
82 83

Dental anthropologists commonly use morpho-
logical data to estimate the degree of dissimilarity 
among samples—so-called biological distance or 
phenetic distance.  It is supposed that the greater the 
dissimilarity between two samples, the less the genetic 
contact between the groups due to separation by time 
and/or space.

An issue of some interest is how, statistically, to 
quantify the degree of dissimilarity among groups in 
an objective manner.  Despite the numerous methods 
suggested in the literature (reviewed in Constandse-
Westermann, 1972), dental anthropologists have 
focused almost exclusively on the use of Cedric A. B. 
Smith’s mean measure of divergence (MMD).  Our 
experience is, however, that there are misunderstand-
ings about the MMD.  There seems to be no commer-
cially available computer program to calculate MMD, 
which would promote consistency, and the purported 
formula for MMD (if reported at all) differs among 
authors (including the repeated publication of statis-
tical errors).  The purpose of this note is to clarify the 
calculation of MMD in a simple, intentionally nontech-
nical manner.

Overview

Constandse-Westermann (1972) and, in particular, 
Sjøvold (1973, 1977) provide detailed descriptions of 
the development and use of the MMD.  In brief, the 
British statistician Cedric A. B. Smith devised this 
statistic for M. S. Grewal (1962) who used it to estimate 
the biological divergences that had developed across 
generations in sublines of the common C57BL strain of 
laboratory mice.  Grewal calculated trait frequencies for 
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27 cranioskeletal bony variants such as the occurrence 
of foramina, accessory sutures, and bony processes 
(traits primarily described by Grüneberg, 1950 and by 
Deol, 1955).  It was supposed that the sublines diverged 
with time due to latent heterozygosity in the inbred 
line but, primarily, from the accumulation of muta-
tions distinct to each subline—which is why the term 
divergence is used for this phenetic measure rather than 
distance.  The MMD subsequently was popularized in 
anthropological circles by A. C. Berry and R. J. Berry, 
notably in their nonmetic skeletal comparisons among 
human groups (e.g., Berry and Berry, 1967; Berry, 
1968; Berry, 1974, 1976; and elsewhere).  This pair of 
authors promoted the use of “minor skeletal variants” 
as epigenetic features that, from their analyses, had a 
genetic basis but were essentially independent of age 
and sex and size of the individual.

These minor skeletodental variants, such as the 
presence of nutrient foramina and accessory molar 
cusps, can each be viewed as a dichotomous feature, 
so summary of a sample is easily expressed as a trait 
frequency—and Smith’s MMD provides a method 
of estimating the phenetic distances among samples 
arrayed through space and/or time.

Smith’s original formula as described by Grewal 
(1962) is
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That is, the difference between samples i and j for 
the frequencies of trait k is calculated and then this 
difference is squared so that positive and negative 
differences do not cancel one another. The sum of 
the differences is divided by r, the number of traits 
used in the equation, in order to generate the “mean” 
or average difference between samples i and j. The 
correction term 1/ni+1/nj then is subtracted from this 
average to correct for sampling fluctuations. Grewal 
(1962:229-230) actually described the MMD in the text 
of his paper rather than presenting Eq. 1, which led to 
misinterpretations by other researchers.

It follows from this equation that the “size” of 
a MMD depends on the battery of traits used, and 
MMDs generated from different sets of variables are 
not comparable, even for the same pair of groups. 
These conditions hold for all measures of “biological 
distance” (Sokal and Sneath, 1963; Constandse-Wester-
mann, 1972; Reyment, 1991). While it is not our purpose 
to critique the merits of the MMD, one noteworthy 
issue is that it does not account for intertrait correla-
tions, which commonly is viewed as a shortcoming. 
Intertrait associations (“correlated traits”) inflate the 
MMD because correlated traits share some of the same 
informational content, and this shared (redundant) 
information increases with the strength of the corre-
lation. For example, the occurrence of incisor lingual 
shoveling (Hrdlička, 1920, 1922) is strongly intercorre-
lated on the maxillary central and lateral incisors (and 
between homologous teeth in the two quadrants), so 
including trait frequencies of shoveling on both UI1 
and UI2 carries a lot of statistically redundant informa-
tion. Studies have disclosed that nonmetric intertrait 
associations are more common than expected by chance 
(e.g., Corruccini, 1974; Scott, 1977, 1978, 1979).  On the 
other hand, Constandse-Westermann (1972) points out 
that, within an analysis, the same suite of traits is used 
for all of the pairwise comparisons so that, insofar as 
intertrait associations are a species-wide phenomenon, 
the effect of statistical redundancies can be viewed as a 
constant across the study.

