Dermatology: Practical and Conceptual
DERMATOLOGY PRACTICAL & CONCEPTUAL
www.derm101.com
Practical, Conceptual or Educational Notes | Dermatol Pract Concept 2014;4(1):3 11
Foreword
I decided to write this series of essays, “On the nature of
thought processes and their relationship to the accumulation
of knowledge” because it seems to me logical that if we do
not understand the mechanisms that occur within our brains
to generate thoughts (those thoughts underlying each and
everything we do) we cannot begin to understand how or
why events either occur according to plan or seem to go awry.
The series looks at thought processes and the “knowledge”
generated by them from a variety of perspectives. The goal is
to better understand just how “true” items of knowledge are,
or can be, and how that understanding might help us generate
and communicate “knowledge” more accurately.
This current essay about the Nature of Evidence was
originally published in Dermatopathology: Practical & Con-
ceptual in October 2009, but because of a series of unlucky
events the essay has been withdrawn shortly after its publi-
cation without being ever replaced for the readership. After
now 4 years, the essay will be finally again available for the
readers of Dermatology Practical & Conceptual.
Further essays in the series are “in the works” and this
essay is an important topic in the series overall, so I am
pleased that it is to be republished.
Introduction
How do we decide what to believe? This question is most
important for us because we each believe many things. Each
of us assumes that what we believe is true, otherwise we
would not believe it. And we are aware that we do not all
believe all of the same things. If fact, we are convinced that
many other people believe things which by definition they
believe to be true, that are just plain wrong, or not true,
because we do not believe those same things.
Of course we each have reasons for our beliefs. If someone
asks us, “Why to you believe that?” we can respond, “Because.
. . .” And we all believe that our reasons support adequately
our decision to believe that item. So if all of my beliefs are
true, and all of your beliefs are true, and all of our reasons
collectively support our beliefs, why do we disagree so often?
Let us move on to the topic of this essay, the nature of
evidence. The Random House Dictionary, second edition,
defines “evidence” as “that which tends to prove or disprove
something; ground for belief; proof” and “something that
makes plain or clear.” Serving as it does as a justification for
belief, evidence is something we simply cannot live without.
The definition implies that evidence must be true and unas-
sailable, serving as a “ground for belief”, “belief” being
something we assume to be true, and “proof”, which implies
that there can be no argument. Also, the definition implies
that evidence serves to clarify an issue, serving to improve
our understanding of it. When we hear the “evidence” we are
supposed to say “Aha! Now I understand” and we all move
on to the next item of interest.
So the question arises, are “reasons for belief” the same
as “evidence”? If we do consider them to be the same, should
we consider them to be the same? In this essay we will look
at the concept of evidence from a variety of perspectives and
On the nature of thought processes and their
relationship to the accumulation of knowledge,
Part XIII: The nature of evidence
Cris Anderson1
1 Pathology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
Citation: Anderson C. On the nature of thought processes and their relationship to the accumulation of knowledge, Part XIII: The nature
of evidence Dermatol Pract Concept. 2014;4(1):3. http://dx.doi.org/10.5826/dpc.0401a03
Copyright: ©2014 Anderson. This is an open-access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Corresponding author: Cris Anderson, M.D., Email: crisj@me.com
12 Practical, Conceptual or Educational Notes | Dermatol Pract Concept 2014;4(1):3
try to gain some insight into the powerful hold the very word
“evidence” holds over us. We will examine reasons why evi-
dence cannot be expected to be true and unassailable in each
and every case. We will examine the question of whether or
not the word “evidence” has become more of an instrument
of persuasion than out-and-out “proof” and how this affects
us in the day-to-day practice of medicine, which is supposed
to be Evidence-Based.
Evidence—the ideal
Preston Cloud, in Oasis in Space: Earth History from the
Beginning, states, “A subject becomes a science when it is
brought within the bounds of natural law and a body of
ordering principles that make its hypotheses testable—where
evidence takes priority over authority and revelation.” This
statement implies that evidence is more than merely some-
thing that “justifies belief.” It implies that the justification
of belief must be a sort of “proof.” That is to say, a body of
evidence—that body which can be evaluated independently
by one or more persons other than the person who puts forth
that body—should lead a reasonable person to conclude the
belief on his or her own.
No doubt a person who accepts revelation as a reason
for belief feels justified in believing what has come to him
by means of revelation. Encarta World English Dictionary,
first edition, defines “belief” as “acceptance by the mind that
something is true or real, often underpinned by an emotional
or spiritual sense of certainty.” That dictionary also defines
“justify” as “to serve as an acceptable reason or excuse for
something.” Thus, using the term “evidence” as “that which
justifies belief” does not necessarily imply “proof.” Encarta
defines “proof” as “evidence or an argument that serves to
establish conclusively a fact or the truth of something.” How-
ever, I would argue that most of us infer “proof” when we hear
the label “evidence” applied to some information given to us.
In a similar vein, returning to Cloud’s statement about sci-
ence, “authority”, if we accept it as a reason to believe some
item of information, it serves to justify our acceptance of that
item and becomes “evidence.”
In fact, “evidence” is not unique to science at all. What
really makes science “science” is the “body of ordering prin-
ciples that make its hypotheses testable” and the actual testing
of those hypotheses. The “evidence” that we scientists use
does require “proof.” We try to use “proof” formally in the
sense of deductive logic or mathematical proof, in which each
ensuing step is agreed upon by all as following its predecessor.
Evidence in practice
We tend to use the term “evidence” rather freely, applying
the term to a reason that we accept as justifying our belief,
but without “thoroughly vetting” the term each time we use
it to see if a rational person would accept necessarily our
argument in the case at hand. We may do this without malice
aforethought, being somewhat confused at the time as to our
own argument; but occasionally a person might purposefully
apply the term “evidence” in an attempt to prevent the audi-
ence from working through the argument themselves to see
if the argument is actually a valid one. Unfortunately, often
there is no easy way to tell whether the arguer is being logical,
is confused, or is trying to hoodwink the audience.
Many problems exist in this complex world in which we
live for which legitimate disagreements occur. For some of
the reasons to be discussed later in this essay, a formal, unde-
niable proof cannot be put forth. This does not mean that
there are no rules available with which such a problem can
be discussed in a meaningful and enlightening way.
In fact, informal logic, or argumentation, is a discipline
which recognizes that “proof” more often than not represents
a consensus arrived at by the process of justifying and rebut-
ting claims, refining through the process an understanding
of the topic of the argument. David Zarefsky, in Argumenta-
tion: The Study of Effective Reasoning, 2nd edition, an audio
course produced by The Teaching Company, explains the five
key assumptions that underlie the process of argumentation.
First, argumentation takes place with an audience in mind
and that audience judges ultimately the success or failure of
the argument. Second, argumentation takes place under the
condition of uncertainty. Third, argumentation involves justi-
fication of claims made by the arguers. Fourth, argumentation
is a cooperative exercise; although it may seem adversarial,
the arguers share a common goal of arriving at the best deci-
sion under the prevailing circumstances. Fifth, argumentation
involves risks—an arguer may be shown to be wrong and lose
the argument and the loser may lose face if s/he is perceived
to have performed badly during the argument.
“Proof”, or justification, rests on being able to put forth
and/or to recognize a “valid” argument. That is to say the
argument follows logically and is thus consistent and without
contradiction. A problem arises when we humans cannot, or
do not make the attempt to, discern the difference between
proof and persuasion. Persuasion, in this sense, means that
the words sound nice, but the argument is not valid in some
way. Recall from the earlier essay in this series Reasoning
the words of Rick Garlikov, in which he compares reasoning
with a game of chess. Garlikov writes, “If little children are
playing with chess pieces and a chess board, but are making
arbitrary moves in what they think is emulation of adults they
have seen playing chess, it is not that they are playing chess
badly. It is that they are not playing chess at all, regardless
of what they think they are doing or what they call it.” If the
rules are not followed, there is no argument in the true sense
of the word. There is merely the melodious sound of words.
Practical, Conceptual or Educational Notes | Dermatol Pract Concept 2014;4(1):3 13
If I concede a point to you when you put forth an invalid
argument, you have persuaded me, yes; but the proof or
justification is not there.
Interlude about learning
It is most important for us to understand how knowledge is
gained. It is for the most part a painful process based entirely
in trial-and-error. More involved discussions about concepts
related to learning are to be found in earlier essays in this
series, especially Interpretation, Causation, Reasoning, and
Patterns. I will mention briefly a few salient points.
What one is able to learn and conclude is dependent on
how the problem is defined—that is to say, what boundaries
are drawn that define the system being studied. Different
boundaries lead to different questions being asked, different
types of data collected, and different interpretations of data.
All learning of material previously discovered is based in
ostensive definition, whereby someone is shown something
by someone more knowledgeable about the object and the
learner must try to figure out exactly what it is s/he is sup-
posed to be looking at (more complete discussion of this in
Interpretation).
Abstract concepts are thought about and discussed in
terms of metaphor. Metaphors are based in everyday expe-
rience and are related to features of human embodiment,
for example “happiness” is discussed in terms of “up”, the
“future” in terms of “forward”, “life” is a “journey”, and the
like (also discussed in Interpretation). A metaphor chosen will
necessarily highlight one aspect of the abstract concept, while
simultaneously downplaying another aspect of that concept.
This gets back to the problem of how boundaries are drawn
around the abstract concept, or from what perspective the
concept is examined.
