GEOCIENCIAS-VOL 13-2 2009.vp EARTH SCIENCES RESEARCH JOURNAL Earth Sci. Res. J. Vol. 13, No. 2 (December 2009): 108-118 CHARACTERIZATION OF VERMICULITE BY XRD AND SPECTROSCOPIC TECHNIQUES A. Campos, S. Moreno, R. Molina1 1 Estado sólido y catálisis ambiental, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia. AK 30 No. 45-03, Bogotá, Colombia; Fax: 57-1-3165220 E-mail Autor:ramolinag@unal.edu.co ABSTRACT A natural mineral from Santa Marta-Colombia used as the starting material in the synthesis of pillared clays has been characterized by several techniques, including X-ray diffraction, X-ray fluorescence, electronic paramagnetic reso- nance, aluminum nuclear magnetic resonance and scanning electron microscopy. The information revealed that the min- eral corresponds to trioctahedral vermiculite. The identification of this mineral is valuable in the control of reduction charge and pillaring processes on these materials to obtain more complex solids like the ones required to specific catalytic applications. Key words: Vermiculite, structural formula, layer charge. RESUMEN Un mineral natural de la región de Santa Marta en Colombia, el cual usado como el material de partida en la síntesis de arcillas pilarizadas, ha sido caracterizado por diversas técnicas tales como difracción de rayos-X, fluoresencia de rayos-X, resonancia electrónica paramagnética, resonancia magnética nuclear de aluminio y microscopía electrónica de barrido. La información en conjunto indica que el mineral corresponde a vermiculita trioctaédrica. La identificación de este mineral es muy importante en la comprensión y el control de los procesos de reducción de carga y de pilarización de estos materiales para la obtención de sólidos más complejos, como los requeridos en aplicaciones catalíticas específicas. Palabras clave: Vermiculita, fórmula estructura, capa de carga. 1. Introduction Vermiculite is a clay mineral usually of secondary origin due to the alteration of mica, pyroxene, chlorite or similar miner- als (Brown 1961). The substitutions of Si by Al in tetrahedral sheet pre- dominate in vermiculite. In this way, the negative charge generated on the tetrahedral sheets limits the expansion properties of the clay and this factor determines the high layer staking of its structure (Mac Ewan and Wilson 1980; Tunega et al. 2003). 108 Manuscript received: 24/03/2009 Accepted for publication: 26/05/2009 ENERO 30-GEOCIENCIAS-VOL 13-2 2009.prn D:\GEOCIENCIAS 13-2 DIC 2009\GEOCIENCIAS-VOL 13-2 2009.vp sÆbado, 30 de enero de 2010 18:16:17 p p p Composite 133 lpi at 45 degrees From the catalytic point of view, the vermiculite is a very attractive material due to the thermal resistance (Suvorov and Skurikhin 2003) and the number of tetrahe- dral substitutions, which ensure the presence of a larger number of Brønsted-type acid sites (del Rey-Pérez-Cabal- lero and Poncelet et al. 2000); these substitutions are less numerous in other hydrous 2:1 minerals such as smectites. On the whole, these properties offer considerable interest in the production of pillared clays, which are distinguish- able from an intercalated layered solid due to their micro and/or mesoporosity and high thermal stability with pres- ervation of the layer stacking (Moreno et al. 1997, Schoonheydt et al. 1999; Stefanis et al. 2006). The development of pillared clays from vermiculite during the past few years has offered particular interest especially as a heterogeneous catalyst in acid-catalyzed reactions (Campos et al. 2005; Campos et al. 2007; Cam- pos and Gagea et al. 2008; Campos and Moreno et al. 2008; Cristiano et al. 2005; del Rey-Pérez-Caballero and Poncelet et al. 2000; del Rey-Pérez-Caballero and Sánchez et al. 2000, Hernández et al. 2007). However, as direct intercalation of vermiculite is impossible due to a very high potential of stabilization of interlayer cations (Suvorov and Skurikhin 2003) it has been necessary to de- velop alternative methodologies to achieve pillared ver- miculite (Cristiano et al. 2005; F. del Rey-Pérez- Caballero 2000). One of these methodologies has been the hydrother- mal treatment prior to a conventional process of intercala- tion, in