Measure in Dempster Shafer Theory 

Deng entropy (Deng, 2015) is used to measure the uncertainty contained in the 
BPAs, whereas distance measure (Jousselme, 2001; Cheng, 2019), similarity measure 
(Xiao, 2018) and divergence measure (Fei et al. 2018; Xiao, 2019; Zhou et al. 2020) 
are the measure to distinguish two belief functions, and is also used to modify the 
conflicting evidence.  

Definition 5 (Deng, 2015): Let m  be the BPA on the discernment frame X . The 

Deng’s entropy dE  of m  is defined as 

2

 2

( )
( ) ( ) log

2 1i
X

i

i

d i F
F

m F
E m m F

 

 
  

 
   (5) 
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In particular, if 1iF  , then Deng’s belief entropy reduces to 

 2

 2

( ) ( ) log ( )
X

i

d i i

F

E m m F m F
 

    (6) 

Definition 6 (Jousselme, 2001): Consider 1m  and 2m  be two BPAs defined on the 

FOD X . Then, the Jousselme’s evidence distance between two BPAs is defined as 

1 2 1 2 1 2

1
( , ) ( ) ( )

2

td m m m m D m m      (7) 

where 1m  and 2m  be the BPAs in the vector form. The matrix D  is the Jaccard’s 

matrix of order 2 2N N  whose elements ( , )i jD F F
 

are the Jaccard’s similarity 

coefficient defined by 

( , )
i j

i j

i j

F F
D F F

F F





, for all , 2X

i jF F    (8) 

Definition 7 (Cheng, 2019): Cheng’s distance measure between two BPAs 1m  and 

2m  is defined as 

1 2 1 2 1 2

1
( , ) ( ) ( )

2

td m m m m D m m     (9) 

where D   is the matrix of order 2 2N N  whose entries ( , )i jD F F  are defined as 

( , )
i j i j

i j

i j

F F F F
D F F

F F


 
  ,  for all , 2X

i jF F    (10) 

Definition 8 (Jiang, 2016): The Jiang’s correlation coefficient measure between 

1m  and 2m  is defined as 

1 2

1 2

1 1 2 2

( , )
( , )

( , ) ( , )

c m m
r m m

c m m c m m
 ,   (11) 

where 
2 1̀ 2 1

1 2 1 2

1 1

| |
( , ) ( ) ( )

| |

N N

i j

i j

i j i j

F F
c m m m F m F

F F

 

 


 


    (12) 

Definition 9 (Pan & Deng, 2019): Pan & Deng’s association coefficient measure 
between 1m  and 2m

 
is defined as 

1 2

1 2

1 1 2 2

( , )
( , )

1
{ ( , ) ( , )}

2

r m m
a m m

r m m r m m





  (13) 

where 
| | | |2 1 2 1

1 2 1 2 | | | |
1 1

2 1 2 1
( , ) ( ) ( )

2 1 2 1

N N
i j i j

i j

F F F F

i j F F
i j

r m m m F m F

  

 

    
            
    (14) 
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4. Fundamental concepts of Fuzzy sets and q-Rung fuzzy set 

This section puts forward some fundamental concepts of fuzzy set theory and 
fuzzy soft set with related properties and operations. 

Definition 10 (Zadeh, 1965): A fuzzy set A  in the universal set X  is defined as 

 , ( ) :
A

A x x x X  , where  : [0,1]A X   is the membership function of the 

fuzzy set A .  
Definition 11 (Yager, 2016): A q-rung orthopair fuzzy set M  in the universal set 

X  defined as  , ( ), ( ) :M MM x x x x X   , where : [0,1]M X   is the 

membership function and : [0,1]M X   is the non-membership function that 

satisfying the condition    0  ( ) ( )  1
q q

M Mx x    . The hesitancy degree of the q-

rung fuzzy set (q-RoFS) M is defined as 

    ( ) 1 ( ) ( )
q q

M M Mx x x     , 1q    (15) 

For fixed 1q  , M  reduces to Intuitionistic fuzzy Set (IFS) (Atanassov, 1986) and 

for 2q  , M  reduces to Pythagorean fuzzy set (PFS) (Yager, 2013). 