Patterns are sought, which are converted mentally to rules
that can then be applied to future situations. If an expected
outcome ensues, we assume the rule must be correct. If we are
surprised, if we see a contradiction unexpectedly or the like,
we revise the rule and see if we can make a better prediction
for the next event (trial-and-error at work). The rules we “dis-
cover” serve as boundaries for the system we are examining.
We start by imagining some event and then trying, “by
hook or by crook”, to get to where we imagine. It is very dif-
ficult to get somewhere without some inkling of where one
might be going. Serendipitous events occur, but only for the
“prepared” mind.
True to pattern, when we find something, a method or an
approach perhaps, we try it again and again until we finally
are forced to admit that some sorts of problems require a dif-
ferent approach (the rules applied routinely result in surprises
or contradictions). This is discussed in more depth in the essay
on Reasoning.
Paradox and contradiction, if recognized, lead to the
opportunity to redraw boundaries around a problem and try
to “get it right.” An implicit assumption that we all hold is
that, if we identify the pattern correctly and describe it with a
precise and correct rule, we will avoid surprise and contradic-
tion. We are slaves to expectation!
Knowledge and understanding
Basically, while we think we “know” and “understand”
things, we only feel that way. In the earlier essay in this series
on Truth it was noted that when we think we know some-
thing, our “truth bell” rings in our brains. The “truth bell”
is in the ventral striatum and associated with the nucleus
accumbens and is associated with pleasure and motivation.
In the earlier essay in this series on Emotion, we learned
that Damasio posits that even the most objective thought
we think we are having is run through various centers in the
brain associated with feelings, including the somatosensory
cortex. We evolved this way because being able to assess eas-
ily our feelings better enabled us to determine whether we
were in danger imminently. When the “truth bell” rings for
each of us, there is no assurance that the thought ringing the
“truth bell” is actually true in the sense that it conforms with
Universal Law.
“Evidence” is a similar concept, since it is that which jus-
tifies belief. “Belief” is a personal feeling for each of us that
what we believe is true. Something that we accept as justify-
ing for us a belief also rings the “truth bell” and, thus, is not
necessarily true in the conforms-with-Universal-Law sense.
“Evidence” as an attribute applied
during argument
We all understand the world from a slightly different perspec-
tive. Each of us thinks we are correct about many of the things
we understand. It is human nature to share knowledge and
understanding. Often, however, the person with whom we
are sharing our unique perspective requires convincing. To
convince someone that our belief is justified, we offer them
“evidence.” The evidence we offer them is the evidence that
justifies our own belief. We assume that if the evidence is good
enough for us, it should be good enough for anyone else and
the evidence we are sharing should serve to justify belief in
the mind of the other person.
Although at first blush we think of the word “evidence”
as being associated with objectivity and science, the label
“evidence” is laden intensely with feeling. If you reject my
evidence, if you say my evidence is insufficient to justify your
belief in what I believe, I infer that you are implying that my
own belief is not justified and that I should not accept the
14 Practical, Conceptual or Educational Notes | Dermatol Pract Concept 2014;4(1):3
item I have labeled as “evidence” as sufficient to justify my
own belief.
The grip of “authority”
From our earliest experiences we rely on other people to tell
us “the truth.” Our teachers, our parents initially, instruct us
by first ostensive and then verbal definition. There is much
to learn and learning from the experience of others saves us
time and is often safer than direct experience. “Don’t touch
that hot stove!”, “Don’t run into the street without looking
both ways!”, we are told. If someone tells us this or that
plant is safe to eat, we do not risk poisoning ourselves. To
look to authority is natural to humans. Following authority
helps us to become more easily acculturated into our very
complex society.
As our lives become more complex and as we are bom-
barded from all sides by information coming with increasing
frequency, our tendency naturally is to believe what we hear,
since we humans look automatically to authority. It is only
when we hear statements that we recognize as contradicting
one another that we are prompted to examine situations
more carefully and to make more reasoned decisions about
what to accept as true. Contradiction requires us to ask,
“Who really is an authority in this subject?” “Who should
we believe?” “How can we find out the truth?” In the end,
we look for and evaluate information put forth as “evidence”
and we evaluate carefully those items before we accept them
internally as evidence, which justifies our belief. For most of
us this means adhering to the “scientific method”, which is
defined by Encarta dictionary as “the system of advancing
knowledge by formulating a question, collecting data about it
through observation and experiment, and testing a hypotheti-
cal answer.” The problem here is that we must call up into
Working Memory, which can only hold simultaneously about
seven items, propositions that we can recognize as contradic-
tory. We all have so many potential thoughts and memories
stored in our brains, we often do not call up information that
is contradictory and we continue to believe contradictory
propositions; that is we all live with cognitive dissonance.
Finding the “best fit” definition
of a system
In the essay in this series on Reasoning, we noted that Law-
rence Slobodkin, in Simplicity and Complexity in Games of
the Intellect, opined that complex problems require a look by
both philosophers and mathematicians in order to gain a bet-
ter understanding of those problems. “Evidence” has been con-
sidered by both and we will see what each of them has to say.
What sorts of things can be accepted
as evidence—philosophers
As with most abstract concepts, one’s conclusion depends
ultimately on the boundaries one constructs around one’s
system of thought concerning the concept.
Thomas Kelly, in Evidence published in the online Stan-
ford Encyclopedia of Philosophy, notes that most people
think of evidence as “something that might be placed in a
plastic bag”, such as a bloody knife, or an historical docu-
ment, or the result obtained by biochemical analysis of a
blood specimen. However, philosophers through the ages
have applied variably the term evidence to mental items pres-
ent in one’s consciousness (Bertrand Russell), stimulation of
one’s sensory receptors (Willard Quine), or even the totality
of propositions that one knows (Timothy Williamson). Bayes-
ians consider evidence to be those beliefs for which one is
psychologically certain.
Should an item in my consciousness, say an idea I have
for writing a story of science fiction (and, therefore, for
which very little physical evidence is available) be considered
as evidence? Perhaps it could serve as evidence that I have
an imagination. Should the fact that I say I feel cold serve
as evidence to support my action to turn up the thermostat?
Or should I wait until someone sees me shivering so that
more than one person agrees that I feel cold? Should the
totality of propositions I “know” serve as evidence, even if
all those propositions are not satisfiable with one another
(some propositions contradict one another, if only I could
bring them into my consciousness at the same time, I would
see that they are contradictory and could act to resolve my
cognitive dissonance)?
Kelly advises us that philosophers have offered “quite
divergent theories of what sorts of things are eligible to serve
as evidence.” He points out that, depending on one’s frame of
reference, “the concept of evidence has often been called upon
to fill a number of distinct roles”, and that, while sometimes
the roles complement each other, sometimes tension is created.
One interesting concept is that, in the minds of those who
are skeptical about our knowledge of the external world,
one’s evidence does not favor ordinary commonsense inter-
pretations of one’s environment over unusual alternatives. For
example, skeptics may point out that we do not sense what
we think we are sensing; those skeptics posit that we could
be hallucinating in an undetectable way. Our evidence does
not mean we see that tree, even if we pluck a leaf and feel the
features of that leaf under our fingers. We could be hallucinat-
ing the entire episode. This has been dubbed the “brains in
a vat” paradox. Skeptics maintain that there is no way to be
certain about anything we think we “know.”
Another interesting concept is that an item of evidence,
E, can never be the ultimate evidence in support of a belief
Practical, Conceptual or Educational Notes | Dermatol Pract Concept 2014;4(1):3 15
because there is always the possibility that additional evi-
dence, E’, may become known that defeats the prior evidence.
Evidence that is susceptible to being undermined is called
“defeasible” evidence. Kelly points out that there is contro-
versy among philosophers whether “indefeasible” evidence
could even exist.
Important to this discussion about the availability of
additional evidence is whether one is considering a subset of
evidence or a theoretical “total body of evidence.” I remem-
ber attending courses in dermatopathology given by A.
Bernard Ackerman, M.D. Often, when Bernie was discussing
his diagnosis of a particular case, a member of the audience
would ask (this is a paraphrased quotation), “what if you just
had this area—what would your diagnosis be then?” Bernie
would point out, “but you don’t just have a small area, you
have the entire case. It makes no sense to consider a small
part of the specimen in isolation; you must consider all the
information available.”
It is true that our brain power has limitations, but Bernie
insisted that we should not draw our boundaries around a
problem more narrowly than necessary. We will return to the
problem of narrow boundaries later.
Additionally, evidence supports a belief in relation to the
number of hypotheses available. If there is only one hypoth-
esis, then evidence supports only that hypothesis. But if there
are multiple plausible competing hypotheses, evidence may
support more than one of those hypotheses and not serve to
differentiate between competing hypotheses.
Bayesians theorize that evidence can support an hypoth-
esis only if one considers the probability that an hypothesis
is correct. We physicians are all familiar with Bayes theorem
as it relates to diagnosis. If the prevalence of disease A is
30% and the prevalence of disease B is 3%, the presence
of a symptom common to both diseases is more likely to
be evidence of disease A than disease B. What we need is a
symptom or sign or test result that will serve to differentiate
between the two diseases.
Another consideration philosophically is whether addi-
tional confirmatory evidence provides a stronger argument
than disconfirmatory evidence. Karl Popper developed the
example using the premise “All swans are white.” He averred
that evidence of each additional white swan provided little
additional proof of the claim. He pointed out that a single
black swan would disprove the hypothesis. He pointed out
that the goal of science should be to “look for black swans.”