Statistically significant intertrait correlations may 
also occur by chance. At the conventional alpha level 
of 0.05, one expects to make a Type I error (i.e., reject 
a true null hypothesis) 5% of the time. Suppose that a 
battery of 30 morphological traits is scored (Table 1). 
One would expect that 21 of the matrix of 435 pairwise 
correlations would be statistically significant due to 
chance alone.  An associated issue is that the ability 
to detect statistically significant differences depends 
on the available sample size (degrees of freedom) 

available (e.g., Fisher and Van Belle, 1993).  Biologically 
real but weak correlations generally cannot be detected 
with small sample sizes.  Statistical textbooks deal with 
the subject in much more detail, but guidelines for 
detecting biologically real intertrait correlations are (1) 
comparable correlations should appear in the analyses 
of multiple samples and (2) correlations found in 
larger samples, where effects of sampling fluctuations 
are dampened, generally are more reliable.  Weak 
associations, particularly with the sample sizes 
normally encountered in anthropological studies, will 
not seriously distort MMD results.

Frequency transformations

The MMD was devised to deal with percentages 
of dichotomous data (also termed nonmetric or, occa-
sionally, discontinuous traits).  This is in contrast to 
quantitative (interval and ratio scale) data where more 
common statistical methods can be employed, such as 
Pearson’s (1926) virtually-defunct coefficient of racial 
likeness, Penrose’s formulae (1953) for distance, size 
and shape (where distance = size + shape), and the 
current gold-standard, Mahalanobis’ D2 (Mahalanobis, 
1936).

Qualitative data, like the frequency of the Dryo-
pithecus Y-5 pattern on a lower molar (Hellman, 1928), 
generally are converted to percentages, commonly 
termed trait frequencies.  Such data either are scored 
as dichotomous traits or a “cut-point” is decided upon 
along an ordinal grading scheme to create dichoto-
mous traits.  Formally, the sample frequency of a trait 
can be expressed as p (and the frequency of absence as 
q) such that p + q = 1 and p = 1 – q.  This simply relates 
to the binomial distribution.  The sample variance of 
this distribution is pq/n (e.g., Sokal and Rohlf, 1995:
419), where p and q are the frequencies of trait presence 
and trait absence, respectively, and n is the sample size.  
For a given sample size, the sample variance is tied to 
the frequencies of p and q.  The degree of distortion 
(that is, the changing value of the variance through the 
frequency distribution from zero to one) increases as 
the sample size decreases (Fig. 1).  This nonlinear asso-
ciation between the variance and the trait frequency 

 Number of Number of Number Expected
 Traits Correlations from Chance

 5 10 1
 10 45 2
 20 190 9
 30 435 21
 40 780 39
 50 1,225 61

TABLE 1. Number of statistically significant pairwise 
associations expected in variously-sized batteries of traits

E.F. HARRIS AND T. SJØVOLD
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is obvious in the range of most anthropological 
samples—either of living or skeletal specimens.

An appropriate transformation of the percentages 
diminishes this association between a trait frequency 
and its variance, making the variance more stable. 
Historically, the transformation can be as simple as 
sin-1√p (Fisher, 1958), but other choices work much 
better. The arcsine (or “arcsin” or “inverse sine”) 
transformation is a trigonometric function, generally 
coded as sin-1, and it can be expressed either in degrees 
or radians. (The arcsine function sin-1(x) is in no way 
related to 1/sin(x) as might be guessed.)

Transforming trait frequencies introduces an issue 
that has not been appreciated universally when calcu-
lating MMDs. If a researcher uses a familiar transfor-
mation—such as sin-1√p (Fisher, 1958)—with the units 
in degrees, then the sampling variance of this value is 
820.7/n (Constandse-Westermann, 1972:118; Sjøvold, 
1973:208). Historically, this value was cumbersome 
when manually calculating the MMD. Instead, the 
convention has been to express the transformation in 
radians rather than percentages, but, as Smith (1972:

242-244) illustrates, the results are mathematically 
identical. Radians are a trigonometric device that 
simplify many calculations. Several deterministic 
equalities between degrees and radians can be noted, 
such as

π radians = 180°

2π radians = 360°

1 radian =
180 180

3 14159
57 17 75

° ≈ ° ≈ ° ′
π .

.