Definition 12 (Yager, 2016; Hussain, 2020): Let  ,  -A B q RoFS X  such that 

  , ( ), ( ) :A AA x x x x X    and   , ( ), ( ) :B BB x x x x X   , then we have 

a) A B  iff     A Bx x   and    A Bx x  , x X  . 

b) A B iff    A Bx x   and    A Bx x  ,  x X  . 

c)      , , :C

A AA x x x x X   , where CA is the complement of A . 

d)   , ( ),  ( ) :A B A BA B x x x x X         , where 

( ) min{ ( ), ( )}A B A Bx x x      and ( ) max{ ( ),  ( )}A B A Bx x x      

e)   , ( ),  ( ) :A B A BA B x x x x X        , where  

( ) max{ ( ),  ( )}A B A Bx x x      and ( ) min{ ( ), ( )}A B A Bx x x     . 

f) The score function (Peng et al. 2018) of the q-RoFSS A  is given by 

   
   

   

( ) ( )

( ) ( )

1
( ) ( ) ( ) { ( )}

21

q q
A A

q q
A A

x x
q q q

A A
x x

e
S A x x x

e

 

 
  





 
    
  

, 1q   

 
Definition 13 (Maji et al. 2001): Let ( )U  be the collection of fuzzy sets over the 

universal set U and E be the set of parameters with A E . A fuzzy soft set over 

U is a pair  ,F A , where F  is a function given by (:  )F A U . 

In general, if ( ) ( )U IFS U , ( ) ( )U PFS U  and ( ) - ( )U q RoFS U , then 

 ,F A   is accordingly called as the Intuitionistic fuzzy soft set (IFSS) (Maji et al. 

2001) or Pythagorean fuzzy soft set (PFSS) (Peng et al. 2015) or q-rung orthopair 
fuzzy soft set (q-RoFSS) (Hussain et al. 2020) over the universal set U  respectively. 

Definition 14 (Maji et al. 2001): Let  1,F X  and  2,F X  represents the two 

distinct FSSs over the universe U  and for all 1 1x X  ,  2 2x X , we have 
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(i)    1 2 1 2, , ,( )H X X F X G X  , where 1 2 1 2( ) ( ) ( )H x ,x F x G x   

   1 2 1 2, , ,( )H X X F X G X  , where 
1 2 1 2( ) ( ) ( )H x ,x F x G x   

5. q-Rung Evidence Set 

In this section, we have defined a new form of evidence set named q-rung 
evidence set inspired from the work of Li & Deng, (2019) and put forward all the 
related definitions of Dempster-Shafer theory in this form. 

Definition 15: Let X  be the frame of discernment. A q-rung basic probability 
assignment or q-rung orthopair basic probability assignment (q-RoBPA) on X  is 

defined as the pair ,m m m   in which the function m  has the following 

conditions 

The support belief degree : 2 [0,1]Xm   satisfies the conditions 

( ) 1
A X

m A



   (16) 

The non-support belief degree : 2 [0,1]Xm   satisfies the conditions 

( ) 1
A X

m A



   (17) 

For all A X , { ( )} { ( )} 1q qm A m A   , where q  tends to  . 

Definition 16: Let ,m m m   is a q-RoBPA on the FOD X . Then, the belief 

measure of the focal element A is pair ,Bel Bel   that satisfies the following 

conditions: 

( ) ( )
B A

Bel A m B 



   and  ( ) ( )
B A

Bel A m B 



 ,  (18) 

Plausibility measure of  is a pair of two function ,Pl Pl   which satisfies: 

( ) ( )
A B

Pl A m B


 

 

   and ( ) ( )
A B

Pl A m B


 

 

   (19) 

where ,  : 2 [0,1]XPl Bel      are the support degree whereas 

,  : 2 [0,1]XPl Bel      are the non-support degree of belief and plausibility 

functions respectively. 
 

Definition 17: Let 1 1 1,m m m   and 2 2 2,m m m 
 
be two distinct q-RoBPA on 

the FOD  X . The combination of 1m  and 2m  is the new mass function defined as: 

1 2 ( ) ( ), ( )m m A m A m A   , 2XA      (20) 

where 
1 2

1 2

( ) ( )

( )
1 ( ) ( )

B C A

B C

m B m C

m A
m B m C



 

  

 

 







 and 

1 2

1 2

( ) ( )

( )
1 ( ) ( )

B C A

B C

m B m C

m A
m B m C



 

  

 

 







 (21) 

