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Abstract: Most of the classical inventory control model assumes that all 
items received conform to quality characteristics. However, in practice, items 
may be damaged due to production conditions, transportation and 
environmental conditions. Modelling such real world problems involve 
various indeterminate phenomena which can be estimated through human 
beliefs. The uncertainty theory proposed by Liu (2015) is extensively 
regarded as an appropriate tool to deal with such uncertainty. This paper 
investigates the optimum production run time and optimum cost in an 
imperfect production process, where the rate of imperfect items are different 
in different states of the process. The process may be shifting from ‘in-control’ 
state to the ‘out-of-control’ state is an uncertain variable with certain 
uncertainty distribution. Some propositions are derived for the optimal 
production run time and optimized the expected total cost function per unit 
time. Finally, numerical examples have been illustrated to study the practical 
feasibility of the model. 

Keywords: Inventory, Imperfect production, Uncertain variables, Uncertain 
distribution, Expected value model. 

1.  Introduction 

In some real uncertain situation, we have to depend on domain experts to 
represent the belief degree when no samples are available to estimate a probability 
distribution. To deal with uncertainty in human belief, which is neither random nor 
fuzzy, Liu (2009), (2015), (2016) introduced uncertainty theory. It deals with 
modeling of uncertainty, based on normality, monotonicity, self-duality, countable 
sub-additivityand product measure axioms. Uncertain variable, uncertain set and 
uncertain measure are the basic tools to describe the uncertain phenomenon. 

mailto:prasantakumarghosh43@gmail.com
mailto:jkdey1971@gmail.com
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Expected value operator for the uncertain variable has become asignificant role in 
both theory and practice. The expected value of a monotone function of an uncertain 
variable is a Lebesgue-Stieltjes integral of the function concerning its uncertainty 
distribution. Liu (2012) proposed the concept of expected value of uncertain 
variables to rank the variables. Liu (2016) also verifiedthe linearity of the expected 
value operator. Liu and Ha (2010) derived a useful formula for calculating the 
expected values of strictly monotone functions of independent uncertain variables.  
Liu (2016) founded uncertain programming involving uncertain variables, which has 
been used to model in practical view of the system reliability design, project 
scheduling problem, transportation problem (Gao and Kar (2017), Majumder et al. 
(2018))portfolio selection problem (Kar et al. (2017); Qin et al. (2016);Majumder et 
al. (2018)) and facility location problem ([Liu et al. (2015), Ke et al. (2015)). In 
financial mathematics, Liu (2009), (2016) gave an uncertain stock model and 
European option price formula. Zhou et al. (2014) studied a dynamic recruitment 
problem with enterprise performance in an uncertain environment and presented an 
optimal search strategy for the firms' employment decisions. Chen et al. [3] analyses 
the pricing and effort decisions of a supply chain with a single manufacturer and 
single retailer considering the demand expansion effectiveness of sales effort under 
uncertainty. 

In most of the classical economic production quantity (EPQ) model, it is assumed 
that the production process is always in good condition and produces 100% perfect 
quality items. But this assumption may not true in a real production system. In most 
of the practical situations, the production process continuously deteriorates and 
produce a certain percentage of defective (imperfect) items. Rosenblatt and Lee 
(1986) studied the effect of production process deterioration on the EPQ model and 
considering the shifting of the process from ‘In-Control’ state to ‘Out-of-Control’ 
state, which is exponentially distributed. The deteriorating production system is an 
imperfect production system that has a threshold level of defectiveness to separate 
the system into in-control and out-of-control states. Khouja and Meherez (1994), 
have considered the elapsed time until the production process shifts to an ‘out-of-
control’ state to be an exponentially distributed random variable and shown the 
weak and strong relationship between the rate of production and process quality. 
Sana (2010) extended the model of Khouja and Meherez (1994), assuming the 
percentage of defective items varies not linearly with production rate and production 
run time. Hariga and Ben-Daya(1998) extended the model of Rosenbaltt and 
Lee(1986) considering the general shift distribution and optimal production run 
time to be unique. Yehet al. (2000), (2007) has considered different defective rates in 
in-control and out-of-control state for the imperfect production process and 
investigate production run length with warranty policy. Chen and Lo (2006) have 
developed an imperfect production process with allowable shortages and the 
products are sold with free minimal warranty. The probabilities of imperfect items in 
both states are different. 