Scientific experiments should attempt to disprove an hypoth-
esis. If the experiment failed to disprove the hypothesis, that
hypothesis could still serve as a working hypothesis and as
a (temporary) basis for further progress of knowledge about
some aspect of our universe.
Victor DiFate, in his entry Evidence on the Internet Ency-
clopedia of Philosophy, describes Carl Hempel’s work on
“The Raven’s Paradox.” Hempel begins with the hypothesis
“All ravens are black” and then draws a logically equivalent
statement, “All non-black things are non-ravens.” Hempel
then points out that one could provide evidence that all
ravens are black by merely looking around the room and
saying, for example, “That book is green. It is a non-black
thing and a non-raven. Therefore it is evidence in support of
my hypothesis.” He further points out that, using “evidence”
to support a statement that is equivalent from a logical stand-
point to the original premise does not do much to prove the
hypothesis in a meaningful way and that a similar argument
could be used to “prove” the hypothesis that “all ravens are
white.” A way around this, points out DiFate, might be to
“test severely” a hypothesis. It may be true that a green book
provides evidence that all ravens are black, but the evidence
is weak in the extreme. One should make a good faith effort
to ensure that, if a non-black raven exists, one is likely to find
it, just as Karl Popper has recommended.
Philosophers have spent much time and brain power on
the problem of evidence. The main point I wish to make here
is that how one frames the problem determines the sorts of
conclusions one may draw ultimately. One cannot draw a
system with infinite boundaries and, therefore, paradoxes
and disagreements will arise that might suggest a better, or
at least an alternate, way to draw boundaries in an effort to
minimize the presence and effects of paradox.
Problem definition from a
mathematical perspective
Lawrence Slobodkin, in Simplicity & Complexity in Games
of the Intellect, explains the role mathematicians play in
our world. Says Slobodkin, “The work of mathematicians
is to imagine new worlds and what their regularities might
be. In their choice of difficult intellectual problems they can
exclude questions that require physical apparatus for col-
lecting information and knowledge or social history in their
answers. In this sense they are free of the limitations placed
on empirical scientists . . . The purpose of their activity is
clarity and understanding only. While they are free to make
new worlds, they carefully avoid dealing with the inconve-
nient parts of this one.”
Mathematicians draw up a set of rules, which are often
represented symbolically by formulae, they then select a set
of initial conditions (by defining some of the variables in
the equations), and then set the whole process in motion by
attempting to solve the equations to see what occurs. This
is very like the concept of games discussed in the essay in
this series on Reasoning. Slobodkin states of games, “Basi-
cally, all good games involve a complete, circumscribed, and
simplified model of a world, consisting of a clear playing
16 Practical, Conceptual or Educational Notes | Dermatol Pract Concept 2014;4(1):3
field with understandable and unchanging rules whose rich
consequences are then developed by the players.”
When mathematicians approach a problem, they set cer-
tain assumptions (which are some of the rules) and make cer-
tain predictions about what they expect will happen. If their
predictions come to fruition, they accept that their assump-
tions are valid. If something unexpected occurs, they must
consider whether their assumptions were correct or whether
there could be some other reason for the unexpected occur-
rence. If a contradiction arises when the rules are executed
flawlessly, there is a paradox.
Paradox as a clue to deficient
knowledge
Thomas Bolander, in Self-Reference in the online Stanford
Encyclopedia of Philosophy, writes of paradox “A paradox is
a seemingly sound piece of reasoning based on apparently true
assumptions that leads to a contradiction . . . The significance
of a paradox is its indication of a flaw or deficiency in our
understanding of the central concepts involved in it.” Bolander
describes semantic and set-theoretic paradoxes and explains,
“In [the] case of the semantic paradoxes, it seems that it is
our understanding of fundamental semantic concepts such as
truth (in the liar paradox and Grelling’s paradox) and defin-
ability (in Berry’s paradox) that are deficient. In the case of
set-theoretic paradoxes, it is our understanding of the concept
of the set. If we fully understood those concepts, we should be
able to deal with them without being led to contradictions.”
For the purposes of this essay I am using the definitions,
from Encarta, of “truth” as “correspondence to fact or real-
ity” and “definability” as ability to “give the precise meaning
of a word or expression or to state or describe something
clearly.” As for “reality”, I invoke the words of Steven Pinker
(as discussed in the essay in this series on Patterns), in The
Stuff of Thought: Language as a Window Into Human
Nature, “But reality can’t be riddled with paradoxes and
inconsistencies; reality just is.”
You can see that, if we humans are deficient in our under-
standing of the concepts of “truth” and “definability.” it is
only natural that we will have difficulty understanding the
concept of “evidence.”
Parenthetically, the paradoxes mentioned by Bolander
are as follows. But first, a few more definitions. Logic, as
defined in Encyclopedia Britannica, 15th edition, is the study
of propositions and of their use in argumentation. Deborah
Bennett, in Logic Made Easy: How to Know When Language
Deceives You, states, “A proposition is any statement that has
the property of truth or falsity.” A proposition is composed
of a subject and a predicate. As per The Random House Dic-
tionary of the English Language, second edition, the subject
is the syntactic unit that is performing the action or being in
the state expressed by the predicate and the predicate is the
syntactic unit that expresses the action or state attributed to
the subject. From the standpoint of logic, the predicate is that
which is affirmed or denied by the subject .
The liar sentence is the proposition (and thus having
the property of truth or falsity) “This sentence is not true.”
“Sentence” is the subject and “true” is the predicate, which
is denied by the subject in this example. When one tries to
determine the truth of this proposition, one either starts out
assuming the sentence is true or that the sentence is false.
If one assumes it is true, then it cannot be true because the
sentence itself (self-reference) states that it is not true. If one
assumes the sentence is false, then it must be true since the
“false” of “not true” is “true.”
Grelling’s paradox involves the use of a predicate defined
in a self-referent way. States Bolander, “Say a predicate is
heterological if it is not true of itself, that is if it does not
itself have the property it expresses. [“hetero-” being a prefix
meaning “different or other” and “logical” meaning “based
on facts”] Thus the predicate “German” is heterological, since
it is not itself a German word, but the predicate “deutsch”
is not heterological. The question that leads to the paradox
now: ‘is “heterological” heterological?’” Bolander continues
his explanation, “It is easy to see that we obtain a contradic-
tion independently of whether we answer ‘yes’ or ‘no’ to this
question (the argument runs more or less like in the liar’s
paradox). Grelling’s paradox is self-referential, since the defi-
nition of the predicate heterological refers to all predicates,
including heterological itself. Definitions such as these, which
depend on a set of entities, at least one of which is the entity
being defined, are called impredicative.
Berry’s paradox is also based on an impredicative descrip-
tion. Bolander explains, “Some phrases of the English lan-
guage are descriptions of natural numbers, for example, “the
sum of five and seven” is a description of the number 12.
Berry’s paradox arises when trying to determine the denota-
tion of the following description: ‘the least number that can-
not be referred to by a description containing less than 100
symbols’. The contradiction is that this description containing
93 symbols denotes a number which, by definition, cannot be
denoted by any description containing less than 100 symbols.
The description is of course impredicative, since it implicitly
refers to all descriptions, including itself.”
Russell’s paradox is a set-theoretic paradox. States Bolan-
der, “Russell’s paradox arises from considering the Russell
set R of all sets that are not members of themselves . . . The
contradiction is derived by asking whether R is a member
of itself . . . If R is an element of itself, then by the definition
of the Russell set, it is not a member of itself. If R is not an
element of itself, then by definition, R is an element of itself.
Practical, Conceptual or Educational Notes | Dermatol Pract Concept 2014;4(1):3 17
Language can interfere with
logic and evidence
This section and the next few sections will address problems
with language as we use language to attempt to provide
logical reasons to support our claims and to use the term
“evidence” in its ideal sense.
The vast majority of us are well-intentioned. When we
speak to each other and argue a point, we try very hard to
follow the rules as described by Garlikov and Zarefsky and
others. It is just that certain limitations in the system get in
the way of our goals as we imagine those goals. Some of these
limitations were addressed briefly in the section in this essay
on Interlude About Learning. Another limitation is the way
we are able to use language.
Language serves as an instrument of thought and thought
serves as a means to understanding. Thus language, which is
composed of words and syntax, is the currency of understand-
ing. Encarta defines understanding as the ability to explain to
oneself a concept and seems to imply some degree of precision
since, in theory, we would explain to ourselves a concept in the
same way each time we explain it, otherwise, we would not
truly “understand” the concept if we kept changing our minds.
When we explain to ourselves, we may well understand
the “message” in exactly the same way each time we ponder
it, but what happens when we try to explain the concept or
message to another person? We assume that another person
understands language the same way we do, but study after
study has shown that people do not understand seemingly
simple bits of language in the same way. We all know from
practical experience that we are often surprised by what
ensues when we have relayed a message to someone.
Thought and logic
In earlier essays in this series, especially in Reasoning, we
learned that the rules of logic are not the rules of our “natu-
ral” thinking processes. We looked at the work of Gerd Giger-
enzer, who in Adaptive Thinking and Gut Feelings, explains
the concept of “fast and frugal” heuristics and the role of
Environment of Evolutionary Adaptation in the evolution of
what are truly our “natural” thinking processes.