Example 1: Consider 1 2{ , ,..., }nX x x x  be a FOD having two q-RoBPAs 1m  and 2m  

for the focal elements 1 2 3, ,F F F  are given below 

1 1( ) 0.6,0.1m F  , 
1 2( ) 0.05,0.8m F  , 

1 3( ) 0.35,0.1m F   

2 1( ) 0.7,0.2m F  , 
2 2( ) 0.1,0.6m F  , 

2 3( ) 0.3,0.2m F   
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Using the equations (20) and (21), the combined q-RoBPA for focal elements are 
given by 

  
1( ) 0.8485,0.0307m F  , 

2( ) 0.0101,0.9831m F   and  
3( ) 0.1414,0.0015m F   

 

Counter-Intuitiveness: If 
1 2( ) ( ) 1

B C

m B m C


 

 

  and 
1 2( ) ( ) 1

B C

m B m C


 

 

 , then 

the combination rule is conflicting from its membership belief degree of q-RoBPA. On 

the other hand, if 
1 2( ) ( ) 1

B C

m B m C


 

 

  and
1 2( ) ( ) 1

B C

m B m C


 

 

  then the fusion rule 

is conflicting from its non-membership end. Again, if both
1 2( ) ( ) 1

B C

m B m C


 

 

  and 

1 2( ) ( ) 1
B C

m B m C


 

 

 , then the evidence is in conflicting from both the end. 

The conflict of the above type can be handled by pre-processing the q-RoBPAs via 
the weighted average technique similar to followed in BPA in the classical evidence 
theory. The weight of the evidence is obtained by using the various uncertainty 
measure. We have proposed a new association coefficient measure of belief functions 
below and shows its efficiency and applicability in conflict resolution in the new q-
RoBPA with example 2. 

5.1. Association coefficient measure 

Let 1m  and 2m  denotes the BPAs on the FOD X . The association coefficient 

measure is defined as 

1 2

1 2

1 1 2 2

( , )
( , )

1
{ ( , ) ( , )}

2

r m m
a m m

r m m r m m





  (22) 

where 
| | 32 1 2 1

1 2 1 2 | | | || |
1 1

(2 1)
( , ) ( ) ( )

(2 1)(2 1)(2 1)

N N
i j

j i ji

F F

Pro i j F F FF
i j

r m m m F m F

 


 


 

  
  , (23) 

1 2( , )r m m  can also be represented as 1 2 1 2( , ) ( ) ( )i jr m m m F Dm F  with 

| | 3

| | | || |

(2 1)

(2 1)(2 1)(2 1)

i j

j i ji

F F

F F FF
D








  
,  (24) 

where D  is a positive-definite matrix of order (2 1) (2 1)N N    and it can be 

expressed as the product of the invertible matrix and its transpose i.e., tD Q Q . 

The proposed association coefficient measure 1 2( , )a m m  will trivially holds the 

following properties: 

(i) Symmetricity  1 2 2 1( , ) ( , )a m m a m m . 

(ii) Boundedness 1 20 ( , ) 1a m m  . 

(iii) 1 2 1 2( , ) 1a m m m m    

(iv) 1 2( , ) 0 i ja m m F F      for all , 2X

i jF F  . 

Example 2: Consider the {1,2,3,...,10}X   be a FOD and two q-RoBPAs 1m  and 

2m
 
 for the events is given below 

1({2,3,4}) 0.05,0.2375m  , 
1({7}) 0.05,0.2375m  , 

1( ) 0.1,0.225m X  , 

1( ) 0.8,0.05m A  ,     
1({1,2,3,4,5}) 0,0.25m   
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2 ({2,3,4}) 0,0.25m  , 
2 ({7}) 0,0.25m  , 

2 ( ) 0,0.25m X  , 
2 ( ) 0,0.25m A  ,    

2 ({1,2,3,4,5}) 1,0m   

The effectiveness of the new proposed association coefficient measure is shown 
through the ten cases of different focal elements of A . We have noticed that the 
conflict degree 1 21 ( , )a m m  of q-RoBPA is minimum for the variable event A  at 

{1,2,3,4,5} from both the pair of support as well as non-support belief degree as given 
in Table 1.  