order to reduce negative charge and make possible the subsequent cationic exchange (Cristiano et al. 2005). The catalytic profile of Al and Al-Zr modified vermicu- lites by means of this methodology has confirmed the po- tential expected for this acidic acid solid, since they are highly active with respect to other clays in alkane hydroisomerization (Campos 2005; Campos et al. 2007; Campos and Gagea et al. 2008; Campos and Moreno et al. 2008; Cristiano et al. 2005; del Rey-Pérez-Caballero and Poncelet 2000; del Rey-Pérez-Caballero and Sánchez et al. 2000; Hernández et al. 2007). In order to produce practical information to control the modification processes described previously, to achieve a clay mineral with potential catalytic and adsorp- tive properties, this paper focuses on the characterization of natural vermiculite issued from a Colombian deposit. X-ray diffraction (XRD) and several spectroscopic tech- niques such as electronic paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) were used. 2. Experimental 2.1 Materials The vermiculite selected for this work was labeled V, and it corresponds to a commercial mineral, which comes from a natural deposit in the Santa Marta region in Colombia. Its characterization was carried out with the fraction of a parti- cle size smaller than 150 ìm, separated from the commercial form by sieve, without purification or fractioning treatment. 2.2 Characterization methods The cationic exchange capacity was determined on the clay previously interchanged with an ammonium acetate solu- tion, by means of the micro-Kjeldahl method (Chapman 1965). The X-ray diffraction study obtained from flakes, which had been gently pressed onto the plates by using a Philips PW 1820 diffractometer (Ká radiation of Cu , ë=1.54056 Å, 40 mA, 40 kV) in 2è geometry and Bragg–Brentano config- uration, a step size of 0.05 and a step time of 2 s. Diffraction patterns were taken at room temperature, 20 °C and 65% of humidity on the average. The identification of the mineral was assessed accord- ing to the position of basal reflection 001 in three patterns: i) natural sample, ii) after solvation in the presence of ethylene glycol for 24h and iii) after heating at 500 ºC for 2 h. In addi- tion, Mg2+ and K+ saturations were performed in the mineral to achieve a better characterization (Thorez 1976). Adsorption-desorption isotherms of nitrogen at the tem- perature of liquid nitrogen were analyzed using a Micromeritics Tristar 3000 instrument on samples previ- ously degassed at 200 °C for 6 h. Scanning electron microscopy images were recorded in a Philips Scanning Electron Microscope XL30 FEG. The gravimetric and differential thermal-analysis were performed at a heating speed of 10 ºC min-1 in air atmo- sphere using a Thermal Analyzer TG and DSC Rheometric instruments. The chemical analysis was performed by X-ray fluores- cence in an XRF 2400 instrument. In addition, the Fe2+ anal- ysis was carried out through the analytic method described in Wilson M. (Wilson 1995). Electron paramagnetic resonance spectra in the X band (9.8 GHz) was carried out in a Brucker ESP 3220 spectrome- ter adopting a modulation frequency of 100 kHz whose 109 CHARACTERIZATION OF VERMICULITE BY XRD AND SPECTROSCOPIC TECHNIQUES ENERO 30-GEOCIENCIAS-VOL 13-2 2009.prn D:\GEOCIENCIAS 13-2 DIC 2009\GEOCIENCIAS-VOL 13-2 2009.vp sÆbado, 30 de enero de 2010 18:16:17 p p p Composite 133 lpi at 45 degrees width was fixed at 0.4 mT for wide lines and reduced to 0.05 mT for acute bands, at a temperature of 100 K. The nuclear magnetic resonance of 27Al was performed in a Brucker Advance 400 spectrometer; the sample was placed in 2.5mm rotors, while 1200 scannings were accumu- lated with a time of 100ms of recycle. Rotor speed was 5000 Hz. XRF, EPR and NMR measurements were done addition- ally in the mineral washed with nitric acid 0.01 M (10 ml g-1 clay) by 1h at 30 °C. 3. Results and discussion 3.1 X-ray fluorescence (XRF) and cation exchange capacity (CEC) Table 1 records the chemical composition of the mineral ob- tained by X-ray fluorescence. The structural formula of the Colombian vermiculite estimated from its chemical compo- sition and following the methodology described in Wilson M. (Wilson 1995) is: [(Si3.04Al0.92Ti0.04)(Al0.11Fe 3+ 0.35 Fe 2+ 0.07Mg2.41Mn0.003)O10 (OH)2] Ca0.21K0.05Na0.10 On the other hand, the cationic exchange carried out with ammonium-vermiculite is 1.10 meq NH g 4 1� . 