Our “natural” thinking processes often lead to errors,
although usually not life-threatening errors, which is why
we have survived to pursue our studies. Perhaps because we
find our errors discombobulating, if not downright embar-
rassing, we maintain steadfastly that we can “do better.” To
that end, certain patterns of thought and language have been
observed throughout the ages and studies have been made to
understand rules that lead to consistent and noncontradic-
tory thought. We will examine both the rules and common
misunderstandings of the rules later in this essay.
Rules of logic as rules
of communication
Rules exist so that we can know what to expect. Humans,
despite occasional protestations to the contrary, hate sur-
prises. One very important set of rules that we have relate to
communication. Without communication we could not exist.
And without rules, there can be no effective communication.
Bennett, in Logic Made Easy, states, “There are certain
principles of ordinary conversation that we expect ourselves
and others to follow. These principles underlie all reasoning
that occurs in the normal course of the day and we expect
that if a person is honest and reasonable, these principles
will be followed. The guiding principle of rational behavior
is consistency. If you are consistently consistent, I trust that
you are not trying to pull the wool over my eyes or slip one
by me . . . [these principles of conversation are] consistency
and noncontradiction [which were] recognized very early on
to be at the core of mathematical proof.”
So in a way we expect the same rigor of ordinary conver-
sation that we expect from mathematical proof. In fact, as we
shall see, although logic is a function of language (discussed
in the essay in this series on Reasoning) the rules of logic,
and even messages themselves, can be written symbolically
and the formulae and equations can even be manipulated
by computer algorithms. Parenthetically, this should not
surprise us much since mathematics in its purest form is the
language of relationships (patterns) and not merely a way to
manipulate numbers.
Common symbols used are S for subject and P for predi-
cate. For conditional propositions (if/then statements), p
is the antecedent and q is the consequent. Aristotle noted
that form determines the validity of an argument, regard-
less of the truth or falsity of the propositions. This allows
the simplicity of using symbols, which in some systems are
manipulated according to mathematical rules, to determine
validity since one will not be distracted by the subject mat-
ter. In fact, mathematical proofs are evaluated for validity
by computer programs developed for that purpose since to
determine validity “by hand” is tedious, time-consuming, and
prone to human error. Truth or falsity of propositions must
be determined separately since only a true and valid argument
is a sound argument (as discussed in the essay in this series
on Reasoning).
Logic as a means of
evaluating evidence
Many things in life are not straightforward. It may be obvious
that “B” follows from “A”, but it may be less obvious that “G”
or “M” or “Z” is a consequence ultimately of “A.” In order
to get from “A” to a conclusion, “G,” we require some sort of
18 Practical, Conceptual or Educational Notes | Dermatol Pract Concept 2014;4(1):3
“proof.” Encarta defines “proof” as “evidence or an argument
that serves to establish a fact or truth of something.”
Keith Devlin, in Mathematics: The Science of Patterns,
states, “In propositional logic, a proof, or valid deduction,
consists of a series of propositions such that each proposition
in the series is either deduced from previous ones by means of
modus ponens, or else is one of the assumptions that underlie
the proof.” Modus ponens, as discussed in the essay in this
series on Reasoning, follows the form, “if p, then q.” Bennett
explains, “The basic steps in any deductive proof, either math-
ematical or metaphysical, are the same. We begin with true
(or agreed upon) statements, called premises, and concede
at each step that the next statement or construction follows
legitimately from the previous statements. When we arrive at
the final statement, called our conclusion, we know it must
be necessarily true due to our logical chain of reasoning.”
I want to point out early in this discussion that ultimately,
despite all these rules we are going to examine, our decision as
to valid or not valid, true or not true, is based in trial-and-error
and common sense, which result from our experiences. We use
rules, or at least attempt to use them, because we think rules
will lead us necessarily to a correct conclusion, but if at the end
of our intellectual labors we can think of a counterexample
that shows our conclusion to be false in some instance, we
know our thread of reasoning contains an error or that we have
run into a paradox that exposes our lack of understanding.
Bennett discusses the work of Douglas Hofstadter, who,
in the words of Bennett, “said that the study of logic began as
an attempt to mechanize the thought processes of reasoning.
Hofstadter pointed out that even the ancient Greeks knew
‘that reasoning is a patterned process, and is at least partially
governed by statable laws.’ Indeed, the Greeks believed that
deductive thought had patterns and quite possibly laws that
could be articulated . . . [troubled by the Sophists, who used
‘deliberate confusion and verbal tricks in the course of a
debate to win an argument’] Aristotle . . . attempted to sys-
tematically lay out rules that all might agree dealt exclusively
with correct usage of certain statements called propositions.”
Bennett describes Aristotle’s basic work in logic. Aristotle
strived to develop methods “to reason from generally accepted
opinions about any problem set before us and shall ourselves,
when sustaining an argument, avoid saying anything contra-
dictory.” Aristotle’s two basic axioms were “the law of the
excluded middle” and the “law of noncontradiction.”
Law of the excluded middle
Explains Bennett, “The law of the excluded middle requires
that a thing must either possess a given attribute or must not
possess it. A thing must be one way or another; there is no
middle. In other words, the middle ground is excluded. A
shape is either a circle or not a circle . . . A statement is either
true or not true.” Bennett points out that this law cannot
be applied reasonably to all situations, since “fuzzy logic”
applies to circumstances when application of the law of the
excluded middle is inappropriate. A common tactic in debate
is to pretend that the law of the excluded middle applies,
when it does not apply. An opponent is encouraged, thereby,
to accept a position he does not hold. Examples offered by
Bennett, “Either you are with me or you are against me.
Either you favor assisted suicide or you favor people suffering
a lingering death.” Recall the discussion on fuzzy logic put
forth by Bart Kosko and described in the essay in this series
on Reasoning. How many apples are entirely red or entirely
green? How many people like their jobs 100% of the time?
Inappropriate use of the law of the excluded middle is called
the “black-and-white fallacy.”
Law of noncontradiction
Bennett describes the law of noncontradiction, “ . . . a thing
cannot both be and not be at the same time. A figure cannot
be both a square and not a square. Two lines in a plane cannot
both intersect and not intersect.”
Using syllogisms
Logicians understand that the basis of argumentation is the
syllogism. Bennett states that Aristotle defined the syllogism
as “ . . . discourse in which, certain things being stated,
something other than what is stated [a conclusion] follows of
necessity from their being so.” Adds Bennett, “In other words,
a syllogism accepts only those conclusions that are inescap-
able from the stated premises.”
Syllogisms, as series of premises related to each other
in some way, are composed of words, and certain of those
words appear consistently in syllogisms, defining as they
do the relationship of the subject (S) to predicate (P) of the
premises offered. These simple words are used often by us
and we each assume that “the other guy” understands them
in exactly the same manner that we understand them. But we
do not understand words such as “all”, “a”, “any”, “some”,
“not”, “if”, and “then” in the same way.
States Bennett, “In reasoning and language comprehen-
sion, there are several factors to consider. Sentences take on
meaning based on the denotative (dictionary) meaning, the lin-
guistic structure (syntax and semantics), and the connotation.
Connotation includes the factual and experiential knowledge
that we bring to the material at hand . . . If p, then q can be
expressed as: p never without q; p only if q; q if p; p is a suf-
ficient condition for q; p implies q; q is a necessary condition
for p; q is implied by p; or q whenever p. Though they are
identical statements in logic, there is no reason to believe that
individuals interpret these sentence forms in the same way.”
Practical, Conceptual or Educational Notes | Dermatol Pract Concept 2014;4(1):3 19
Quantifiers may be universal or particular. For example,
“all,” “every,” and “none” are universal and specific, apply-
ing to the entire class under discussion, but the quantifiers
“some,” “few,” and “many” are particular and vague, apply-
ing to only some members of the class under discussion.
In classifying valid conclusions, the symbols A and I are
assigned to propositions that are affirmations (derived from
the word AffIrmo), A for universal and I for particular, while E
and O are assigned to propositions that are negations (derived
from the word nEgO), E for universal and O for particular.
Aristotle discovered that for three line syllogisms there
were sixty-four possible ways that the four types of quanti-
fiers (A, I, E, and O) could be combined, but only four of
those combinations resulted in valid conclusions. (It seems
that Aristotle had discovered the problems that are associ-
ated with the “combinatorial explosion” as described by
Gigerenzer and discussed more completely in the earlier essay
in this series on Reasoning.) Each combination is referred
to as a “mood.” The valid moods are AAA, EAE, AII, and
EIO. Examples of valid syllogisms are AAA—All birds are
animals; All canaries are birds; Therefore, all canaries are
animals; EAE—No beans are animals; All chickpeas are
beans; Therefore, no chickpeas are animals; AII—All biogra-
phers are authors; Some curators are biographers; Therefore,
some curators are authors; EIO—No bases are acids; Some
chemicals are bases; Therefore, some chemicals are not acids.
Syllogisms were also classified as to “figure.” which
referred to the arrangement of terms in the syllogism. The
conclusion is symbolized as, for example, “All S (subject) are
P (predicate).” Between the two premises of the syllogism,
one contains the subject and the other the predicate of the
conclusion. Both premises contain a common term, called
M, the middle term. Bennett gives the example using the
syllogism, “All poodles are dogs (first premise); All dogs are
animals (second premise); Therefore, all poodles are animals
(conclusion).” In the conclusion, “poodles” is S and “animals”
is P. The first premise is S-M and the second premise is M-P,
where “dogs” is the middle term, M. Considering the possible
arrangements, S-M or M-S, M-P or P-M, Aristotle called the
“first figure” S-M, and M-P, the “second figure” S-M and
P-M, and the “third figure” M-S and M-P for the premises.