Table 1. Conflict coefficient measure of q-RoBPA 

Sl. No. Variable Set 
Conflict for 

support belief 
degree 

Conflict for 
non-support belief 

degree 

1 {1} 0.9959 0.2125 

2 {1,2} 0.9877 0.2104 

3 {1,2,3} 0.9476 0.1997 

4 {1,2,3,4} 0.7729 0.1547 

5 {1,2,3,4,5} 0.0325 0.0064 

6 {1,2,3.…,6} 0.5216 0.1602 

7 {1,2, 3, …,7} 0.9393 0.1989 

8 {1,2, 3,.…,8} 0.9825 0.2070 

9 {1,2, 3, …,9} 0.9934 0.2019 

10 {1,2, 3, …, 10} 0.9963 0.1789 
 

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

1.1000
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1 2 3 4 5 6 7 8 9 10

Conflict in q-RoBPA

 

Figure 1. Comparison of conflicts for support and non-support belief 

degree 

From the graphical representation, it is noticed that the trends of conflict 
coefficient of q-RoBPA first decrease with the addition of elements, attains minimum 
valued at A  equals to {1,2,3,4,5} and increases with the addition of extra elements. 
The association coefficient measure is effective in handling conflict and modifying the 
q-RoBPA. 
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6. Application of q-RoBPA and Association coefficient measure in 
Decision-Making. 

In this section, we have proposed a methodology focussing on applying the 
association coefficient measure on the new q-RoBPA. The methodology and algorithm 
are as follows. 

6.1. Methodology and Algorithm 

Let E  be the finite set of parameters consisting of disease’s symptoms 

1 2{ , ,..., }mA e e e  and decision-making parameters 1 2{ , ,..., }nB f f f  respectively. 

Suppose ( , )F A be the fuzzy soft set for representing the state of symptoms of disease 

and ( , )G B  be the fuzzy soft set representing the decision-making tools. The steps for 

the generation of initial q-RoBPA for the diseases 1 2{ , ,..., }lD x x x  are as follows: 

Step I: Input two q-RoFSS ( , )F A  and ( , )G B  for the assessment of symptoms and 

decision-making tool relative to the disease as 

( ) : 1,2,...,
,

i i

k

i

e e

x
F e i m

 

 
 

  
  

 and ( ) : 1,2,...,
,

j j

k

j

f f

x
G f j n

 

 
 

  
  

, 

for all kx  , the fuzzy soft set can also be written in the matrix form as follows 

 

1 2

1 11 12 1

2 21 22 2

1 2

                     

,

m

m

m

l l l lm

e e e

x a a a

x a a a
F A

x a a a

 
 
 
 
 
 

; 
 

1 2

1 11 11 1

2 21 22 2

1 2

                    

,

n

n

n

l l l ln

f f f

x b b b

x b b b
G B

x b b b

 
 
 
 
 
 

 

where   ,,
j j

e eij ia x    and   , ,
j jij i f fb x     are the relative q-rung fuzzy 

number of ix  with respect to the different parameters. 

Step II: Construct t mn  number of new parameters 1 1 1p e f  , 

2 1 2p e f  ,…, t i jp e f  ,..., t m np e f   based on the “AND” operation of the FSSs. In 

matrix form, we have 

1 2 1

1 11 12 1 1 1 1

2 21 22 2 2 1 2

1 2 1

...

... ...

...

... ...

             i i

n i t

i i t

l l l li li lt

x c c c c c

x c c c c c
M

x c c c c c

p p p p pt







 
 
 
 
 
 

, 

where     ,min ( ), ( ) ,max ( ), ( ) : , [0,1]ij i ij ij ij ij ij ijc x MF a MF b NMF a NMF b a b 
 

represents the membership value of ix  with respect to the new parameters. 

Step III: Construct the information structure image matrix M  of alternatives by 
the membership degree as follows 
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1 2 1

1 11 12 1 1 1 1

2 21 22 2 2 1 2

1 2 1

...

... ...

...

... ...

             i i t

n i t

i i t

l l l li li lt

x c c c c c

x c c c c c
M

x c c c c c

p p p p p







 
 
 
 
 
 

, 

1 1

,
j j

j j

p p

ij t t

p pj j

c
 

 
 



 
 

where 1 2{ } { , ,..., }ij j j ljc c c c  is the information structure image sequence (Li et 

al. 2015). 
 

Step IV: Build t  pieces of q-rung belief function im  generated from the new 

parameters as follows 

1 1 11 11( ) ,m x c c  , 1 2 21 21( ) ,m x c c  ,…, 1 1 1( ) ,i i im x c c  ,…, 1 1 1( ) ,l l lm x c c   

2 1 12 12( ) ,m x c c  , 2 2 22 22( ) ,m x c c  ,…, 2 2 2( ) ,i i im x c c  ,…, 2 2 2( ) ,l l lm x c c   

 ......  .....  .... …. 