For present purposes, radians are desirable because 
the transformed frequencies of sin-1√p have the simple-
to-compute variance of about 1/4n, where n is the 
sample size.  The point needs to be emphasized that 
radians rather than degrees are to be used unless one 
also incorporates the appropriate variance correction 
into the MMD equation.

Grewal’s (1962) transformation of p is sin-1(1-2p), 
and its variance is 4 times as large as that for Fisher’s 
transformation, namely 1/n (because 4 times 1/4n = 
1/n), when both are expressed in the same units, either 
degrees or radians.

Green and Suchey (1976) compared some published 
frequency transformations and concluded that the 
formula suggested by Freeman and Tukey (1950) did 
a decidedly better job of stabilizing the variance than 
Grewal’s sin-1(1-2p) transformation. The Freeman-
Tukey transformation is
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where m is the number of occurrences of the trait in 
the sample and n is the number of scorable specimens 
in the sample so the trait frequency is p = m/n.  θ is 
computed for the kth trait in sample i and likewise for 
sample j, then these two values are entered into Eq. 1. 
This means that the raw counts (m and n) are needed 
to calculate the MMD, not the trait frequencies. Graphs 
of these three arcsine transformations of the trait 
frequency are shown in Figure 2.

In practice, there is very little improvement with 
the Freeman-Tukey transformation compared to 
another transformation proposed by Anscombe (1948), 
namely
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 [Eq. 3]
Indeed, according to the graphical comparisons in 
Green and Suchey (1976:63), Anscombe’s transforma-
tion is slightly better than the Freeman-Tukey formula 
at asymptotically stabilizing sampling variance. Both 

Fig. 1. Examples of how the variance of the trait frequen-
cy p changes depending on sample size. In all cases, 
sample variance is at its maximum when p = q = 0.5, but 
the range of values diminishes as sample size increases.

MEAN MEASURE OF DIVERGENCE



86 87

����

����

����

���

���

���

���

���

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
��
�
��
�
��
��
��
�
��
�
��
��
��
�
�

���������������

are clear-cut improvements over Grewal’s transforma-
tion in terms of stabilizing the variances of the bino-
mial variable.  We suggest that Anscombe transforma-
tion is preferrable for a couple of reasons.  Historically, 
Rao (1952) recommended Anscombe’s transformation 
when sample sizes are moderately large.  This transfor-
mation also has the advantage that it can be rewritten 
as a single arcsine:
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 [Eq. 4]

or, equivalently,

Fig. 2. Graphs of the arcsine transformations of trait frequency p discussed here, namely (1) Fisher’s sin-1√p, (2) 
Grewal’s sin-1(1-2p), (3) the Freeman-Tukey transformation shown in Eq. 2, and (4) the Anscombe’s transformation 
shown in Eq. 3.  Sjøvold (1977) has shown that these latter two transformations are mathematically very similar—
which is why they are superimposed here throughout their ranges.

E.F. HARRIS AND T. SJØVOLD
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The Freeman-Tukey transformation is quite compli-
cated by comparison.  Moreover, Anscombe’s 
formula can be extended to multistate traits (in 
contrast to dichotomous traits)—though we do not 
discuss that option in this paper—and this is not true 
of the Freeman-Tukey formula.

Adjusting for variances

Smith’s MMD originally was published without 
explicit directions (Grewal, 1962), then ambiguously 
by Berry and Berry (1967:370), and then incorrectly 
by Berry (1968:115).  These shortcomings created a 
rocky start for the MMD, generating errors that occa-
sionally reappear.  Constandse-Westermann (1972:
119) was the first to explicitly publicize this formula:
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though knowing what the equation should be makes 
the description by Grewal (1962:229-230) clear. Notice 
that in Eq. 6 the correction term applies to each 
variable, not just the summary value as indicated in 
Eq. 1. The quantity(1/nik+1/njk) is subtracted from the 
squared difference of trait frequencies to adjust for the 
mathematical properties of the squared differences 
between the theta values (θ) that overestimate the 
divergence between the corresponding populations. 
That is, 1/nik+1/njk is the variance of the two angular 
values.  These theoretical and observed distributions 
coincide more closely as n increases. nik and njk are 
the sample sizes for the kth trait so that, depending 
on how fragmentary the dental or skeletal data are, 
the usable (scorable) sample sizes will vary from trait 
to trait.