Only the “first figure” is valid, recognized Aristotle (“All
dogs are poodles.” or M-S, for instance, is not true). Aristotle
resolved these syllogistic moods by applying his Law of Non-
contradiction and settled ultimately on the rules we now use.
Reductio ad absurdum as proof
Bennett describes the basic steps in any deductive proof.
One begins with true or agreed upon premises and concedes
at each step that the ensuing statement follows legitimately
from the previous statement(s). The final statement is the
conclusion. A common type of proof is one of reductio ad
absurdum, by which one arguer begins by accepting the
opponent’s premise as true and argues logically by refutation
to a contradiction by exposing inconsistencies in the oppo-
nent’s original argument, causing the opponent to give up his
original premise as false. In all systems, agreement on the rules
and definitions used in the system of interest is essential to
maintaining consistency, so that reasoning in that system can
be valid. For example, there is a difference between contra-
dictories and contraries. Confusing one for the other can lead
to invalid arguments and unsound conclusions.
Contradictories versus Contraries
Contradictories are paired statements such that both state-
ments cannot be true and both cannot be false. For contra-
dictories, one statement is universal (affirmation or denial)
and its contradictory is particular (denial or affirmation,
respectively). For example, “every person has enough to eat”
is a universal statement, applying as it does to an entire set.
The contradictory must be a particular (and not a universal)
denial—“some people do not have enough to eat.” A particu-
lar applies to a subset, not to the entire set (humans in this
example). In another example, “No individuals are altruistic”
serves as the universal denial, while “some people are altruis-
tic” serves as the particular affirmation in this contradictory
pair. Aristotle pointed out that every affirmative statement has
its own opposite negative and vice versa. For contradictories,
one statement of the pair will always be true and the other
false. Contradictories are represented by A with O and E with
I in AffIrmo/nEgO terminology.
Contraries consist of opposite pairs in which both the
affirmation and denial are universal or both are particulars.
For contraries, both cannot be true, but it is also possible that
neither is true. For example, “All people are rich” and “No
people are rich” are contraries. Contraries are represented
by A with E and I with O in the AffIrmo/nEgO terminology.
Bennett credits John Stuart Mill with noting that people
frequently confuse contradictories with contraries and that
this confusion also occurs in one’s private thoughts. He
opined that if people made these pairs of statements aloud
they may detect their errors.
Bennett gives as example the common plaint “Nobody
around here helps out.” The contradictory is that “Some of
us help out.” and the contrary is “We all help out.” How often
is the appropriate affirmation used in the heat of complaint?
Using quantifiers in logic
Quantifiers, mentioned in an earlier section in this essay, may
be expressed explicitly or implicitly, and this variation in
usage can lead to alternate interpretations. Consider the uni-
20 Practical, Conceptual or Educational Notes | Dermatol Pract Concept 2014;4(1):3
versal quantifier “all.” Bennett gives the example, “Members
in good standing may vote.” “All” is implied. The article “a”
may be used as a universal quantifier, as in the example, “A
library is a place to borrow books.” implying “all” libraries.
Confusion may arise in deduction logically by using different
universal quantifiers. Bennett cites a study in 1989 by David
O’Brien in which people of various ages (second graders,
fourth graders, eighth graders and adults) were tested for
their understanding of the universality of “all,”, “any,”, and
“a” used in propositional statements. States Bennett, “With-
out exception, in every age group the tendency to err was
greatest when the indefinite article a was used, “If a thing . .
.” For older children and adults, errors decreased when any
was used, “If any thing . . . ,” and errors virtually vanished
with the universality was made explicit, “all things . . .” With
the youngest children, though the errors did not vanish, they
were reduced significantly when the universality was made
clear with the word all.”
Problems with converse statements
Beginning with the basic form of a propositional statement,
“quantifier subject (S) predicate (P)”, the statements “All S
are P” and “All P are S” are converse statements. People may
think they mean the same thing, but that is not a correct
interpretation. Bennett states that conversion is a common
error during argument. Both statements may be true, but
they are not equivalent statements. Bennett gives examples
“All mothers are parents” versus “All parents are mothers.”
The first statement is true, but the second is not true. “All
dogs love their owners” versus “All (dog) owners love their
dogs.” Possibly neither statement is true. Bennett describes a
study in which children of varying ages were asked about a
series of drawings of squares and circles. The children were
shown a picture in which, from left to right, were drawn a
gray circle, a white square, a gray circle, a white square, a
gray square, a gray circle, a gray circle, and a gray square.
The children were then asked questions such as “Are all the
squares white?” (considered by the examiners an easy ques-
tion), “Are all the circles gray?”, and “Are all the white ones
squares?” (considered by the examiners a more difficult ques-
tion). States Bennett, “The youngest subjects converted the
quantification 50% of the time, thinking ‘All the squares are
white’ meant the same as ‘All the white ones are squares’. This
may be explained in part by the less developed language abil-
ity of the youngest children (ages 5-6), but their mistakes may
also be explained by their inability to focus their attention on
the relevant information [such as just squares or just white
things] . . . By ages 8 and 9, children were able to correctly
answer the easier questions 100% of the time and produced
the incorrect conversion on the more difficult questions only
10 to 20% of the time.”
Another factor involved in reasoning is that of familiarity,
or lack thereof, with the subject being reasoned about. States
Bennett, “The rules of inference dictating how one statement
can follow from another and lead to logical conclusions are
the same regardless of the content of the argument. Logical
reasoning is supposed to take place without regard to either
the sense or truth of the statement or the material being
reasoned about. Yet, often reasoning is more difficult if the
material under consideration is obscure or alien.”
Recall from the essay in this series on Reasoning Gigeren-
zer’s comparison of performance of test subjects on the Wason
Selection Task. One group was asked to reason about the
cards “D,” “E,” “3,” and “4.” while the other group was asked
to reason about the cards “subway”, “Arlington”, “cab”, and
“Boston.” Gigerenzer’s hypothesis was that, if logic is “natu-
ral” thought, most test subjects should perform correctly
whether the problem was abstract (as in the D, E, 3, 4 sce-
nario) or whether the problem concerned social interactions
(as in the subway, Arlington, cab, Boston scenario). The tests
were quite similar from a logical viewpoint. When the four
cards on the table read “D,” “E,” “3,” and “4.” the conditional
statement to be evaluated logically was “If there is a ‘D’ on
one side of the card, then there is a ’3’ on the other side.” The
test subjects were instructed to turn over any cards necessary
to test the validity of the conditional statement. Logic would
dictate that, faced with a statement “If P, then Q,” one must
rule out, “P and not Q.” The appropriate cards to turn over
are “D” and “4.” In other scenario, when the four cards on the
table were “subway,” “Arlington,” “cab,” and “Boston”, the
conditional statement to be evaluated was “If a person goes
to Boston, then he takes the subway.” The cards to turn over
are P (Boston) and not Q (cab). Gigerenzer found that 10%
of test subjects answered correctly in the abstract scenario
and 30-40% of test subjects answered correctly in the social
scenario, a much better performance; however, one might
be tempted to conclude from this study that, even under the
best of circumstances, less than half of us can think logically.
Bennett points out that familiarity is not always a help.
She describes a study performed in 1928 by M. C. Wilkins.
The premise put forth to Wilkins’ students was “All fresh-
man take History I.” States Bennett, “ . . . only 8% of her
subjects accepted the conversion, ‘All students taking History
I are freshmen.’ However, 20% of them accepted the equally
erroneous conclusion, ‘Some students taking History I are
not freshmen.’ With strictly symbolic material (All S are P),
the errors ‘All P are S’ and ‘Some P are not S’ were made by
25% and 14% of the subjects, respectively. One might guess
that in the first instance students retrieved common knowl-
edge about their world—given the fact that all freshmen take
History I does not mean that only freshmen take it. In fact,
Practical, Conceptual or Educational Notes | Dermatol Pract Concept 2014;4(1):3 21
they may have themselves observed nonfreshmen taking His-
tory I. So their conclusion was correct and they were able to
construct a counterexample to prevent making the erroneous
conversion. However, as they continued thinking along those
lines, knowledge about their own world encouraged them
to draw a (possibly true) conclusion that was not based on
correct logical inference. ‘Some students taking History I are
not freshmen’ may or may not be true, but it does not follow
logically from ‘All freshmen take History I’.”
Negation
The interplay between language and logic can prove espe-
cially troublesome. As Bennett pointed out earlier, statements
that are equivalent in meaning by logic are not always inter-
preted as equivalent by a human reasoner. Negation, or saying
that something is not, proves difficult at times for humans
to process. Bennett explains that Aristotle recognized early
on in his studies that propositions meaning the same thing
can be explained as either an affirmation or a negation. For
example, “all humans are imperfect” is the affirmation, while
“no humans are perfect” is a negation with an equivalent
meaning. It is possible to affirm the absence of something or
to deny the presence of something; thus, the same set of facts
can be presented by affirmation or negation.