 ......  .....  .... …. 

 ......  .....  .... …. 

1 1 1( ) ,t t tm x c c  , 2 2 2( ) ,t t tm x c c  ,…, ( ) ,t i it itm x c c  ,…, ( ) ,t l lt ltm x c c   

Here 
1 1

( ) 1 ,1
l l

ij ijj

i i

m D c c
 

 

    , (1 ( ))dij ij ic c E p
 

  , (1 ( ))dij ij ic c E p
 

   and 

2

( )
( ) ( ) log

2 1i

i
d i i x

i

m x
E m m x

 
   

 
  is the Deng’s belief entropy (Deng, 2015) of the 

parameters. 
 

Step V: The support degree of the q-RoBPA ,  1,2,...,im i t are defined as 

 ( ) ( ), ( )i i iSup m Sup m Sup m  , 

where ( )iSup m  and ( )iSup m  represents the support of membership belief function 

and non-membership belief function such that 

1,

( ) ( , )
t

i Pro i j

j j i

Sup m a m m  

 

   and 
1,

( ) ( , )
t

i Pro i j

j j i

Sup m a m m  

 

 
 

Step VI: The degree of credibility of q-RoBPAs is given by 

 

1 1

( ) ( )
( ) ,

( ) ( )

i i

i n n

i i

i i

Sup m Sup m
Crd m

Sup m Sup m

 

 

 

 
 
 
 
 
 
 

,
 

where the credibility ( )iCrd m  is the weight of im  such that 
1

( ) 1
n

i

i

Crd m


 . 
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Step VII: The weighted average mass ( )WAM m  of the evidences m  is given by 

  ( ) ( ), ( )WAM m WAM m WAM m 
 

Step VIII: The weighted average mass of alternatives is combined separately for 
the membership and non-membership belief degree up to 1n   by using the 

Dempster’s combination rule.  
 

Step IX: Rank the alternatives based on the score values of its belief measure by 
using the equation 

({ }) ( ) ( )i i iS x x x   , 

Thus, the patient is suffering from ix  if 1 2max{ ( ), ( ),..., ( )}lS x S x S x  with support 

belief measure { ( ) : 1, 2,..., }iBel x i l   and non-support belief measure 

{ ( ) : 1,2,.., }iBel x i l  . 

7. Numerical Example in Medical Diagnosis 

In this section, we have implemented the various concepts related to uncertainty 
to execute the case study in medical diagnosis taken from the example 6.2 in Basu et 
al. (2012). 

Consider a patient is under observation have noticed some symptoms among the 
several symptoms namely fever 1s , running nose 2s , weakness 3s , oro-facial pain 4s , 

nausea or vomiting 5s , swelling 6s  and trismus 7s  respectively. The set 

1 2 3 4{ , , , }D d d d d  of four possible diseases associated with the set of symptoms, 

where 1 2 3 4, ,  and d d d d  stands for the disease Acute dental abscess, Migraine, Acute 

sinusitis and Peritonsillar abscess respectively. Let the symptoms and other decision-
making tools history (h), physical examination (p) and lab investigation (l) together 
forms the set of parameters E  such that 1 2 7{ , ,..., , , , }E s s s h p l  associated with 

possible disease. 
An expert assessed a patient’s disease possibility based on the responses made by 

the patient against his symptoms, history, physical examination and laboratory 
investigation etc. Let the parameters 1 2 7{ , ,..., }A s s s  and { , , }B h p l  forms two q-

rung orthopair fuzzy soft sets such that 

1 2 7( , ) { ( ), ( ),..., ( )}F A F s F s F s  and  ( , ) { ( ), ( ), ( )}G B G h G p G l ,   

where the membership degree is defined by generalised form of fuzzy sets i.e., 
Intuitionistic, Pythagorean or q-rung orthopair fuzzy number as 

31 2 4

1( ) , , ,
0.6,0.4 0.2,0.8 0.3,0.7 0.4,0.6

dd d d
F s

  
  
  

, 31 2 4

2( ) , , ,
0,0.7 0,0.7 0.7,0.4 0,0.7

dd d d
F s

  
  
  