Again the EPQ models are derived under very modern heuristics and soft 
computing techniques, especially usingprobabilistic reasoning, fuzzy logic, Rough-
Fuzzy logic,uncertainty theory etc.  Chen et al. (2005) derived a fuzzy EPQ model 
with fuzzy opportunity cost. Wang et al. (2009) investigate a model of the imperfect 
production process with fuzzy elapsed time. Qin and Kar (2013) investigate a 
newsboy model under uncertain environment. Wang et al. (2015) contributed a 
paper is to provide a more general framework for single-period inventory problem 
by considering single-item and multiple items with a budget constraint under 
uncertain and random environment. The proposed models consider both uncertain 



Imperfect production inventory model with uncertain elapsed time 

3 

and random behavior of the demands and cover not only the random instance but 
also the single-fold uncertain situation. 

In this paper, we investigate optimum production run time and optimum cost in 
an imperfect production process, where the rate of imperfect items are different in 
different states of the process. The process may be shifting from ‘in-control’ state to 
the ‘out-of-control’ state is an uncertain variable with certain uncertainty 
distribution proposed by Liu (2009). The rest of the manuscript is organized as 
follows. Some preliminary concepts related to our study are discussed in Section 2. 
Section 3, states the assumptions and notations of the model. Section 4 and 5 are for 
the mathematical modeling and solution respectively. Section 6 provides numerical 
examples and discuss the results. Some sensitivity analyses are provided in Section 7. 
The paper summarizes and concludes in Section 8.  

2.  Preliminaries 

Before presenting the inventory model in an uncertain environment, in this 
section, we introduce some useful definitions and fundamental results of Liu's 
Uncertainty theory. Uncertainty theory is an extremely important feature of the real 
world. The interpretation of uncertainty measure is the personal belief degree of an 
uncertain event.  

Definition  1. Let S be a non-empty set and  a  -algebra over S . Each element A in 

S is called an event. A set function M from   to [0, 1] is called an uncertain measure if 
it satisfies the following axioms. 

Axiom 1:  (Normality)   { } 1M   for the universal set S . 

Axiom 2:  (Duality) cM{A}+M{A }=1  for any event A in S . 

Axiom 3:  (Subadditivity) For every countable sequence of events A1, A2..... . 

We have 
11

{ } { }i i

ii

M A M A
 



 . The triplet ( , , )S M is called an uncertainty space. 

Axiom 4:  (Product Axiom) Let ( , , )k k kS M be uncertain spaces for  k = 1, 2, …., n. 

Then the product uncertain measure M is an uncertain measure on the product  -

algebra 
1 2 ..... n    , satisfying 

k
1

1

{ }  M { }
n

k k
k n

k

M A Min A
 



 . 

Definition 2 (Liu, 2015). A measurable function   from an uncertainty space 

( , , )S M  to the set of real numbersis defined as an uncertain variable. i.e. for any 

Borel set B of real numbers, the set { } { / ( ) }B S B       is an event. 

Definition 3 (Liu, 2016). In practice, the uncertain variable is described by the 
concept of uncertainty distribution  .  Which is defined by 

( ) { }  x M R       . It is a monotone increasing function except 

( ) 0 and ( ) 1.      

Definition 4 (Liu, 2016). An uncertain variable   is said to have a first 

identification if, 

(i) ( )x is a nonnegative on R  such that sup ( ) ( )) 1x y x y     

(ii) and for any set B of real numbers, we have 
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sup ( )            sup ( ) 0.5

{ }
1 sup ( )       sup ( ) 0.5

c c

x B x B

x B x B

x if x

M B
x if x


 

 




  
 



 

Definition 5 (Liu, 2016). An uncertain variable   is said to have a second 

identification  if, ( )x is a nonnegative and integrable function on R such that 

( ) 1
R

x dx  ; 

For any set B of real numbers, we have 

( )             ( ) 0.5

{ } 1 ( )        ( ) 0.5

0.5                  otherwise

c c

B B

B B

x dx if x dx

M B x dx if x dx

 

  

 



   




 

   

Definition 6 (Liu, 2016). Let be   an uncertain variable. Then the expected value 

of   is denoted as [ ]E  and is defined by      
0

0

[ ] { } { } E M d M d      




      , 

provided at least one of the two integrals is finite. 