3.2 X-ray diffraction analysis Table 2 shows the comparison between the reflections in XRD for Mg-vermiculite (Brown 1961), those correspond- ing to a diffraction pattern calculated using DIFK software (Wiewióra et al. 2003) and the reflections observed in the pattern for natural vermiculite V. This parallel makes it possible to observe an analogue pattern between the clays; thus the clay mineral under study corresponds to vermiculite (Wiewióra et al. 2003). Like- wise, a high layer stacking is highlighted, which is verified by the presence of reflections in series 02l and 11l (Wiewióra et al. 2003). Reflection 060 located in 0.154 nm indicates that the vermiculite structure is of the trioctahedral type (Dixon and Weed 1989). In general, vermiculite can be dioctahedral or trioctahedral, but trioctahedral type is common in soils with a similar morphology to that of mica (Moore and Reynolds 1997), as observed in vermiculite (Figure 3). On the other hand, 6th, 8th, and 10th order reflections lo- cated at 0.480, 0.360 and 0.288 nm respectively show a growing intensities serie typical for vermiculites (Wiewióra et al. 2003). Interstratified material is absent; otherwise the sequence should be abnormal (Wiewióra et al. 2003). Trioctahedral vermiculites usually formed by the weath- ering of biotite (Gordeeva et al. 2002) may be found in the company of this mineral and also talc is possible. In the case of clay V we can suggest that talc is found as a non signifi- cant impurity, indicated by its characteristic diffractions in 0.93 nm, 0.48 nm and 0.31 nm (Fagel et al. 2001) (Figure 1). In parallel, starting from the positions of reflections 001 and 004 it can be estimated that the vermiculite is found in a pro- portion larger than 90 % (Thorez 1976). In order to verify the purity of the mineral, Table 3 re- cords the follow up on reflection 00l of raw natural clay powder, when the sample is solvated in the presence of eth- ylene glycol and, when the latter is calcined at 500 ºC. This table shows that the V material exhibits the sequence typical of vermiculites (Thorez 1976; Dixon and Weed 1989). However different authors (Thorez 1976, Dixon and Weed 1989, Malla and Douglas 1987) suggest complemen- tary analysis XRD in Mg2+ and K+-vermiculite to distin- guish between soil vermiculites and OH-interlayer vermiculites. As well they suggest a relation between the d001 signal and the layer charge. After saturation with magnesium followed by glycerol the basal reflection should be located in 1.4 nm compared with 1.8 nm if the clay 2:1 were a smectite (Thorez 1976; Fagel et al. 2001). In this sense, the basal reflection of V lo- cated at 1.4 nm was not modified. The impossibility for ex- pansion in Mg-V is then a consequence of the strong retention of magnesium between layers with a high negative 110 A. CAMPOS, S. MORENO, R. MOLINA Table 1. Chemical composition of Colombian vermiculite. Oxide Al2O3 SiO2 Fe2O3 FeO MgO MnO CaO K2O Na2O TiO2 % 13.06 45.40 6.91 1.24 24.10 0.11 2.88 0.60 0.26 0.73 ENERO 30-GEOCIENCIAS-VOL 13-2 2009.prn D:\GEOCIENCIAS 13-2 DIC 2009\GEOCIENCIAS-VOL 13-2 2009.vp sÆbado, 30 de enero de 2010 18:16:18 p p p Composite 133 lpi at 45 degrees density like vermiculites (Slade et al. 1976, Tunega et al. 2003) (Table 4). Malla and Douglas (Malla and Douglas 1987) estab- lished that the saturation with this potassium originates interlayer space reduction in the region between 1.12 -1.20 nm if the charge is lower than 0.57 and, between 1.00 and 1.06 nm when it is at least 0.6. In this sense, when clay V was saturated in the presence of K+ the basal spacing of 1.4 nm was reduced to 1.0 nm af- ter dried at room temperature and calcinations of the sample at 500 °C (Table 4). The reduction of interlayer space after potassium saturation, qualitatively indicate that the layer charge must be higher than 0.57 (Malla and Douglas 1987). In addition, the previous characteristic is a tool for the clear distinction between vermiculite and chlorite, due to the fact that the latter keeps the 001 reflection at 1.4 nm when K-chlorite, while the basal spacing of K-vermiculite is re- duced to 1.0 nm (Dixon and Weed 1989). For this reason, the absence of chlorite is verified as a possible impurity in the mineral. 