Notice too that the correction term in Eq. 6 has 
the subscript k that was absent in Eq. 1.  Equation 
1 assumes that the data are complete, so sample 
sizes are identical across the whole suite of traits.  
This commonly is not the case because of damaged 
skeletal elements or attrition, caries, or loss of teeth.  
If there are missing data, sample size needs to be 
subscripted so it can vary by trait. 

Green and Suchey (1976) and Green et al. (1979) 
note that this conventional correction formula over-
estimates the true variance and that, instead, the 
correction term (attributable to Freeman and Tukey, 
1950) should be
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Square-root transformation

If one reviews the various publications using the 
MMD, it will be seen that a square-root transformation 
crept into the formula with time.  For example, A. C. 
Berry (1974:348) reports the formula to be:
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This square-root modification is due to R. J. Berry 
(1969), and we suggest a couple of reasons for this 
addition.  The square-root modification may be  
supposed to be an improvement towards the goal of 
“triangular equality” among the MMDs.  Given three 
groups, say A, B and C, the squared distance between 
two groups (say A and B) could be greater than the 
sum of the squared distances between the other two 
pairs, so AB > (BC + AC).  This actually is not true.  
The actual effect of the square-root transformation is 
to change the reference space from Cartesian space to a 
sphere, which creates mathematical problems (Sjøvold, 
1977).  Even though the square root modification 
(Eq. 8) is commonly encountered, it stems from a 
misunderstanding, and we strongly suggest that it not 
be used.

Alternatively, the square-root modification may 
have been perceived as a “correction” for estimating 
a squared divergence, so taking the square root 
would estimate the unsquared (linear) divergence.  
Analogously, other researchers have used the square-
root of Mahalanobis’ D2, supposing that D is a more 
relevant measure of intergroup distance than D2.  The 
modification is unwarranted, though, because the 
MMD (Eq. 6) is an unbiased estimated of the squared 
divergence between the populations from which the 

samples were drawn, but MMD  is not an unbiased 
estimated of the unsquared divergence (Sjøvold, 1977:
46).

Consider too that the MMD commonly is less 

than 1.0, so MMD will be larger than MMD.  
Artificially increasing MMD by using the square-
root transformations makes the test of significance 

(discussed below) inappropriate because the MMD  
are inflated values, so it is (falsely) harder to achieve 
statistical significance if it is not understood that the 

MMD and not the MMD  needs to be tested.

MEAN MEASURE OF DIVERGENCE
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Sample size

A tangential issue is how to score fragmentary 
data, particularly dental traits that typically occur 
bilaterally (e.g., Turner et al., 1991).  Incompletely 
preserved skeletodental data, where the left and right 
occurrences of a trait cannot always be determined, 
is a common problem in archeological samples, but 
the same issue arises with living specimens when the 
dentition is compromised by caries, attrition, dental 
restorations, extractions and other causes of tooth loss.  
Green et al. (1979) reviewed the options for scoring 
incomplete data, concluding that the least biased 
method is to consider both left and right sides and 
calculate the trait frequency as the number of times the 
feature occurs on either side divided by the number of 
scorable sides.  This maximizes the amount of usable 
information without artificially inflating sample sizes 
by using sides instead of individuals as the unit of 
study.  It does assume that there is no systematic side 
preference in trait frequencies, which seems to be the 
case in the main.

A related issue of sample size becomes obvious 
from inspection of Eq. 6.  If the sample size for a trait 
is small in one or both samples being compared, then 
the adjustment factor can be as large or larger than 
the phenetic difference that is measured as (θik-θjk)

2.  
This leads to a MMD that is zero or negative, but not 
because of the similarity in trait frequencies but because 
of small sample sizes.  That is, the adjustment—which 
is wholly a function of sample sizes—can readily 
overwhelm the biological measure of difference (θik-
θjk)

2, so MMD may well be “controlled” by inadequate 
sample sizes when dealing with samples in the range 
typically encountered in anthropological collections.

This artifactual effect of diminutive sample sizes 
can easily pervade an analysis for several reasons.  
One, the MMD almost invariably has been applied 
within a species, so the range of trait frequencies 
(and, thereby, differences between groups) is not 
great.  Berry and Berry (e.g., 1967) argued that discrete 
skeletodental traits exhibit considerable differences 
in frequencies among groups, but this has not been 
substantiated in the dental anthropological literature 
(e.g., Lasker and Lee, 1957; Scott and Turner, 1997).  
Bigger between-group differences in trait frequencies 
obviously can “offset” the reductionist effect of 
small sample sizes.  Two, sample sizes generally are 
comparable for the whole suite of traits in a sample; 
there is little chance of small sample sizes for some 
traits being offset by substantially larger samples of 
other traits.  Three, when sample sizes are small vis-
à-vis the phenetic difference (θik-θjk)

2, the adjustment 
produces a negative distance for that trait, but it seems 
that researchers have simply averaged this negative 
value into the MMD.  In fact, a negative value for a trait 
has no biological meaning; it is wholly an artifact of the 

frequencies being too similar and/or the samples sizes 
being too small.