, 

1 2 3 4
3( ) , , ,

0.6,0.4 0.1,0.8 0.3,0.4 0.2,0.7

d d d d
F s

  
  
  

, 1 2 3 4
4( ) , , ,

0.9,0.1 0.9,0.1 0.8,0.2 0.7,0.3

d d d d
F s

  
  
  

, 

1 2 3 4
5( ) , , ,

0,0.9 0.8,0.2 0.3,0.6 0.1,0.8

d d d d
F s

  
  
  

, 1 2 3 4
6( ) , , ,

0.7,0.3 0,0.9 0.4,0.6 0.6,0.4

d d d d
F s

  
  
  

, 
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1 2 3 4
7( ) , , ,

0.8,0.2 0,0.8 0,0.8 0.5,0.4

d d d d
F s

  
  
  

;

 

1 2 3 4( ) , , ,
0.6,0.2 0.8,0.1 0.8,0.2 0.6,0.2

d d d d
G h

  
  
  

, 

1 2 3 4( ) , , ,
0.8,0.2 0.3,0.5 0.4,0.6 0.8,0.2

d d d d
G p

  
  
  

, 1 2 3 4( ) , , ,
0.4,0.6 0.6,0.4 0.7,0.4 0.3,0.7

d d d d
G l

  
  
  

 

Since, the patient expressing three symptoms fever 
1s , running nose 

2s , and facial 

pain 
4s , the nine possible pairs of parameters 

ip  is represented by the pairs 
1( , )s h , 

1( , )s p , 
1( , )s l , 

2( , )s h , 
2( , )s p , 

2( , )s l , 
4( , )s h , 

4( , )s p ,
4( , )s l respectively. We consider 

the set 1 2 3 4{ , , , }D d d d d  as the frame of discernment and each pair is represented as 

the evidence. The matrix of membership degree of id  relative to the joint parameters 

obtained from the q-RoFSSs ( , )F A  and  ( , )G B  is given by 

1 2 3 4 5 6 7 8 9

1

2

3

4

                                                                                                      

0.6,0.4 0.6,0.4 0.4,0.6 0.0,1.0 0.0,1 0.0,1.0 0.6,0.4 0.8,0.2 0.4,0.6

0.2,0.8 0.

p p p p p p p p p

d

d
M

d

d


2,0.8 0.2,0.8 0.0,1.0 0.0,1 0.0,1.0 0.8,0.2 0.3,0.7 0.6,0.4

0.3,0.7 0.3,0.7 0.3,0.7 0.7,0.3 0.4,0.6 0.7,0.3 0.8,0.2 0.4,0.6 0.7,0.3

0.4,0.6 0.6,0.4 0.3,0.7 0.0,1.0 0.0,1.0 0.0,1.0 0.6,0.4 0.7,0.3 0.3,0.7

 
 
 
 
 
  

The fuzzy information structure image matrix M  is constructed based on the step I-III 

given by 

0.40, 0.40, 0.3333, 0.0, 0.0, 0.0, 0.2143, 0.3636, 0.20,

0.16 0.16 0.2143 0.3030 0.2778 0.303 0.3333 0.1111 0.30

0.1333, 0.1333, 0.1667, 0.0, 0.0, 0.0, 0.2857, 0.1364, 0.30,

0.32 0.32 0.2857 0.3030 0.2778 0.303 0.1667 0.3889 0.20

0.2
M 

0, 0.20, 0.25, 1.0, 1.0, 1.0, 0.40, 0.1818, 0.35,

0.28 0.28 0.25 0.0909 0.1667 0.0909 0.16 0.3333 0.15

0.2667, 0.2667, 0.25, 0.0, 0.0, 0.0, 0.40, 0.3182, 0.15,

0.24 0.24 0.25 0.3030 0.2778 0.0303 0.16 0.1667 0.35

 
 
 
 
 
 
 
 
 



 





 
Now, the generated initial q-RoBPA 

im  can be obtained in Table 2 and evaluated 

based on the Step I-IV and the initial q-RoBPAs are modified by using the association 
coefficient measure defined in equation (22)-(24). 

Table 2. Q-rung orthopair basic probability assignments of alternatives. 