Theorem 1 (Liu, 2016). Let   be an uncertain variable with uncertainty 

distribution   such that lim ( ) 0 and lim ( ) 1
x x

 
 

    . If N(  ) is a monotone 

function of x and if [ ( )]E N   exists, then  

0

0
[ ( )] { ( ) ) { ( ) ) = ( ) ( )E N M N d M N d N d        

 

 
        

Proof: Let N(  ) is a monotone function with ( )N    and by the properties of 

uncertainty distribution ( ) , we have  

lim { } ( ) lim(1 ( )) ( ) 0M N N
 

    
 

    and 

lim { } ( ) lim ( ) ( ) 0M N N
 

    
 

    . Assuming that expected value [ ( )]E N   is 

finite. 

Let us consider two real number 
1 2 and   such that 

1 2<0<   , then 

1
12 2 2

2
11

( )
( )1

(0)0 0 (0)
{ ( ) } { ( )} = { } ( ) [ { } ( )]

N
N

NN
M N d M N d M u dN u M u N u

  
       






       
 

1 1
2 2

1 1

( ) ( )
1

2 2
(0) (0)

( ) { } (1 ( ( )) ( ) ( )
N N

N N
N u dM u N N u d u

 

   
 

 

       Taking as 
2r  , it 

follows that 

10 (0)
{ ( ) } ( ) ( )

N
M N N u d u 



 

    .  

Similarly,  
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1
1

1
1 1

1

1
1

0 0 ( )
1

(0)

(0)
1

1 1
( )

{ ( ) } { ( )} { } ( )

( ( ) ( ) ( )

N

N

N

N

M N d M N d M u dN u

N N u d u



 



      

 













     

    

  



 

Taking as 
1 ,  it follows that  

10 (0)

{ ( ) } ( ) ( )
N

M N d N u d u  


 
      

-1

-1

0

0

N (0)

N (0)

[ ( )] { ( ) } { ( ) }

= ( ) ( ) ( ) ( ) = ( ) ( )

E N M N d M N d

N u d u N u d u N u d u

      




 

 

   

   

 

  

 

Hence the theorem. 
Note that the Expected value of a monotone function nothing but the Lebesgue-

Stieltjes integral of the function with respect to its uncertainty distribution. 

Definition 7 (Liu, 2016). To estimate the unknown parameter   of an uncertain 

distribution ( )x  , Liu employed the principle of least squares, which minimizes 

the sum of squares of the distances of the expert’s experimental data to the 
uncertainty distribution.  

If the expert’s experimental data are 
1 1 2 2( , ), ( , ).....( , )n nx x x    and the vertical 

direction is accepted. Then we have 

2

1

min
( ( ) )

n

i i

i

x  
 

  . 

The optimum solution ˆ of    is called the least squares estimate of . 

Example 1: Assume that an uncertainty distribution has a liner form with two 
unknown parameters  and  . We assume that the following are expert’s 

experimental data, (1,0.15),(2,0.45),(3,0.55),(4,0.85),(5,0.95). Then the least squares 
uncertainty distribution is 

0

( ) ( ) / ( )   

1

x

x x x

x



    






     
 

 

Where  = 0.2273 and   = 4.7727. 

Example 2: Let ( , )L    be a linear uncertain variable. Then its uncertainty 

distribution is 

0

( ) ( ) / ( )   

1

x

x x x

x



    






     
 

 

And its inverse uncertainty distribution is 1( ) ( )        .  The expected 

value can be attained. 
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1

0
[ ] ( ( ) )

2
E d

 
     


    . 