Negative distances

Consider the largest possible difference between 
a pair of trait frequencies.  Suppose, hypothetically, 

E.F. HARRIS AND T. SJØVOLD

 Sample Correction
 size term

 10 0.040
 15 0.018
 20 0.010
 25 0.006
 30 0.004
 40 0.003
 50 0.002
 75 7x10-4

 100 4x10-4

Table 2. Representative sample sizes and associated 
correction term1

1Sample size is the scorable number of individuals per 
group and assumes ni = nj.

Fig. 3. Graph of the correspondence between the dif-
ference in trait frequencies in a pair of samples and the 
squared difference (θik-θjk)

2 using Grewal’s transforma-
tion.
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that a trait like the three-rooted mandibular first molar 
(Tratman, 1938) is virtually fixed at 99.99% in Group i but 
is quite rare, 0.01%, in Group j.  This squared difference 
(θik-θjk)

2 using Grewal’s arcsine transformation is 9.62.  
All other between-group comparisons other than this 
extreme will be less than 9.62.  Obviously, too, as trait 
frequencies approach each another in two samples—as 
occurs when groups are genetically and phenotypically 
more similar—the smaller the (θik-θjk)

2 difference will be 
and the greater the relative influence of the correction 
term.

We can look at some simple examples to guage 
the influence of the correction term (Table 2).  The 
relationship is linear.  When sample sizes are less than 
about 20 (per sample, assuming ni = nj), the term is fairly 
large, in excess of 0.10.  If sample sizes are 50, the term is 
0.002, and if sample sizes are 100, the term is just 0.0004.

These values can be compared to those generated by 
the squared differences of the transformed frequencies 
(θik-θjk)

2 as shown in Figure 3.  There is a negative 
hyperbolic relationship here.  As examples, when the 
difference in trait frequency is 0.85, the contribution 
to the MMD will be 4; when the difference is 0.65, the 

contribution will be 2; and when the difference is 0.48 the 
difference will be 1.

Figure 4 graphs these two opposing values, namely 
the squared difference in trait frequencies (θik-θjk)

2 on 
the X axis and the sample size (per group) at which 
this difference is nullified by the correction factor.  We 
see that sample size (per group) can be less than 20 and 
there will still be a positive contribution to the MMD so 
long as trait frequencies differ by at least 15 percentage 
points.  If the difference in frequencies is just 10 points, 
then sample sizes less than 40 will generate a negative 
MD for that trait.  If the difference is just 5 percentage 
points, sample sizes need to be at least 200 per group.  
This graph should provide some helpful guidelines 
when the researcher is deciding which skeletodental 
traits possess enough intergroup variation to generate 
meaningful MMDs.

One can see that the potential magnitude of an MMD 
is limited; the lower limit is zero and the upper limit 
is less than about 9.6.  This upper limit assumes that 
the sample sizes of the two groups are very large (so 
the correction factor is effectively nil) and that the trait 
frequencies between groups are as different as possible 
for all traits considered.  In practice, actual values for 
the MMD will be far smaller than this.  Because the 
obtained MMD values are small (generally below 0.50), 
some researchers have multiplied them by 100 or 1,000 
for presentation, and this has led to misunderstanding 
when the research report was not adequately scrutinized 
by subsequent investigators.

Test of significance

Two groups can have a nonzero MMD simply due 
to chance deviations because we are dealing with finite 
samples of specimens, not statistical populations.  This 
might make a test of statistical significance useful.  The 
smaller a group’s sample sizes, the more the MMD can 
differ from zero due to sampling fluctuations that do not 
represent a “true” biological difference.

C. A. B. Smith developed a test of statistical signifi-
cance for the MMD based on its variance, though, like 
the distance formula itself, several early publications 
contain errors.  Constandse-Westermann (1972:120) lists 
the correct formulation of the variance of MMD:
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To be clear, the standard deviation of this variance is the 
square root of Eq. 9, namely

MEAN MEASURE OF DIVERGENCE

Fig. 4. Graph showing where the difference in trait fre-
quencies (X axis) equals the correction term (Y axis) that 
is a function of sample sizes.