3.3 Thermal analysis The thermal-gravimetric (TG) and differential (DTA) analy- sis of vermiculite is presented in the Figure 2 where a total weight loss of 21.1 % is distributed in several regions. In the first one, the dehydration of the clay takes place in two stages: i) between 20 and 110 ºC which corresponds to the loss of water physically absorbed on the surface and ii) from 110 ºC to 500 ºC, with a weight loss of 14.3 % attributed to the exit of water molecules, which are in contact with the cations in the interlayer region (Pérez et al. 2003). 111 CHARACTERIZATION OF VERMICULITE BY XRD AND SPECTROSCOPIC TECHNIQUES Table 2. XRD patterns of Mg-vermiculites, for simulated pattern and the pattern of Colombian vermiculite. hkl V Reference (nm) (nm) 1a 2b 002 1.430 1.44 1.43 004 0.719 0.718 006 0.480 0.479 0.477 020 0.468 0.460 0.460 008 0.360 0.360 0.358 115 0.339 0.341 0010 0.288 0.287 0.287 200 0.265 0.265 0.264 132 0.259 0.260 0.258 202 0.254 0.255 0.254 204, 0012 0.240 0.238 0.239 136 0.221 0.227 138, 206 0.206 0.209 208 0.201 20î2, 1310 0.187 2010 0.185 0.184 0016, 20î4 0.179 0.174 2012 0.168 0.167 1314, 2016 1.580 0.158 060 0.154 0.154 0.154 062, 330 0.153 2018, 0020 0.144 0.144 338 0.136 0.136 a Mg-vermiculite macroscopic of West Chester (Brown 1961). b Simulated pattern (Wieióra et al. 2003). Table 3. Identification of vermiculite from the basal re- flection 001 (nm). Clay Mineral N EG 500 Vermiculite 1.4 1.4 0.96-1.0 Smectite 1.2-1.5 1.7 1.0 Chlorite 1.4 1.4 1.4 V 1.4 1.4 1.0 Natural clay (N), after solvation treatment with ethylene glycol (EG) and the latter heated at 500ºC (500). ENERO 30-GEOCIENCIAS-VOL 13-2 2009.prn D:\GEOCIENCIAS 13-2 DIC 2009\GEOCIENCIAS-VOL 13-2 2009.vp sÆbado, 30 de enero de 2010 18:16:18 p p p Composite 133 lpi at 45 degrees 112 A. CAMPOS, S. MORENO, R. MOLINA a b 0 .9 3 3 1 .4 3 0 (0 0 2 ) 0 .7 1 9 (0 0 4 ) 0 .4 8 0 (0 0 6 ) 0 .4 6 8 0 .3 6 0 (0 0 8 ) 0 .3 3 9 (1 1 5 ) 0 .3 1 2 0 .2 8 8 (0 0 1 0 ) 12000 10800 9600 8400 7200 6000 4800 3600 2400 1200 o In te n s it y (A rb it ra ry u n it s ) 5 10 15 20 25 30 35 2Theta (Degrees) 0 .2 4 0 4 0 .2 0 6 (1 3 8 ,2 0 6 ) 1500 1350 1200 1050 900 750 600 450 300 150 o In te n s it y (A rb it ra ry u n it s ) 35 40 45 50 55 60 65 70 0 .1 8 7 (1 3 1 0 .2 0 2 ) 1 0 .1 8 5 (2 0 1 0 ) 1 .7 9 9 (0 0 1 6 .2 0 4 ) 1 1 .6 8 0 4 (2 0 1 2 ) 0 .1 5 8 (1 3 1 4 .2 0 6 ) 1 0 .1 5 4 (0 6 0 , 3 3 2 ) 0 .1 4 4 (2 0 1 8 ) 0 .1 3 6 (3 3 8 ) 2Theta (Degrees) Figure 1. XRD patterns of Colombian vermiculite, in the regions of 5-35 º2 (a) and 35-70 2 (b). Table 4. Comparison of the first order reflection (nm) for high and low charge vermiculites and the Colombian mineral (V). Vermiculite composition N EG 500 MgN MgEG KN K500 Low charge 1.4 1.6 1.0 1.4 1.6 1.1 1.0 High charge 1.4 1.4 1.0 1.4 1.4 1.0 1.0 V 1.4 1.4 1.0 1.4 1.4 1.0 9.3 Natural vermiculite after Mg2+ saturation (MgN). MgN after solvation with ethylene glycol (MgEG). Natural vermiculite after K + saturation (KN). KN heated at 500 ºC (K500). ENERO 30-GEOCIENCIAS-VOL 13-2 2009.prn D:\GEOCIENCIAS 13-2 DIC 2009\GEOCIENCIAS-VOL 13-2 2009.vp sÆbado, 30 de enero de 2010 18:16:18 p p p Composite 133 lpi at 45 degrees The region between 500 and 850 ºC records a loss of 6.8 % in weight with a linear tendency with respect to tempera- ture, which is attributed to dehydroxilation (Pérez- Rodríguez et al. 2004). In fact, the unusual endothermic peak at 800 °C is associated with the thermal stability on ver- miculite which is characteristic of this mineral as well this signal could be assigned to the formation of a new enstatite crystalline phase, which has been reported previously (Pérez et al. 2003). 