Example 3: Let ( , , )Z a b c   be a Zigzag uncertain variable. Then its uncertainty 

distribution is 

0

( ) / 2( )
( )   

( 2 ) / 2( )

1

x a

x a b a a x b
x

x c b c b b x c

x c




   
  

    
 

 

And its inverse uncertainty distribution is  

1
(1 2 ) 2 0.5

( )   
(2 2 ) (2 1) 0.5

a a

b c

  


  


  

  
   

 

and   the expected value can be attained  
0.5

0

1

0.5

[ ] ((1 2 ) 2 )

2
((2 2 ) (1 2 ) )

4

E a b d

a b c
b c d

   

  

  

 
    




 

3.  Assumptions& Notations 

The following notations and assumptions are used in developing the model. 

3.1. Assumptions 

1. The production process has two states ‘in-control- state’ and ‘out- of- control 
state’. At the beginning of each production process, the system is in ‘in-control-state’ 
and produces defective items at a rate

1 1(0 1)   . During the production run, the 

process may be shifted from “in-control-state” to “out-of-control-state” at any 
uncertain time in production period and produces re-workable defective items at a 

rate 
2 2 2 1 (0< <1 ) and ( )    .  

2. The elapsed time until the production process shift is   assumed to be an 

uncertain variable with uncertainty distribution  . 
3. The production rate and demand rate are constant and deterministic. 
4. Full (100%) inspection is considered at a certain cost. 
5. The re-workable defective products are reworked at the end of the screening 

process with negligible reworked time. 
6. The process is brought back to its initial conformable state ‘in-control-state’ for 

each setup so, incurred more setup cost including restoration cost which is fixed. 
7. In real life situation for the competition market, shortages are not allowed. 
8. The time horizon is infinite. 
 

3.2. Notations 

 
  ; Uncertain Variable (Denote the shifting time from ‘in-
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control’ state to ‘out-of-control’ state 

  ; Uncertainty Distribution 
 p                ; Production quantity per unit time (deterministic and 

constant) 
 d                ; Demand rate 
 K               ; Setup cost 

1  ; The rate of reworkable -defective items in ‘in-control’ state. 

2  ; The rate of reworkable- defective items in ‘out-of-control’ 
state. 

t                 ; Production up-time 
T                ; Production Cycle length 

( , )rdNI t   ; The number of defective items in the production process. 

pc  ; Production cost/item/time 

sc  ; Screening cost/item/time 

hc  ; Holding cost/item/time 

rc  : Rework cost/item/time 

( )AC t  : Average cost per unit time 

[ ( )]E AC t  ; Expected average cost per unit time 

4.   Mathematical formulation of the proposed inventory Model: 

4.1. Mathematical formulation 

In this proposed model, under the above assumptions, we consider an imperfect 
production process, in which the production process is in two states 'in-control' and 
'out of control' state. We consider the production system has production uptime up 
to time t. In between production starting point and production uptime, the system 
shifted from 'in control' state to 'out of control' state at any uncertain time point 
having uncertainty distribution  . An inspection section separates the perfect and 
re-workable defective quality items through 100% screening process and the 
screening process finishes after production end. The perfect items are kept for 
satisfying customer demand and re-workable defective items are reworked with a 
cost after screening and stored in the main inventory. In the ‘in-control’ and 'out-of-
control' states, two types of items are produced among which the re-workable 
defective are produced at the rate

1 1 2 2 2 1(0 1) and (0 1),  where          

respectively. So first we calculate the number of re-workable defective items 
throughout the production cycle. 

Let ( , )rdNI t   be the number of re-workable defective items in the production 

process, then    

1

1 2

                  ;
( , )      

( ) ;
rd

pt t
NI t

p p t t

 


    


 

  
 (1) 

The length of the production cycle is  
pt

T
d

  . Production cost=
pc pt . Rework 

cost= ( , )r rdc NI t  . 
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Holding cost=
2 ( )

2

hc t p p d

d


.and screening cost=

sc pt . 