90 91

 
4

1
n

1
n

r
1

n
1

n
ik jk 2

ik jk

+












−( ) − +






θ θik jk



















=

∑
k

r

1

r2
 [Eq. 10]

Sjøvold (1973:210; 1977:30; also see Green and 
Suchey, 1976:67) notes that, under the null hypothesis, 
the variance simplifies to
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so the square root of Eq. 11 is the standard deviation of 
MMD
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Standard statistical theory indicates that two 
samples will differ significantly at alpha = 0.05 when 
their means differ by at least 1.96 their standard devia-
tion.  This value of 1.96 rounds to 2, which is where the 
statements come from (e.g., Sjøvold, 1973:216; Green 
and Suchey, 1976:67) that the null hypothesis of “no 
difference” can be rejected when the MMD is more 
than twice its standard deviation (Eq. 12).  This rule of 
thumb is, however, a rough estimate, particularly if the 
usable sample sizes vary much among the traits used.

There are, however, at least three considerations 
that detract from the value of testing the statistical sig-
nificance of MMD:  One, the meaning of a “significant” 
difference is quite vague biologically.  This relates to 
group selection; if two samples are sufficiently dif-
ferent on the basis of geography, anthropology (i.e., 
race, language, and culture), or distance, then they 
already characterize separate populations, and no test 
is required.  If, as occurs too frequently in the anthro-
pological literature, samples differ in time, then of 
course they constitute samples of different populations 
because a biological population (Mayr, 1963:136) is a

community of potentially interbreeding indi-
viduals at a given locality.  All members of a 
local population share in a single gene pool, 
and such a population may be defined also 
as a group of individuals so situated that any 
two of them have equal probability of mating 
with each other and producing offspring….

This is where the oxymoron of a “skeletal population” 
is seen to be absurd (Cadien et al., 1974).

It might be countered that the aim is to see whether 
two samples are so similar that they can be considered 
to be drawn fro the same statistical population.  Smith 

(1972:243) notes that, “Alas, this seems to confuse the 
ideas and uses of a ‘distance’ and a ‘test of signifi-
cance’.  Also, it is usually a nonsensical question, for 
two distinct populations are distinct, and are not in any 
reasonable way samples from a single population.”  
Moreover, there are more appropriate and more effi-
cient statistical methods for testing the differences in 
trait frequencies than the averaged result given by the 
MMD (see, e.g., Fleiss, 1981; Sokal and Rohlf, 1995).

Two, “The crucial point in every problem concern-
ing biological divergence or distance—and in fact for 
the study of biological distance in general as well—is 
the choice of variables of a given set to use” (Sjøvold, 
1977:31).  The issue here is that the size of the MMD be-
tween pairs of samples can be increased or diminished 
simply by varying the traits used.  This issue has been 
reviewed in depth in books on numerical taxonomy 
because trait selection—which traits and how many 
traits—is so central to the results obtained (e.g., Sokal 
and Sneath, 1963; Reyment, 1991).  The issue revolves 
on two considerations (see Sjøvold, 1977:31), one is 
whether the chosen trait frequencies are sufficiently 
different among the groups while still being repre-
sentative of the groups and, two, whether intergroup 
divergence is diminished or accentuated by the traits 
selected in the prior consideration. Those familiar 
with population differences in dental trait frequencies 
(reviewed in Turner et al., 1991; Hillson, 1996; Scott 
and Turner, 1997) will appreciate that different traits 
discriminate between different groups; important dis-
criminators for one comparison are noncontributory in 
other comparisons. The “best” discriminators depend 
wholly on the groups being compared. Put simply, the 
quantitative results from the MMD (and other distance 
statistics) are prone to researchers’ biases in trait selec-
tion.  A test of statistical significance is, then, of little 
practical use.

The researcher needs to be aware of the influence 
of trait selection and be prepared to defend the suite 
of traits used for an analysis. The simple inclusion of 
“lots” of dental traits actually is counterproductive 
because most do not differ sufficiently among groups 
or, like the paramolar tubercle of Bolk (Dahlberg, 1945) 
or the Uto-Aztecan premolar (Morris et al., 1978), occur 
too infrequently to contribute numerically to a MMD. 
Sjøvold (1973:211) also makes the point that “dummy” 
variables are not to be used; these are traits that are 
fixed across all of the samples studied (either always 
present or always absent).