3.4 Texture and morphology The selected fraction for vermiculite V corresponds to the mineral observed in Figure 3, where large vermiculite layer crystals are detected, which display soft surfaces, with small protuberances. Polygonal sheets with flaked borders are ob- served in vermiculite formed by the alteration of parental materials (Kishk and Barshad 1969). The specific surface area (7.41 m2 g-1) corresponding to external surface area without any microporosity. The low surface area is related to the particle but as well with the sur- face charge, since micas with similar particle size and charge higher than vermiculites have less surface area (del Rey-Pérez-Caballero and Sánchez et al. 2000). The strong hydrogen bonds between the tetrahedral sheet and the water of interlayer cations in vermiculite can keep the interlayer zone obstructed (Tunega D. et al. 2003), which could reduce superficial nitrogen adsorption consid- erably. By other hand, the relation observed between the inter- change cations and the penetration in the interlayer space has been indicated by different authors (Pérez et al. 2003). In fact, when monovalent cations in the interlayer region are re- placed by those of divalent type, a significant reduction in the superficial area for this mineral clay is observed (Pérez et al. 2003). 3.5 Electronic paramagnetic resonance (EPR) and nuclear magnetic resonance of aluminum ( 27 Al-NMR) Natural vermiculite can be accompanied by iron oxides and hydroxides on its surface (iron that is not substituting alumi- num in the octahedral sheet), which will cause an overesti- mation of iron in vermiculite if it is evaluated by chemical analysis. In this way, EPR could be used to determine the presence of structural Fe3+ in vermiculite. Additionally, to evaluate the structural environment of paramagnetic ions found in the clay. As can be observed in Figure 4, the EPR of V is domi- nated by signals associated with Fe3+ g = 4.3 and 2.1. In ad- dition, a sextet of lines in g = 2 can be appreciated, which is typical of Mn2+ species with distorted octahedral symmetry (Tus¡ar et al. 2005). The signal at g = 4.3 is related with Fe3+ located at an orthorhombic environment within the clay structure (Bensimon et al. 2000). In general, smectites exhibit signals for Fe3+ between g = 4.3 and g = 2.0, which can be attributed to the combination of two different octahedral and two tetra- hedral environments. Their formation depends on the possi- ble organizations of the OH groups in the FeO4(OH)2 unit (Wilson 1995). Mc Bride et al. (Mc Bride et al. 1975) suggest that the difference between the two octahedral sites occupied by 113 CHARACTERIZATION OF VERMICULITE BY XRD AND SPECTROSCOPIC TECHNIQUES Temperature ºC 30.0 20.0 10.0 0.0 -10.0 -20.0 -30.0 15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0 W e ig h t ( ) [m g ] H e a tF lo w ( ) [m W ] Figure 2. Differential and gravimetric thermal curves of Colom- bian vermiculite. Figure 3. SEM image of vermiculite V. ENERO 30-GEOCIENCIAS-VOL 13-2 2009.prn D:\GEOCIENCIAS 13-2 DIC 2009\GEOCIENCIAS-VOL 13-2 2009.vp sÆbado, 30 de enero de 2010 18:16:19 p p p Composite 133 lpi at 45 degrees Fe3+ ions depends on the nature of the adjacent octahedral cation (divalent or trivalent). According to Timofeeva et al. (Timofeeva et al. 2005), the iron found in the form of aggre- gates in the surface is related with signals in the region com- prised between g = 2.3-2.6. Alternatively, different contributions to the wide signal located around g = 2.1 are related with FexOy or FeOOH species (Chung et al. 2004). In the case of the smectite minerals the signal at g = 4.3 is assigned to the presence of isolated Fe3+ in tetrahedral or octahedral coordination, which corresponds to the iron lo- cated in the interior of the clay sheets (iron substituting alu- minum in the octahedral layers). On the other hand, the signal at g = 2.0 is associated to the presence of clusters of iron (iron extra-red species) (Carriazo et al. 2005). 