 1d  2d  3d  4d  D  

1m  0.3346,0.1419  0.1115,0.2838  0.1673,0.2484  0.2231,0.213  0.1635,0.1129  

2m  0.3346,0.1419
 

0.1115,0.2838  0.1673,0.2484  0.2231,0.213  0.1635,0.1129  

3m  0.2767,0.1897
 

0.1384,0.2528  0.2076,0.2213  0.2076,0.2213  0.1697,0.1149  

4m  0,0.2701
 

0,0.2701  1,0.0801  0,0.2701  0,0.1087  

5m  0,0.2462
 

0,0.2462  1,0.1477  0,0.2462  0,0.1137  

6m  0,0.2701
 

0,0.2701  1,0.0801  0,0.2701  0,0.1087  

7m  0.1774,0.2964
 

0.2366,0.1482  0.2366,0.1482  0.1774,0.2964  0.1720,0.1108  
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 1d  
2d  

3d  
4d  D  

8m  0.3039,0.0993
 

0.1140,0.3476  0.1519,0.2979  0.266,0.149  0.1642,0.1062  

9m  0.1666,0.2424
 

0.2499,0.2424  0.2916,0.2154  0.125,0.1885  0.1668,0.1113  

Therefore, the association coefficient measure matrix A  and A of the belief 
function for the support belief degree as well as non-support belief degree is given by 

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

                                                                  

1 1 0.986 0.2731 0.2731 0.2731 0.8917 0.9934 0.8387

1 1 0.986 0.2731 0.2731 0.2731 0.8917 0.9

m m m m m m m m m

m

m

m

m

A m

m

m

m

m

        









 











934 0.8387

0.986 0.986 1 0.3437 0.3437 0.3437 0.9488 0.9818 0.9106

0.2731 0.2731 0.3437 1 1 1 0.3938 0.2488 0.4792

0.2731 0.2731 0.3437 1 1 1 0.3938 0.2488 0.4792

0.2731 0.2731 0.3437 1 1 1 0.3938 0.2488 0.4792

0.8917 0.8917 0.9488 0.3938 0.3938 0.3938 1 0.8938 0.9854

0.9934 0.9934 0.9818 0.2488 0.2488 0.2488 0.8938 1 0.8283

0.8387 0.8387 0.9106 0.4792 0.4792 0.4792 0.9854 0.8283 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

and 

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

                                                                  

1 1 0.9878 0.8956 0.9462 0.8956 0.8692 0.9735 0.9686

1 1 0.9878 0.8956 0.9462 0.8956 0.8692 0

m m m m m m m m m

m

m

m

m

A m

m

m

m

m

        









 











.9735 0.9686

0.9878 0.9878 1 0.9218 0.9670 0.9218 0.9089 0.9396 0.9783

0.8956 0.8956 0.9218 1 0.9864 1 0.9558 0.8032 0.9419

0.9462 0.9462 0.9670 0.9864 1 0.9864 0.9671 0.8753 0.9814

0.8956 0.8956 0.9218 1 0.9864 1 0.9558 0.8032 0.9419

0.8692 0.8692 0.9089 0.9558 0.9671 0.9558 1 0.7476 0.9372

0.9735 0.9735 0.9396 0.8032 0.8753 0.8032 0.7476 1 0.9147

0.9686 0.9686 0.9783 0.9419 0.9814 0.9419 0.9372 0.9147 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The support degree of the q-rung ortho pair basic probability assignment is now 
obtained as follows 

1( ) 5.5291,7.5365Sup m  , 
2( ) 5.5291,7.5365Sup m  , 

3( ) 5.8443,7.6130Sup m  , 

4( ) 4.0117,7.4003Sup m  ,
5( ) 4.0117,7.4003Sup m  ,

6( ) 4.0117,7.4003Sup m  , 

7( ) 5.7928,7.2108Sup m  , 
8( ) 5.4371,7.0306Sup m  , 

9( ) 5.8393,7.6326Sup m   

and the corresponding credibility degree of the belief assignments are obtained as 
follows 

1( ) 0.1210,0.1125Crd m  ,
2( ) 0.1210,0.1125Crd m  ,

3( ) 0.1270,0.1136Crd m  ,  

4( ) 0.0862,0.1104Crd m  ,
5( ) 0.0862,0.1104Crd m  ,

6( ) 0.0862,0.1104Crd m  , 

7( ) 0.1260,0.1076Crd m  ,
8( ) 0.1190,0.1049Crd m  ¸

9( ) 0.1276,0.1139Crd m   

Now, the weighted average mass WAM(m) of the alternative are obtained as 
follows 
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1( ) 0.1950,0.2111m d  , 2( ) 0.1194,0.2604m d  , 3( ) 0.4129,0.1875m d  , 