How facts are presented, however, affects how people
understand them. Bennett describes a study in which test sub-
jects were asked to perform certain written tasks. Test subjects
were timed and their accuracy assessed. Basically, the same
instruction was written as an affirmative, an implicit negative,
and an explicit negative. Papers were given to the test subjects,
each with the Arabic numerals 1 through 8 listed consecutively
at the top of the page. One instruction said, “Mark the num-
bers 1, 3, 4, 6, 7.” The next instruction said, “Do not mark
the numbers, 2, 5, 8, mark all the rest.” The third instruction
said, “Mark all the numbers except 2, 5, 8.” States Bennett,
“The subjects performed the task faster and with fewer errors
of omission following the affirmative instruction even though
the list of numbers was considerably longer.
Subjects performing the task using ‘except’ were clearly
faster than those following the ‘not’ instruction, signifying
that the implicit negatives were easier to understand than the
instructions containing the word ‘not’.” Bennett adds about
the understanding of implicit negatives, “Some negatives do
not have an implicit negative counterpart, and those negatives
are more difficult to evaluate. The statement, ‘The dress is not
red’ is harder to process than a statement like ‘Seven is not
even’, because the negation ‘not even’ can be easily exchanged
for ‘odd’, but ‘not red’ is not easily translated [and very dif-
ficult to visualize]. The difficulties involved with trying to
visualize something that is not may well interfere with one’s
ability to reason with negatives. If I say that I did not come
by car, what do you see in your mind’s eye? It may be that,
wherever possible, we translate negatives into affirmatives to
more easily process information.”
Double negatives can cause problems with processing
information as well. In reasoning by reductio ad absurdum,
we want to prove a proposition, P, but to do so we assume
not-P and argue to a contradiction. We conclude “not-not-P”
or “P.” Bennett points out that referendum questions at the
voting booth often use wording that makes one’s choice seem
counterintuitive and confuses voters. Her example is from
a ballot managing her retirement funds. “Proposal: To stop
investing in companies supporting gun control . . . voting ‘for’
means you are against gun control [are for easily obtainable
guns] and voting ‘against’ means you favor gun control [are
against easily obtainable guns] . . . If the process of negation
involves an extra mental step, a double negative can be mind
boggling. ‘The probability of a false negative for the preg-
nancy test is 1%’ or ‘No non-New Yorkers are required to
complete form 203’ or ‘The statistical test indicates that you
cannot reject the hypothesis with no difference’ can cause
listeners to scratch their heads (or give them a headache).”
In a line from a story from John Mortimer’s Rumpole of
the Bailey, Horace Rumpole, barrister at law, cross-examines
an expert witness on the subject of bloodstains. The witness
states, “The finding is not inconsistent with your hypothesis.”
An exasperated Rumpole counters, “Does not ‘not inconsis-
tent’, when translated to plain English, mean ‘consistent’?”
The witness: “Yes, it does.” Common sense reigns, albeit
temporarily, at last.
A brief recap
So far we have seen that, although rules have been discovered
that assist us in reasoning logically so that we might evaluate
“evidence” according to an ideal, problems with the use of
language, resulting as it does in differences in interpretation,
often interfere with the ideal of formal logic to which we
aspire. Also, speaking from the standpoint of philosophy, we
may not even understand fully the concepts of “truth” and
“definability” since paradoxes exist involving those terms.
There is disagreement about what sorts of things should be
allowed to be considered evidence. Nonetheless, each of us
on some level think we understand what “evidence” is and
that “evidence” is, or at least should be, true and unassailable.
This leads to a cognitive dissonance that simmers just under
our awareness and causes problems for us as we interact with
our fellow man.
Evidence Based Medicine
The cognitive dissonance we all experience relative to evi-
dence spills necessarily over into our professional lives. Today,
22 Practical, Conceptual or Educational Notes | Dermatol Pract Concept 2014;4(1):3
we are all expected to practice so-called Evidence Based
Medicine. To do otherwise, we are told, is to risk unnecessar-
ily patients’ lives and to cause too much money to be spent
on healthcare.
So what is meant by evidence in the case of Evidence
Based Medicine? Despite a well-meaning start, pretty much
“evidence” in medicine has come to mean the outcome of
a clinical trial, that outcome having been interpreted by an
expert in the field.
At its outset, the premise underlying Evidence Based
Medicine was that each physician, having completed his or
her studies of basic medical science (anatomy, physiology,
pathology, pharmacology and the like), would determine
for each patient the best course of action by doing his/her
own research of the literature. By doing so, each physician
would break the bond to “authority.” No longer would each
physician “parrot” what s/he thought a mentor would do in a
similar situation. S/he would find out the results of the latest
studies and act according to the “best evidence.”
What ensued, however, was a distortion of the ideal.
Maya Goldenberg, in “Iconoclast or creed? Objectivism,
pragmatism, and the hierarchy of evidence” in Perspectives
in Biology and Medicine, states, “Objectivity is an epistemic
virtue in science that stands for an aperspectival ‘view from
nowhere’, certainty, and freedom from bias, values, interpre-
tation, and prejudice. Even if objectivity cannot be achieved,
it is perceived to be an ideal worth striving for.”
Goldenberg explains that the idea for Evidence Based
Medicine arose from the “pragmatism” movement in philoso-
phy, a movement founded by Charles Sanders Peirce and Wil-
liam James. The doctrines underlying pragmatism are “(1) the
meaning of concepts is to be sought in their practical bearings;
(2) the function of thought is to guide action; and (3) truth
is preeminently to be tested by the practical consequences of
belief.” Goldenberg quotes James stating that pragmatism
stands for “the open air and possibilities of nature, as against
dogma, artificiality and the pretense of finality in truth . . .
[pragmatists] turn toward concreteness and adequacy, towards
facts, towards action, and towards power. That means the
empiricist temper regnant, and the rationalist temper sincerely
given up . . . [pragmatism] does not stand for any special
results [or doctrines]. It is a method only.”
Goldenberg agrees that the allegiance of Evidence Based
Medicine to the Randomized Controlled Trial captures the
tenor of pragmatism; however, the strict adherence of Evidence
Based Medicine to its hierarchy of evidence, which is based in
a ranking of study designs based on the supposed rigor of their
methodology, goes against the spirit of pragmatism.
Of hierarchies, Kirstin Borgerson, in “Valuing evidence:
bias and the evidence hierarchy of evidence-based medicine”
in Perspectives in Biology and Medicine, states that Evidence
Based Medicine advocates “are not just claiming that it is
helpful to be able to distinguish, for instance, good from
bad RCTs [Randomized Controlled Trials] or better from
worse cohort studies. They have made an assumption about
the necessity of ranking these methods against one another
so that a critical review of the literature will produce one,
hopefully decisive, answer . . . [there are multiple possible
hierarchies] . . . no one has seriously (that is, explicitly and
methodologically) argued for any particular hierarchy. Hier-
archies are more often asserted than argued for.”
Performance of Randomized Controlled Trials (RCTs) is
a pragmatic methodology, writes Goldenberg, since the pur-
pose of them is to “temporarily suspend prior knowledge of
human physiology, disease, and pharmacology, all of which
might allow for inferences regarding the effectiveness of a
particular drug in treating a given condition, and instead
determine whether a treatment works by trying the treat-
ment in a large number of cases under controlled conditions.”
Goldenberg explains that RCTs are “ostensibly unhindered
by the pre-theoretic expectations and commitments that
can bias the deductive methods of basic science and the less
systematic experimental methods of clinical experience and
observational studies . . . Absent the influence of anticipated
outcomes, scientists faced with recalcitrant empirical data
should be more open to revising even well-established views
about treatment efficacy.”
Goldenberg points out that randomization and blinding
are not always appropriate. Small sample size renders ran-
domization futile, for example, and blinding is not always
possible, as in studying the negative effects of smoking. Ethi-
cal considerations arise in studying effects of surgery, since
sham surgical procedures would be required to truly blind
interpretation of results. Furthermore, some social contexts
may result in bleeding of effects of the study if, for example,
study patients share their medications with friends participat-
ing in the study, hoping that everyone will benefit from a new
therapeutic agent. In a blinded study, subjects may have an
incentive to lie about their actions, if they fear being repri-
manded for breaking the blinding effect of the study.
The hierarchy of Evidence Based Medicine asserts that
Randomized Controlled Trials are always better evidence than
alternative studies such as observational studies, even though
different health research studies call for different designs so
there really is no gold standard methodology. For example,
Robin Bluhm, in “From hierarchy to network: a richer view
of evidence for evidence-based medicine” in Perspectives in
Biology and Medicine, states of studies of epidemiology, “
. . . epidemiology is not generally an experimental science.
The epidemiologist must try to identify causal factors ‘in the
wild’ rather than in the controlled environment of the labora-
tory.” Bluhm points out that progress in medicine requires the
close interaction of epidemiologists, who attempt to establish
causes of disease, and laboratory scientists, who can design
Practical, Conceptual or Educational Notes | Dermatol Pract Concept 2014;4(1):3 23
experiments to compare outcomes between study and control
groups. The most common study design for epidemiology,
asserts Bluhm, is the cohort study, in which groups, similar
in most ways, differ in a finding of interest, and are observed
and compared over time to determine if the finding of interest
leads to a different incidence of a separate finding at the later
time. For example, is smoking associated with an increased
incidence of lung cancer, or is a high cholesterol level associ-
ated with an increased incidence of myocardial infarction?
Cohort studies are similar to Randomized Controlled
Trials in that the populations are followed over time. In the
cohort study one population is exposed to some factor, while
in the RCT one population receives an intervention, such as
a drug or surgical procedure. Other sorts of studies include
case reports and cross sectional surveys. Different types of
studies have varying strengths and weaknesses.