114 A. CAMPOS, S. MORENO, R. MOLINA a b a Figure 4. EPR spectra of Colombian vermiculite at 100 K. (a) Natural mineral, (b) natural mineral after mild acid treatment. ENERO 30-GEOCIENCIAS-VOL 13-2 2009.prn D:\GEOCIENCIAS 13-2 DIC 2009\GEOCIENCIAS-VOL 13-2 2009.vp sÆbado, 30 de enero de 2010 18:16:20 p p p Composite 133 lpi at 45 degrees As observed in Figure 4a, several signals point to the presence of iron extra-red species on the surface of the clay V. For this reason, the clay was submitted to a soft acid wash to remove impurities from its surface. In Figure 4b, the ab- sence of signals between g = 2.3-2.6 indicates that these spe- cies had been removed. Likewise, signals of Mn2+ ions located in the region at g = 2, and g = 1.9 (Figure 4a), and the multiple signal re- corded is interpreted in terms of the interaction between structural ions Mn2+ and Fe3+ and other environments (Kessissoglou 1999). After acid wash Mn2+ signals remain invariable which suggest structural positions for this cation. Respect to aluminum, in order to evaluate the structural environment as well as the AL(IV)/AL(VI) ratio to compare with the ratio estimated in the structural formula, 27Al MAS-NMR spectra was made. The spectrum is shown in Fig- ure 5, in which an intense signal at 60 ppm is observed (with two sidebands at -60 and 190 ppm). This signal is associated with Al(IV) substituting the silica in the tetrahedral sheets (Klinowski 1999). A second signal corresponding to Al(IV) at 0 ppm (Klinowski 1999) was observed. The intensity ratio Al (IV)/ Al (VI) was 10.4. 3.6 Correlation of Results Weaver (Weaver 1958) suggested that vermiculite derived from mica weathering has a high laminar charge and its 001 reflection decrease to 1.0 nm after potassium saturation, as happens in clay V (Table 4). In contrast, vermiculites gener- ated by the weathering of materials like amphiboles or vol- canic material exhibit a limited layer contraction with the same treatment. In fact, the laminar charge is a fundamental element in identification of 2:1 silicates. In fact, the AIPEA (Interna- tional Association for the Study of Clays) established that vermiculite is a phylosilicate 2:1 with a charge of 0.6 to 0.9 per unit cell (Guggenheim et al. 2006). In this sense, to de- termine the layer charge of V, it was performed with the structural formula, which was determined through XRF ele- mental analysis. In it formula can be deduced that the tetra- hedral sheet originate an excess negative charge of -0.9 e/ O10(OH)2, which is compensated by Ca 2+, Na+ and K+ cat- ions. As regards to the octahedral sheet, formed specially by Fe3+ and Mg2+ it carries a positive charge of 0.35, resulting in a total negative charge of 0.6 e- / O10(OH)2. In order to confirm the approach to the elemental organiza- tion and to evaluate the environment of the elements found in the structure, EPR and NMR provide very valuable information. Thus, by means of EPR spectroscopy, iron species on the natu- ral clay surface were detected, which can be easily removed through a soft acid wash (Figure 4b). In consequence, the chemical analysis by XRF to evaluate the structural formula was done in the mineral washed with soft acid because un- washed sample could overestimate the iron content. Regarding the NMR the Al (IV)/Al (VI) ratio (10.4) compared with the ratio estimated with the structural for- mula (8.9) is a satisfactory approach of vermiculite structure take into account that paramagnetic species such as iron can modify the tetrahedral/octahedral ratio (Gates et al. 1996). The total negative charge (Malla and Douglas 1987; Guggenheim et al. 2006) observed in the structural formula and the slight difference with the CEC as well as the XRD signals and the follow up of the basal reflection 001 after submitting the sample to different treatments (Thorez 1976; 115 CHARACTERIZATION OF VERMICULITE BY XRD AND SPECTROSCOPIC TECHNIQUES 2060140 Al IV * -140-100-60-20100180220 (ppm) Al VI * Figure 5. 27Al MAS-NMR spectra of the Colombian vermiculite. (*) Spinning sidebands. ENERO 30-GEOCIENCIAS-VOL 13-2 2009.prn D:\GEOCIENCIAS 13-2 DIC 2009\GEOCIENCIAS-VOL 13-2 2009.vp sÆbado, 30 de enero de 2010 18:16:20 p p p Composite 133 lpi at 45 degrees Wilson 1995; Moore and Reynolds 1997) indicate that min- eral V is trioctahedral vermiculite. The knowledge derived from the present work is very useful in further understanding, controlling and predicting the modifications that can be performed on this attractive natural mineral in order to obtain materials with technologi- cal impact such as catalyst and adsorbents (Campos et al. 2005; Cristiano et al. 2005; Campos et al. 2007; Campos and Gagea et al. 2008; Campos and Moreno et al. 2008, Hernández et al. 2007). 