4( ) 0.1496,0.2298m d  , ( ) 0.1231,0.1112m D   

The above WAM(m) of alternative is combined for eight times to itself by using the 
Dempster’s combination rule (21) and the final belief measure for 

id is shown below 

1( ) 0.00902,0.14785m d  , 2( ) 0.00078,0.53130m d  , 3( ) 0.98794,0.07461m d  , 

4( ) 0.00225,0.24575m d  , and ( ) 0.000002,0.00001m D   

Since, the final belief measures of alternatives are in the form of Intuitionistic 
fuzzy number and this can be ranked based on the score of the intuitionistic BPAs, 
then we have  

1({ })  0.1393S d   , 2({ })  0.5305S d   , 3( )  0.9133S d  , 4( )  0.2435S d    

Finally, from values of the score functions we can conclude that the patient has the 
possibility of suffering from the disease of 3d  with the support belief degree 0.98794 

and non-support belief degree 0.07455 respectively. 

Table 3. Comparison of final belief measure 

Different methods Type of 
BPA 

Ranking order 
3({ })Bel d

 

Score 
value of 3d  

Li et al.’s, method 
(2015) 

Discrete 
3 1 4 2d d d d  

 

0.8349
 

NA 

Wang et al.’s method 
(2016) 

Discrete 
3 1 4 2d d d d  

 

0.9906
 

NA 

Xiao’s, method (2018) Discrete 
3 1 4 2d d d d  

 

   0.99996 NA 

Chen et al.’s method 
(2019) 

Discrete 
3 1 4 2d d d d  

 

0.9989
 

NA 

The proposed method q-rung fuzzy 
number 

3 1 4 2d d d d  

 

0.9879,

0.0746

 

0.9133 

From the comparison as shown in Table 3, the proposed method suggests the 
same decision and follows the same ranking order 3 1 4 2d d d d   as earlier method 

suggests (Li et al. 2015; Wang et al. 2016; Xiao, 2018; Chen et al. 2019). The 
advantages of the proposed methodology over the others are that rest of the methods 
is based on the discreate number while our proposed method has more flexible one in 
the sense that the assessment of alternatives with respect to the parameters can be 
made based on membership and non-membership belief degree. In addition, the 
conflicts in the belief if exist will handled by the proposed association coefficient 
measure. However, the methodology has certain limitation as assessment of 
alternatives is based on the human subjective expertise, the assessment may give 
false decision if the decision-maker deliberately provides some false assessment 
membership belief degree. 

8. Conclusion 

In this paper, we have proposed a new q-rung orthopair basic probability 
assignment consisting of membership and non-membership belief degree to provide 
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decision-maker’s flexibility in assigning his belief degree to a proposition. We have 
investigated various essential concepts of the classical Dempster-Shafer theory and 
related uncertainty measures in the literature of evidence theory. To cope with 
uncertainty in the q-RoBPA, we have further implemented our novel association 
coefficient measure to obtain the pre-process evidence. Finally, a methodology is 
developed to apply the proposed q-RoBPA and association coefficient measure with a 
hypothetical case study in medical diagnosis, compared with the existing results. This 
study reveals that the decision of an alternative from the proposed algorithm follows 
the same ranking order as earlier did with its support degree of belief and non-
support degree of belief. From the study, a medical expert can make an action plan for 
the patient’s treatment, which has high possibility of belief degree based on the 
appropriate and flexible assessment from his previous experience in the field. 

The proposed methodology offers comprehensive advantages to the decision-
maker for the assessment of an alternative through the membership as well as non-
membership belief degree. The q-Rung orthopair basic probability assignment can 
easily represent the decision-maker’s views on the alternatives from his experience 
where he has scope to assign membership degree for favourable case and non-
membership belief degree for non-favoured cases from same type of situation. From 
the perspective of the limitations of the methodology, as the belief degree assessment 
is based expert’s knowledge and information, so the intentional false exercise of 
information sharing may give abrupt results. In this regard, the experienced and loyal 
decision expert is required for the assessment of these alternatives. In the future, 
more general basic probability assignment based on the picture fuzzy set and 
spherical fuzzy sets, etc may be used to get more accurate, precise result and 
implement the method for a large real-time statistical data set of medical decision-
making. 
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