Goldenberg discusses the work of Upshur and Tracy, “
. . . the entire edifice of evidence hierarchies is . . . based upon
expert judgment or consensus. They charge that ‘the structur-
ing of evidence according to hierarchy is by no means natural,
intuitive, or even logically justified’ . . . Upshur and Tracy
propose that the initial creation of an evidence hierarchy
was intended to link the quality of evidence to the soundness
of the recommendations based on the evidence . . . on the
belief that these methods [RCTs and meta-analyses] are less
susceptible than observational designs to bias. The key is the
ability of randomization to eliminate selection bias and the
unprovable claim that randomization balances all relevant
known and unknown factors in a probabilistic sense. The
hierarchy attributes lower reliability to expert judgment, and
specifically subordinates theory and pathophysiological rea-
soning to designs with randomization. The reasoning behind
the latter subordination is unclear, as pathophysiology often
provides more fundamental understanding of causation and is
in no way scientifically inferior. Thus, Upshur and Tracy con-
clude, the hierarchy has been advanced on the basis of expert
opinion rather than reasoned argument—a move unbefitting
of evidence-based thought and practice.”
Goldenberg asserts that adherents of Evidence Based
Medicine have failed to recognize the fallibility of scientific
evidence, preferring instead to undertake a “sort of absolut-
ist search for certainty.” She discusses the work of Paul Fey-
erabend who “described science as being obsessed with its
own mythology of objectivity and universality.” Goldenberg
continues, “If the hierarchy of evidence was put in place to
refute skepticism and ensure certainty, it stands as an example
of what Feyerabend abhorred: science making claims to truth
well beyond its actual capacity.”
Mark Tonelli, in “Evidence-free medicine: forgoing evi-
dence in clinical decision making” in Perspectives in Biology
and Medicine, opens his article, “At some time in the not-too-
distant past, medicine was apparently practiced in the absence
of evidence. I know this to be the case because a Medline
search for the term ‘evidence-based medicine’ prior to 1990
yields virtually no returns . . . By the time I had completed
residency and fellowship in 1996, evidence-based medicine
(EBM) had gone from ‘paradigm shifting’ concept to widely
accepted dogma.”
Tonelli bemoans that establishing hierarchies of evidence
has distracted the medical profession from its calling, which
is to arrive at the best possible decision, be it diagnosis or
treatment, for the individual patient. Says Tonelli, “ . . . the
myriad attempts to define, categorize, and stratify evidence
for use in clinical medicine have only resulted in a epistemic
and linguistic morass . . . Instead of arguing about what does
or does not constitute evidence in support of a clinical deci-
sion, we should more carefully examine the central question
regarding the legitimacy of various potential facts and war-
rants for clinical decision making.”
Tonelli notes that clinical medicine does not lend itself
to formal, deductive logic, but utilizes the informal logic of
argumentation. States Tonelli, “Clinical judgment requires the
use of various kinds of reasoning. Done well, clinical decision
making closely resembles the structure of argumentation,
with careful consideration of many facts, warrants, backings,
and rebuttals, ultimately resulting in a conclusion that is only
probably, never demonstrably, correct.” Tonelli refers to the
work of Toulmin, The Uses of Argument, noting, “ . . . data,
or basic facts, are often invoked as a foundation to a claim,
but that facts alone are inherently insufficient to provide
legitimate support to any claim.
In arriving at or defending a particular conclusion, we
must go beyond producing facts to providing warrants, more
general and hypothetical propositions that are necessary to
have the particular fact support a particular claim.”
Tonelli opines that proponents of Evidence Based Medi-
cine consider fact and warrant as a bundle—the fact serves
as its own warrant. He gives the example that a certain
pitcher may be considered the best based on a low Earned
Run Average (ERA)—the fact. But, maintains Tonelli, the
arguer of this claim must warrant that the ERA is superior
to all other measures of pitching excellence to back his claim.
Physicians, asked about their evidence for a certain decision,
often merely cite a reference. They do not then warrant their
use of that reference-datum by explaining why it is superior
to other possible choices in this particular patient at this
time. Tonelli insists that it is most important to show that the
warrants that are invoked to support a claim based upon the
facts in the reference are legitimate. He adds that establishing
legitimacy of a warrant requires “an understanding of the
underlying metaphysical and epistemic underpinnings of a
healing discipline.”
Tonelli recognizes five broad classes of legitimate poten-
tial warrants: pathophysiologic rationale, results of clinical
24 Practical, Conceptual or Educational Notes | Dermatol Pract Concept 2014;4(1):3
research, clinical experience, patient goals and values, and
system features. He notes that the relative importance of any
warrant will depend on the specifics of the patient. A warrant
from any of the five classes may be the most important in a
particular case. Since the classes of warrants “differ from one
another in kind, not in degree . . . no meaningful hierarchies
of potential warrants can exist across the [classes].” Within
a class, a basic hierarchy might be appropriate. For example,
the clinical experience of a medical student would likely carry
less weight than the experience of the attending generalist,
whose experience would carry less weight than a specialist.
However, even within a class of warrants, hierarchies “must
be considered general and not prescriptive, serving only as
guidelines, not clinical rules . . . often facts and warrants
from each of the five classes are likely to be coherent, all
supporting the same clinical decision . . . [but] when warrants
conflict, supporting different conclusions regarding the right
diagnosis or course of action . . . the clinician’s judgment is
put to the test.”
Tonelli opines, “The demand for evidence distracts clini-
cians, requiring them to search outside of the clinician-patient
relationship for answers to questions that are not directly
applicable to the patient at hand . . . The answer to a great
many important and interesting general medical questions
can be discovered by searching, analyzing, and interpreting
published clinical research. The answer to the question of
what to do about the individual patient, however, does not
exist outside of the clinician-patient relationship waiting to
be discovered.”
Tonelli observes, “The consummate clinician is one who
can identify all the relevant facts and warrants and, when
necessary, negotiate between conflicting warrants by weigh-
ing each in the context of the particular patient at hand. The
excellent clinician must, by necessity, have a well-developed
knowledge base that includes understanding of biologic and
physiologic concepts and principles, the relevant clinical
research in her specialty, substantial personal experience, and,
preferably, access to clinicians with even more. In addition to
this knowledge base, the clinician must also have the skills
and inclination to understand patient preferences, goals, and
values, as well as an understanding of the facilitators and
barriers to optimal care inherent in the system in which she
practices. No wonder EBM’s simple five-step process has
such appeal. Training clinicians to practice an evidence-free
medicine is significantly more challenging than training them
to practice EBM.”
Parenthetically, the “simple five-step process” of Evidence-
Based Practice is as follows: 1) Formulate a well-built ques-
tion, 2) Identify articles and other evidence-based resources
that answer the question, 3) Critically appraise the evidence
to assess its validity, 4) Apply the evidence, and 5) Re-evaluate
the application of evidence and areas for improvement. Rela-
tive to step three, family practitioner Ross Upshur, in “Look-
ing for rules in a world of exceptions,” in Perspectives in
Biology and Medicine, noted that it had been estimated that
“a physician would need to spend 627.5 hours just to read
the 7,287 articles relevant to primary care each month. And
that is just reading, never mind the “critically appraise” part.
So Evidence Based Medicine seems to be another distor-
tion of the profession of medical practice, along with the
expectation that no errors are tolerable or should occur while
we care for our patients, that we can take care of the total
needs of a patient in a seven minute office visit, and similar
expectations with which we are all familiar.
Attributed to Albert Einstein is the saying “All things
should be made as simple as possible, but not simpler.” Slobod-
kin has pointed out, in Simplicity & Complexity in Games of
the Intellect, that it is human nature to simplify some aspects
of life and to complexify (for example by ritual) other aspects
of life. We all decry “error” in the practice of medicine. But
how much of the aggregate of unexpected and less than
desired outcomes is really due to error per se, how much is
due to unreasonable expectation on the part of patients and
ourselves as medical practitioners, and how much is due to a
lack of understanding (because we humans simply have not
yet made the discoveries) of basic science, clinical medicine,
and principles of complexity theory or system theory?
It seems that perhaps Evidence Based Medicine has
evolved into an attempt to simplify the practice of medicine
too much.
Conclusion
In the end, it seems to me that “evidence” truly is, as defined,
“that which justifies belief” and nothing more. We each feel
justified in believing what we believe. If our belief comes to us
by revelation or authority, we still consider it a belief and we
feel justified in believing it. If this is true, then evidence is best
considered just another word for a “reason” or “reasons.”
Attempts have been made throughout the ages to give “evi-
dence” a “higher calling” by insisting on proof that something
labeled as “evidence” is true and warrants any conclusions
drawn from that evidence. But, as we have seen in this essay,
there are so many factors involved, from language to educa-
tion to paying attention to the proper things at the moment of
reasoning, that the formal rules discovered are likely to never
be our “natural” process of thinking. Where most of us are
concerned, the pretense of “evidence” to a scientific ideal is
merely an illusion. As Garlikov might say, we have not learned
the rules of the game to use evidence as ideal.
Evidence is the aggregate of reasons we use to justify our
belief in some fact or claim. Those reasons may or may not
follow the rules of argumentation and those reasons may not
Practical, Conceptual or Educational Notes | Dermatol Pract Concept 2014;4(1):3 25
actually lead an astute reasoner to conclude our claim. In
the end, evidence does not guarantee truth or certainty. The
label “evidence” applied to a fact does not make that fact any
more likely to support a valid conclusion. What is important
is the process we use to support a claim, the process of argu-
mentation, by which we warrant why a piece of evidence is
pertinent to the claim.