5. Conclusion Mineral clay from a deposit in the region of Santa Marta, Co- lombia has been characterized through different techniques. The correlation of results indicates that the mineral corre- sponds to trioctaheral vermiculite as result of the mica-bio- tite weathering process. The layer stacking, its high thermal stability, low superficial area and the magnitude of its nega- tive charge are characteristic of vermiculite. The details about the structure of this mineral are highly useful in the lat- ter pillaring process of these mineral to enhance their cata- lytic applications. Acknowledgements This research has been supported by Projects Code HERMES 9887 VRI-DIB-Universidad Nacional de Colom- bia. The authors wish to thank Professor Pierre Jacobs, di- rector of the Centrum voor Oppervlaktechemie en Katalyse at Katholieke University of Leuven for carrying out the NMR and EPR analysis. References Bensimon Y., Deroide B., Dijoux F., Martineau M. (2000). Nature and thermal stability of paramagnetic defects in natural clay: a study by electron spin resonance. Journal of Physics and Chemistry of Solids 61, 1623-1632. Brown B. (1961) The X-Ray identification and crystal struc- tures of clay minerals. Mineralogical Society; London. Campos A., Moreno S., Molina R. (2005). Acidez e hidroisomerización de heptano en una vermiculita colombiana modificada con aluminio. Revista Colombiana de Química. 34, 79-92. Campos A., Gagea B., Moreno S., Jacobs P., Molina R. (2007). Hydroisomerization of decane on Pt/Al,Ce-pil- lared vermiculites. Studies in Surface Science and Catalysis. 170, 1405-1409. Campos A., Gagea B., Moreno S., Jacobs P., Molina R. (2008). Decane hydroconversion with Al-Zr, Al-Hf, Al-Ce-pillared vermiculites. Applied Catalysis A. 345, 112-118. Campos A., Moreno S., Molina R. (2008). Relationship be- tween hydrothermal treatment parameters as a strategy to reduce layer charge in vermiculite, and its catalytic behavior. Catalysis Today. 133-135, 351-356. Carriazo J., Guélou E., Barrault J., Tatibouët J., Molina R., Moreno S., 2005. Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: Characterization and catalytic activity. Catalysis Today 107–108, 126–132. Chapman H. (1965). Cation exchange capacity. In: Black C, Evans D, White J, Ensminger L, Clark E, editors. Meth- ods of Soil Analysis (Agronomy 9), American Society of Agronomy. Chung H., Sang-Won C., Yong-Sik O., Jinho J. (2004). EPR characterization of the catalytic activity of clays for PCE removal by gamma-radiation induced by acid and thermal treatments. Chemosphere 57, 1383-1387. Cristiano D., Campos A., Molina R. (2005). Charge reduc- tion in a vermiculite by acid and hydrothermal methods: A comparative study. Journal of Physical Chemistry B 109, 19026-19033. del Rey-Pérez-Caballero F., Poncelet G. (2000). Microporous 18 Å Al-pillared vermiculites: preparation and characterization. Microporous and Mesoporous Materials. 37, 313-327. del Rey-Pérez-Caballero F., Sánchez M., Poncelet G. (2000). Hydroisomerization of octane on Pt/Al-pillared vermiculite, and comparison with zeolites. Studies in Surface Science and Catalysis. 130, 2417-2422. Dixon J., Weed S. (1989). Minerals in soil environments. Second edition. United States. Fagel N., Robert C., Preda M., Thorez J. (2001). Smectite composition as a tracer of deep circulation: the case of the Northern North Atlantic. Marine Geology. 172, 309-330. Gates W., Stucki J., Kirkpatrick R. (1996). Structural prop- erties of reduced Upton montmorillonite. Physics and Chemistry of Minerals 2, 535-541. 116 A. CAMPOS, S. MORENO, R. MOLINA ENERO 30-GEOCIENCIAS-VOL 13-2 2009.prn D:\GEOCIENCIAS 13-2 DIC 2009\GEOCIENCIAS-VOL 13-2 2009.vp sÆbado, 30 de enero de 2010 18:16:20 p p p Composite 133 lpi at 45 degrees Gordeeva L., Moroz E., Rudina N., Aristov Y. (2002). For- mation of porous vermiculite structure in the course of swelling. Russian Journal of Applied Chemistry. 