Sjøvold recommends the use of Bartlett’s adjust-
ment (Bartlett, 1936) when the trait frequency is fixed 
in a given sample:  If the trait does not occur in a sam-
ple (p = 0) then it should be replaced by p = 1/4n.  If the 
trait always occurs (p = 1) then it should be replaced by 
p = 1 - (1/4n).  Green and Suchey (1976) also promote 
the use of Bartlett’s adjustment to help correct for ex-
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treme trait frequencies.

Trait selection

The MMD necessitates some care in trait selection 
in order to preserve its statistical properties.  This 
can present a perceptual conflict with the goals of 
numerical taxonomy.  On the one hand, long-held goals 
in numerical taxonomy are repeatability and objectivity.  
A matrix of MMDs should not depend on the traits 
selected; instead, a goal is that different researchers, 
using different sets of traits should arrive at a 
comparable set of intergroup relationships.  An obvious 
and attractive way of seeking this goal is to use many 
variables, without selection, so the resulting MMDs 
will constitute a broad, comprehensive consensus of 
how the groups are related phenetically.  Sokal and 
Sneath put forth the seldom-achieved suggestion that, 
“At least sixty [traits] seem desirable, and less than 
forty should never be used” (1963:51).  The idea is that 
many traits will more-thoroughly sample the battery 
of available or possible traits, thus diminishing the 
influence of any one or a few traits, and similarly will 
guard against biases in trait selection, thus making the 
phenetic distances more objective.

The statistical problem with this approach is that 
some—perhaps several or, even, most—traits will be 
nondiscriminatory among the groups.  As seen from 
Eq. 6, when there is little or no difference in trait fre-
quency among the groups, the contribution of that 
trait to the MMD will not be zero.  Instead, because 
of the correction factor, the trait’s contribution will be 
negative, which has no biological meaning.  And, obvi-
ously, intergroup differences in trait frequencies need 
to be larger to be contributory when sample sizes are 
smaller.

An obvious solution to the accumulation of negative 
values in the calculation of an MMD would simply be 
to set the negative values to zero on a trait-by-trait 
basis.  This, however, creates another problem, so it 
is not recommended.  When MMDs are calculated as 
in Eq. 6, they are unbiased estimates of the underlying 
population differences.  This feature is lost—and 
with it several statistical properties—if negative 
contributions are set to zero.  If negative values are set 
to zero, the MMDs will over-estimate the population 
differences.  Instead, we recommend the following 
two-step approach:

One, a priori a scientist should propose to use as 
large a battery of traits as feasible, thereby seeking 
the goals of repeatability and objectivity set forth by 
Sokal and Sneath (1963).  This initial list needs to be 
made explicit in the publication; it may well supply 
important information for other researchers following 
up with later studies.  However, these proposed traits 
need to be tested to see which ones contain contributory 
information, which we define as a trait showing a 

statistically significant difference between at least one 
pair of the groups being evaluated.  These intergroup 
differences can be evaluated by any of a number of 
statistical tests appropriate for rates and proportions 
(e.g., Fleiss, 1981; Siegel and Castellan, 1988).

This winnowing process (1) removes those traits 
that will generate negatives values across all pairs of 
groups during calculation of the MMDs, but (2) does 
not bias the MMDs’ estimates.  Again, we contend 
that it is important to provide the full list of traits 
(and their trait frequencies) prior to the omission of 
noncontributory traits.

As an optional third step, those MMDs that are 
negative can be set to zero, both conceptually and 
practically, if subsequent use is to be made of them 
(such as input for cluster analysis or phenograms 
or other graphical representations).  Indeed, it is 
permissible to set all MMDs that are less than twice their 
standard deviations to zero since, statistically, these 
estimates of the underlying population differences are 
nonsignificant.  Such values are simply within the range 
of random sampling fluctuations, so their expected 
values are zero.

The error of “standardization”

Sofaer and colleagues (1986) introduced quite a dif-
ferent approach to calculating the MMD that they term 
“standardized MMD.” They developed their method 
to try and resolve a serious shortcoming of their data, 
namely:  What if you want to develop a matrix of MMDs 
for a set of samples, but you did not score the same suite 
of morphological traits for all of the groups?  Sofaer’s 
solution was creative, but wrong.

In concept, one suite of traits ought to produce 
roughly the same phenetic relationships as another (e.g., 
Sokal and Sneath, 1963). If enough traits are used, and 
all of them possess the same inter-group relationships, 
and each trait produces the same magnitude of inter-
group “distances,” then this would be approximately 
true. In actuality, of course, different sets of traits seldom 
produce comparable phenetic results.