We hold in our minds the ideal that evidence is true and
unassailable, but we can never reach that ideal and for a
number of reasons. We are limited by our understanding of
basic concepts, such as “truth” and “definability”, that lead
unavoidably to paradox. We cannot possibly ensure that we
understand the same message in exactly the same way, nor
do we understand the most basic concepts of our language
in the same way, for example dealing with “if/then” hypoth-
eses, negations, and the like. We all live unavoidably with
cognitive dissonance, believing contradictory statements,
most often because we cannot drag the contradictions into
our working memories simultaneously to recognize that they
are contradictory.
Nonetheless, in a manner analogous to discovering the
rules of logical thought, a process begun in earnest by Aristo-
tle, following the principles of the scientific method, whereby
hypotheses are tested according to a body of organizing
principles and the test results are examined and interpreted
independently by multiple investigators, seems to provide the
best way to advance knowledge, while minimizing opportuni-
ties for inconsistency and contradiction. Argumentation and
science share the same basic principles in that people with
differing views are willing to look at a problem from different
perspectives and are willing to risk being proved wrong in the
interest of acquiring a common understanding of an issue.
Reasons, properly warranted, comprise the best form of
evidence, evidence serving as a means to the end of gaining
knowledge. However, human nature being what it is, we
sometimes “put the cart before the horse” and think that the
end justifies the means. If we imagine a desired end and then
create a “story” that we label as “evidence” for the purpose of
persuasion only, if we put consistently the goal of winning an
argument ahead of better understanding, as Aristotle accused
the Sophists of doing, then we are lost.
In a manner analogous to vaccination to minimize the
spread of infectious disease, the vast majority of people should
take the time to understand more fully the rules of logic and
the common problems that interfere with thinking consistently
and without contradiction. Then the populace at large would
be at least in a position to know a reasoned argument when
confronted with such an animal. Michael Shermer, as dis-
cussed in the essay in this series on Interpretation, has pointed
out, “Anecdotal thinking comes naturally; science requires
training.” It is up to each of us to do our part to further the
common cause of ensuring that our collective knowledge base
is as consistent and noncontradictory as possible.
Upshur, in “Making the grade: assuring trustworthi-
ness in evidence” in Perspectives in Biology and Medicine,
quotes Alfred North Whitehead (1929), “The chief danger to
philosophy is narrowness in the selection of evidence. This
narrowness arises from the idiosyncracies and timidities of
particular authors, of particular groups, of particular schools
of thought, of particular epochs in the history of civilization.
The evidence relied upon is arbitrarily biased by the tempera-
ments of individuals, by the provincialities of groups, and by
the limitations of schemes of thought.”
When confronted with inconsistencies and contradiction,
we must try to discover the source of inconsistency or contra-
diction. We may find, by reviewing and applying assiduously
the known rules of logic, an error in our proof. We can be
aware of our biases and try to think more broadly. We can
ask ourselves if we are being a bit slavish to authority. If a
true paradox arises, we can try to expand the scheme of our
thought and try to look at the problem from a new perspec-
tive from which paradox disappears.
Parenthetically, as an example, for Zeno’s paradox involv-
ing infinity, Zeno proposed that Achilles could never catch up
to or pass the tortoise, who started with a 10-meter head start,
in the race because he (Achilles) would only close a certain
percentage of the gap in what mathematically is represented
by an infinite series. Manipulating the formula mathemati-
cally gives a finite equation, showing that Achilles draws
level with the tortoise when the tortoise has moved 1 and 1/9
meters. A better understanding of infinite series eliminated
the paradox. I am not sure we are yet ready to solve the liar’s
paradox, but theoretically, as suggested by Whitehead, we
could look at the problem from another less limited perspec-
tive to solve the paradox. But, as Bolander explains, that
will require a new understanding of “truth.” Until we better
understand truth, we must stop thinking of “evidence” as
true and unassailable. And we should understand that our
collective knowledge base has necessarily items in it that will
require revision in the future.
I think it is most important that we learn more about the
limitations of humans and to ensure that as many of us as
possible have access to that knowledge. Only then will we be
able to design systems that are effective, including an effec-
tive healthcare system. That humans have imagination is both
boon and bane. Imagination has enabled us to survive, to
prepare for the future, and to dream of a better world. But the
downside of this is that we are tempted to believe that what
we imagine is true and/or attainable, regardless of whether or
not we truly understand “reality,” or principles of Universal
Law. We are in danger, as Goldenberg said of Feyerabend’s
words, of making claims to truth well beyond our capacity.
26 Practical, Conceptual or Educational Notes | Dermatol Pract Concept 2014;4(1):3
Learning to accept “evidence” for what it really represents
instead of what we want it to represent will be a start.
Summary
We tend to think of evidence that it must be of necessity true
and unassailable, but that does not conform to reality. Evi-
dence is really just a reason or reasons that we use to justify
our beliefs. We try to hold evidence to an ideal, but because
of our innate fallibility, which occurs as a direct result of
our evolution within the environment with which we have
co-evolved, we cannot ensure evidence meets that ideal. The
nature of language and the use of that language by us is a
major impediment to maintaining consistency and avoiding
contradiction in our communication with one another. Addi-
tionally, our “natural” thought processes do not follow the
rules of logic as discovered by logicians throughout the ages.
This being the case, we must endeavor to understand better
our human fallibility and learn to work within our capabili-
ties. To do so, we must accept “evidence” as what it is instead
of what we would like it to be.
Dr. Anderson is a retired general pathologist, residing in Carbon-
dale, Illinois, and teaching part-time at her alma mater, Southern
Illinois University School of Medicine.
Bibliography
Anderson C. On the nature of thought processes and their relationship
to the accumulation of knowledge, Part II: The role of emotion, feel-
ing, and consciousness. Dermatopathology: Practical & Conceptual.
2004;10(2):15.
Anderson C. On the nature of thought processes and their relation-
ship to the accumulation of knowledge, Part III: The concept of truth.
Dermatopathology: Practical & Conceptual. 2004;10(3):20.
Anderson C. On the nature of thought processes and their relationship
to the accumulation of knowledge, Part VIII: Interpretation. Dermato-
pathology: Practical & Conceptual. 2006;12(4):23.
Anderson C. On the nature of thought processes and their relationship
to the accumulation of knowledge, Part X: Causation. Dermatopathol-
ogy: Practical & Conceptual. 2008;14(2):20.
Anderson C. On the nature of thought processes and their relationship
to the accumulation of knowledge, Part XI: Reasoning. Dermatopa-
thology: Practical & Conceptual. 2008;14(4):22.
Anderson C. On the nature of thought processes and their relation-
ship to the accumulation of knowledge, Part XII: Detecting and using
patterns. Dermatopathology: Practical & Conceptual. 2009;15(2):16.
Bennett D. Logic Made Easy: How to Know When Language Deceives
You. New York: W. W. Norton & Co. 2004: pp 19-20, 30, 29, 31, 35-
36, 40, 49, 54-57, 66, 73-79, 102,
Bluhm R. From hierarchy to network: a richer view of evidence for
evidence-based medicine. Perspect Biol Med. 2005;48(4):535-47.
Bolander T. “Self-Reference.” Stanford Encyclopedia of Philosophy
(summer 2008). Edward N. Zalta (ed). URL=
Borgerson K. Valuing evidence: bias and the evidence hierarchy of
evidence-based medicine. Perspect Biol Med. 2009;52(2):218-33.
Cloud P. Oasis in Space: Earth History from the Beginning. New York:
W. W. Norton & Co. 1988. p 47.
Devlin K. Mathematics: The Science of Patterns. New York: W. H.
Freeman and Company. 1994. p 47, 74.
DiFate V. “Evidence.” The Internet Encyclopedia of Philosophy (2007).
URL=
Goldenberg M. Iconoclast or creed? Objectivism, pragmatism, and the
hierarchy of evidence. Perspect Biol Med. 2009;52(2):168-87.
Kelly T. “Evidence.” The Stanford Encyclopedia of Philosophy (Fall
2008 ed). EdwardN. Zalta (ed). URL=
Pinker S. The Stuff of Thought: Language as a Window Into Human
Nature. New York: Penguin Books. 2007: 72, 154-5.
Slobodkin L. Simplicity & Complexity in Games of the Intellect. Cam-
bridge, Massachusetts: Harvard University Press. 1992. p 74.
Tonelli MR. Evidence-free medicine: forgoing evidence in clinical deci-
sion making. Perspect Biol Med. 2009;52(2):319-31.
Upshur RE. Looking for Rules in a world of exceptions: reflections
on evidence-based practice. Perspect Biol Med. 2005;48(4):477-89.
Upshur RE. Making the grade: assuring trustworthiness in evidence.
Perspect Biol Med. 2009;52(2):264-75.
Zarefsky D. Argumentation: The Study of Effective Reasoning. 2nd
edition. Audio Course. Chantilly, VA: The Teaching Company. 2005.
Lecture 2.
http://plato.stanford.edu/entries/self-reference/
http://plato.stanford.edu/entries/self-reference/
http://plato.stanford.edu/archives/fall2008/entries/evidence/
http://plato.stanford.edu/archives/fall2008/entries/evidence/