2 ( )
Total cost ( , )

2

h

p s r rd

c t p p d
k c pt c pt c NI t

d



      (2) 

Therefore the average cost per unit time 

( )  ( , )kd
AC(t)= ( )   

pt 2

h r rd

p s

c p d t c d NI t
c c d

pt


     (3) 

Expected average cost per unit time is 

( )  E[ ( , )]kd
E[AC(t)]=  +( )

pt 2

h r rd

p s

c p d t c d NI t
c c d

pt


    (4) 

Proposition 1. If  is a positive uncertain variable with uncertainty distribution 

 with (0) 0 and ( ) 1.      Then ( , )rdNI t   is a positive uncertain variable and 

the expected value of ( , )rdNI t  is  

1 2 1
0

[ ( , )] ( ) ( )
t

rdE NI t p t p x dx        (5) 

Proof: Let be   an uncertain variable. Then the expected value of the uncertain 

variable  is denoted as [ ]E   and is defined by 

0

0

[ ] { } { } E M d M d      




     .   

So, 
0

0

[ ( , )] { ( , ) } { ( , ) } = ( , ) ( )rd rd rd rdE NI t M NI t d M NI t d NI t u d u      
 

 

        

Here ( , )rdNI t   is positive valued, then 

0

1 2 1
0 0

1 2 1 2 1
0

( , ) ( ) ( , ) ( )

( ) ( ) ( ) ( )

( ) (0) (1 ( )) ( ) ( )

rd rd

t t

t

t

NI t u d u NI t u d u

p ud u p t u d u p td u

p t t p t p t t p x dx

  

    








  

      

        

 

  



 (6)                

As (0) 0  , it follows that,  

1 2 1
0

[ ( , )] ( ) ( )
t

rdE NI t p t p x dx         (7) 

Hence the result follows. 

Corollary 1. If   be an uncertain variable with uncertainty distribution   whose 

support is ( , )a b ,then [ ( , )]rdE NI t  reduces to
1 2 1[ ( , )] ( ) ( )

t

rd
a

E NI t p t p x dx        

Proposition 2. The optimum production run length t  exists and is unique, which 

optimizes the function  
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2 1

1
0

2 1

0

( ) ( )
( ) ( ) ( )

2

( - )
( ) ( )

t
h r

p s r

t
r

c p d t c dkd
H t c c c p d x dx

pt t

c d
C t x dx

t

 


 

 
      

  





                        (8) 

Where, 

1

( )kd
C(t)= ( )

pt 2

h

p s r

c p d t
c c c p d


     (9) 

Here C(t) represents the expected average cost per unit time for the classical EPQ 
model with constant defective rate and rework. 

Proof:  We have, 
1

( )kd
C(t)= ( )

pt 2

h

p s r

c p d t
c c c p d


     

and 
2

( ) kd
C (t)= 0

2 pt

hc p d
     

gives 
2

ˆ
( )h

kd
t

c p p d



. 

Again
3

2
( ) 0

kd
C t

pt
   ˆfor t t . So C(t) has a unique minimum at ˆ t t . Here  ( )C t  

is the cost function for the standard EPQ model with a constant defective rate of 

product throughout the production period and it is convex for all 0t  .     

Let 2 1

0

( )
 ( ) ( )

t
rc d

G t x dx
t

 
  , from which it follows that

2 1

2 0

( )
( ) [ ( ) ( ) ]

t
rc d

G t t t x dx
t

 
       .   

As 0 ( ) 1x   , ( )x  is monotone non-decreasing and 
0

( ) ( )
t

t t x dx    implies 

( )G t 
2 1

0

( )
( )

t
rc d

x dx
t

 
  is non-decreasing and 

0

1
0 ( ) 1

t

x dx
t

   implies  

2 10 ( ) ( )rG t c d     . 

As ( )H t  is a sum of the convex function of C(t) and G(t), which is bounded and 

non-decreasing, there exist a unique 0t   such that  t t  for which H(t) is 

minimum. 

If ( ) 0H t   is satisfied for t t , then 

 2 1

2 20

( )( )
{ [ ( ) ( ) ] } 0

2

t
hr

c p dc d kd
t t x dx

t pt

  
       

From which we get   

2 1 2 1

2 2 20

( )( ) ( )
( ) ] { ( ) }

2

t
hr r

c p dc d c d kd
x dx t t

t t pt

     
     .   