Sofaer’s solution was to use MMDs generated be-
tween pairs of groups—where different groups were 
represented by different traits and different numbers of 
traits. The authors then “standardized” the MMDs by 
dividing each MMD by its standard deviation (using a 
formula similar to Eq. 12).  This was claimed to be analo-
gous to the conventional z-score standardization,

 
z=

( )X − µ
σ  [Eq. 13]

(e.g., Sokal and Rohlf, 1995:101-111) but the analogy 
quickly breaks down.

Recall that standardizing a normally distributed 
sample yields z-scores with a mean of zero and a stan-
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dard deviation of one (often termed “unit variance” 
since σ2 = 1 = σ). Such a distribution occasionally 
is coded as N(0, 1).  This standardization cannot be 
properly applied to a series of MMDs—unless all 
of the MMDs are zero (so µ = 0), in which case the 
operation is pointless. The whole purpose of calcu-
lating MMDs among groups is that the groups differ 
according to some set of trait frequencies. More pre-
cisely, one supposes that the populations from which 
the samples are drawn possess meaningfully differ-
ent trait frequencies; indeed, the degree of phenetic 
distance (MMD) is expected to differ among groups 
on a pair-by-pair basis—some groups being more 
similar and others more different than others for a 
given set of traits.  For a given set of comparisons, 
some, most, or all of the MMDs will be different from 
zero. Regardless of particulars, the MMDs will not be 
zero, nor will the mean of the MMDs be zero.

Moreover, the standard deviation (Eq. 12) is go-
ing to suffer from random variations in sample size 
from trait to trait. Given that (1) most anthropologi-
cal samples are modest in size, (2) they are samples 
of convenience (so sample size seldom can be con-
trolled), (3) sample sizes differ among traits, some-
times dramatically, due to unscorable specimens, 
and (4) trait frequencies seldom vary much among 
groups, especially after sampling fluctuations are 
accounted for, “standardization” of MMDs effec-
tively is an exercise in introducing random errors of 
unknown magnitude that differ in unknown but dif-
fering ways from comparison to comparison depend-
ing on sample sizes and other random errors, also of 
unknown and differing magnitudes.

There is, in fact, no analogy between the conven-
tional z-score and Sofaer’s treatment of the MMDs. 
With a set of MMDs, the population mean is not zero, 
and there is a different standard deviation for every 
MMD (Eq. 12). Since these standard deviations are 
primarily tied to the sample sizes of the traits avail-
able in the study, “standardization” as described by 
Sofaer et al. divides each MMD by a different and 
biologically meaningless value. We obviously see no 
merit—and several problems—with this attempt at 
“standardization.”

Problems with “standardization” seem obvious to 
us, but the method was applied uncritically by Sutter 
and Mertz (2004)—evidently with the passive assent 
of the reviewers as well.  What strikes us as particu-
larly unfortunate is that (1) the proper source of the 
“standardization” method (i.e., Sofaer et al., 1986) 
does not even appear in the literature cited and (2) 
the method is wrongly-attributed (on their page 136) 
to Sjøvold (1973), who decidedly did not mention or 
advocate any such approach.  This error is yet an-
other example of where hasty scholarship has created 
impediments to the correct calculation of MMDs.

Summary

The purpose of this note is to publicize the correct 
calculation of Cedric A. B. Smith’s MMD. This can be 
summarized in four steps: (1) Eq. 6 is the correct for-
mula for the MMD as devised by Smith and modified 
by Berry (1969); (2) Smith’s arcsine transformation of 
trait frequencies should be replaced by Anscombe’s 
transformation (Eq. 3) and expressed in radians, not 
degrees; (3) the sampling correction in Eq. 6 should 
be replaced by the more accurate term in Eq. 7; and 
(4) the preliminary battery of traits should be tested 
univariately for among-group differences and those 
traits without statistically significant differences in 
frequencies across all samples should be omitted. 
Additionally, Bartlett’s adjustment should be applied 
when the sample trait frequency is fixed at 0 or 1. 
Statistical significance between a pair of populations 
occurs when the MMD exceeds twice its standard 
deviation (Eq. 12).  The lack of statistical significance 
does not mean that the samples can be supposed to 
derive from the same population, but that it is not 
possible to distinguish the populations they come 
from by means of the data and/or the sample sizes 
available.
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