And in this case 
1 2 1( ) ( ) ( ) ( ) ( )p s r h rH t c c c d c p d t dc t                (10) 
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5.  Solution 

We cannot find out closed form solution of the optimum production run from the 
above objective function.  Using the Search procedure along with the bisection 
method and bound of the optimum production time, a search procedure is 

appliedtofind out t  such that 
2

( ) ( ) 0H t t F t      , which gives
2

r 2 1
0

( - )
( ) t +c d( - )[ ( ) ( ) ]

2

t
hc p d kd

F t t t x dx
p

 


       
(11) 

5.1 Algorithm of the Search Procedure 

Step 1: Set 0Lt   and 

2

( )
U

h

kd
t

c p p d



 

Where ( ) 0LF t  and ( ) 0UF t  , implies the existence of a value t  for which
( ) 0F t  . 

Step 2: Compute 2

L U
o

t t
t




 and the value of 0( )F t . 

Step 3: If ( )oF t  , where( 0, error tolerance).Control goes to step 5 otherwise 
goes to next step. 

Step 4: If ( ) 0oF t  , set U ot t , otherwise ( ) 0oF t  , set L ot t  , go to step 2. 

Select the value of ot as optimum value t


. 
Step5. Terminate the search procedure. 

6. Numerical Example 

The numerical examples are given for illustrative and verification of the real 
world problem. 

Case 1: Linear Uncertain Distribution 

Consider the uncertain variable   as linear with support ( , )a b , where a=2.5 and 

b=10.0 and other parameters are K = 2000, 1   0.10, 2  0.20, hc  5.0, d = 50, p = 

75, pc   50.0, sc  5.0., rc = 10.0. 

By the search procedure, the optimum production time is t = 4.53537 and 
corresponding optimum cost = 3380.49. 
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Figure 1. Expected average cost function is convex with respect to 

production time 

Table 1: Expected optimum production time and expected optimum cost/unit 
time with respect to the different change of the parameter. 

Parameter 

Change 
in 

Parame
ter 

Optimum 
Productio

n 
Time 

Optimum 
Expected 
Average 

Cost/Unit 
Time 

Parame
ter 

Change 
in 

Paramet
er 

Optimum 
Productio

n 
Time 

Optimum 
Expected 
Average 

Cost/Unit 
Time 

P 

-20% 
-10% 

0% 
+10% 
+20% 

7.71744 
5.64864 
4.53537 
3.81795 
3.30973 

3220.65 
3315.25 
3380.49 
3429.20 
3467.34 

 

1  

-20% 
-10% 

0% 
+10% 
+20% 

4.51952 
4.52741 
4.53537 
4.54340 
4.55750 

3371.10 
3375.79 
3380.49 
3385.19 
3389.88 

D 

-20% 
-10% 

0% 
+10% 
+20% 

3.46624 
3.95285 
4.53537 
5.26842 
6.25753 

2851.74 
3121.64 
3380.49 
3627.14 
3859.37 

 
 

2  

-20% 
-10% 

0% 
+10% 
+20% 

4.56789 
4.55150 
4.53537 
4.51952 
4.50393 

3379.36 
3379.88 
3380.49 
3381.10 
3381.69 

K 

-20% 
-10% 

0% 
+10% 
+20% 

4.06436 
4.30631 
4.53537 
4.75341 
4.96138 

3318.47 
3350.33 
3380.49 
3409.20 
3436.63 
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Figure 2. Production time with respect to the percentage change of the 

different   parameter 

 

Figure 3. Optimum expected average cost/unit time with respect to the 

percentage change of the different parameter. 

Case 2: Zigzag Uncertain Distribution 
Consider the uncertain variable   as zigzag Z(a, b, c) with support ( , )a c , where a = 

5.0 and b = 8.0 and c=10.0  and other parameters are K = 2000, 
1  0.1, 

2  0.20, 

hc  2.0, d=50,p=75, 
pc  25.0,

sc  2.0,
rc = 5.0. 
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By the search procedure, the optimum production time is t = 4.55557 and 

corresponding optimum cost = 3379.72. 

 

Figure 4. Expected cost function is convex with respect to production time 

Table 2. Expected optimum production time and expected optimum 

cost/unit time with respect to the different change of the parameter 

Paramet
er 

Change in 
Parameter 

Optimu
m 

Product
ion 

Time 

Optimum 
Expected 
Average 

Cost/Unit 
Time 

Para
mete

r 

Chan
ge in 
Para

meter 

Optimu
m 

Product
ion 

Time 

Optimum 
Expected 
Average 

Cost/Unit 
Time 

p 

 
-20% 
-10% 

0% 
10% 
20% 

 
7.82140 
5.68945 
4.55557 
3.82879 
3.31550 

 
3217.68 
3313.77 
3379.72 
3428.82 
3467.18 

 

 
 

1  

 
-20% 
-10% 

0% 
10% 
20% 

 

 
4.54340 
4.54947 
4.55557 
4.56171 
4.56789 

 
3370.19 
3374.96 
3379.72 
3384.49 
3389.26 

 

d 

 
-20% 
-10% 

0% 
10% 
20% 

 

 
3.47242 
3.96434 
4.55557 
5.30377 
6.32211 

 
2851.56 
3121.24 
3379.72 
3625.80 
3857.09 

 

 
 

2  

 
-20% 
-10% 

0% 
10% 
20% 

 

 
4.58037 
4.56789 
4.55557 
4.54340 
4.53139 

 
3378.79 
3379.26 
3379.72 
3380.19 
3380.64 

 

k 

 
-20% 
-10% 

0% 
10% 
20% 

 

 
4.08052 
4.32457 
4.55557 
4.77540 
4.98556 

 
3317.97 
3349.69 
3379.72 
3408.30 
3435.62 
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Figure 5.  Production time with respect to the percentage change of 

different parameters 

 

          Figure 6. Optimum cost/unit time with respect tothe percentage 

change of different parameters. 

7.  Sensitivity Analysis 

Since the shifting time point from in–control state to out-of-control state is 
uncertain variable in between beginning and end of the production run and it 
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depends on support set of uncertainty distribution, so, the optimum production time 
and optimum cost per unit time depending on that. 

From Table-1, Figure-2 and Table-2, Figure-5, for both the cases, it is observed 
that optimum production time is decreased with increase of production rate and rate 
of reworkable defective items in ‘out-of-control’ state and it increases with the 
increase of other parameter demand rate, setup cost and rate of reworkable 
defective items in ‘in-control’ state. Similarly from Table-1, Figure-3 and Table-2, 
Figure-6, for both the cases, it follows that optimum cost increases with the increases 
of all parameters. 

Optimum production time is sensitive to the change of parameters production 
rate (p) and demand rate (d) and optimum cost per unit time is sensitive to the 
change of parameter demand rate (d). Optimum production time is moderately 
sensitive with the change of a parameter (p), slightly sensitive to the change of a 
parameter (d) and insensitive to the change of all other parameters. In the same way, 
the optimum cost/per unit time is slightly sensitive to the changes of the parameter 
(d) and insensitive to all other parameters. 

8.  Conclusion 

In this article, we have discussed an imperfect production inventory model in an 
uncertain environment.  It is assumed that an imperfect production process has two 
states ‘in-control’ state and ‘out-of-control’ state. Here we also assumed that the 
elapsed time of the production process follow uncertain shift distribution, which is 
an uncertain variable follows an uncertainty distribution. The basic difference from 
the earlier research article is that our model is on the study of uncertain phenomena 
while the stochastic is about the study of stochastic phenomena. For the lack of 
historical data, the shifting of the production process is quantified by domain 
experts’ belief degree and by the principle of least square, the manager should follow 
a particular uncertainty distribution. The optimum production time and optimum 
cost depend on the type of uncertainty distribution along with the support set of that. 
Two case examples justify the numerical verification of theorem and propositions in 
this proposed model on linear and zigzag uncertainty distribution with the same 
support. It follows that the expected optimum cost is near about approximately the 
same for both the uncertainty distribution, though optimum production time is 
slightly different. Finally, for illustrating the procedure, an algorithm is designed to 
find out the optimum goal.  

Inthe future, we would like to extend our modelfor the imperfect production 
process with random uncertain circumstances. Moreover, the possible extension of 
different variants of imperfect production inventory problem like demand variability 
and trade credit policy to uncertain single/multi-objective models will also be the 
area of our research interest.  
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