75, 357-361. Guggenheim S., Adams J., Bain B., Bergaya F., Brigatti M., Drits V., Formoso M., Galán E., Kogure T., Stanjek H. (2006). Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the as- sociation international pour l’etude des argiles (AIPEA) nomenclature committee for 2006. Clays and Clay Min- erals. 54, 761-772. Hernández W., Centeno M., Odriozola J., Moreno S., Molina R. (2007). Acidity characterization of a titanium and sulfate modified vermiculite. Materials Reserach Bulletin. 43, 1630-1640. Kessissoglou D. (1999). Homo- and mixed-valence EPR -active trinuclear manganese complexes. Coordination Chemistry Review. 185, 837-858. Kishk F., Barshad I. (1969). The morphology of vermiculite clay particles as affected by their genesis. American Mineralogist. 54, 849-857. Klinowski J. (1999). Solid-state NMR studies of molecular sieve catalysts. Chemical Reviews. 91, 1459-1479. Laird D. (1999). Layer Charge Influences on the Hydration of Expandable 2:1 Phyllosilicates. Clays and Clay Min- erals. 47, 630-636. Malla P., Douglas L. (1987). Layer charge properties of smectites and vermiculites: tetrahedral vs. Octahedral. Soil Science Society of America Journal. 51, 1362-1366. MacEwan, D. and Wilson, M. (1980). Interlayer and interca- lation complexes of clay minerals. Pp. 197 248 in: Crystal Structures of Clay Minerals and Their X-ray Identification (G.W. Brindley and G. Brown, editors). Mineralogical Society, London. Mc Bride M., Pinnavaia T., Mortland M. (1975). Exchange Ion Positions in Smectite: Effects on Electron Spin Res- onance of Structural Iron. Clays and Clay Minerals. 23,162-164. Moreno S., Gutiérrez E., Alvarez A., Papayannakos N., Poncelet G. (1997). Al-pillared clays: from lab syn- theses to pilot scale production characterization and catalytic properties. Applied Catalysis A 165, 103-114. Moore D., Reynolds J. (1997) . X-ray diffraction and the identification and analysis of clay minerals. Second edi- tion. Oxford university press. Pérez L., Balek V., Potayo J., Pérez J., Subrt J., Bountsewa I., Beckman I., Málek Z. (2003). Study of natural and ion exchanged vermiculite by emanation thermal analy- sis, TG, DTA and XRD. Journal of Thermal Analysis and Calorimetry. 71, 715-726. Pérez-Rodriguez J., Potayo J., Jiménez de Haro M., Pérez-Maqueda L., Lerf A. (2004). Thermal decompo- sition of NH 4 � -vermiculite from Santa Olalla (Huelva, Spain) and its relation to the metal ion distribution in the octahedral sheet Physics and Chemistry of Minerals 31, 415-420. Schoonheydt R., Pinnavaia T., Lagaly G., Gangas N. (1999). Pillared clays and pillared layered solids. Pure Applied Chemistry. 71: 2367-2371. Slade P. (1976). Telleria M., Radoslovic W. The estructures of ornithine-vermiculite and 6-aminohexanoic acid-ver- miculite. Clays and Clay Minerals 24, 134-141. Suvorov D., Skurikhin V. (2003). Vermiculite: A promising material for high-temperature heat insulators. Refractories and Industrial Ceramics. 44, 186-193. Stefanis A., Tomlinson A. (2006). Towards designing pil- lared clays for catalysis. Catalysis Today 114, 126-141. Thorez J. (1976). Practical identification of clay minerals. G. Lelotte (Ed). Dison, Belgique. Timofeeva M., Khankhasaeva S., Badmaeva S., Chuvilin A., Burgina E., Ayupov A., Panchenko V., Kulikova A. (2005). Synthesis, characterization and catalytic appli- cation for wet oxidation of phenol of iron-containing clays. Applied Catalysis B. 59: 243-248. Tunega D., Lischka H. (2003). Effect of the Si/Al ordering on structural parameters ad the energetic stabilization of vermiculites- a theoretical study. Physics and Chemistry of Minerals 30, 517-522. Tus¡ar N., Zabukovec N.,Vlaic G., Arc¡on D., Daneu N., Kauc¡ic¡ V. (2005). Local environment of manganese incorporated in mesoporous MCM-41. Microporous and Mesoporous Materials. 82, 129-136. Weaver C. (1958). Effects of geologic significance of potas- sium “fixation” by expandable clay minerals derived from muscovite, biotite, chlorite and volcanic material. American Mineralogist. 43, 839-861. 117 CHARACTERIZATION OF VERMICULITE BY XRD AND SPECTROSCOPIC TECHNIQUES ENERO 30-GEOCIENCIAS-VOL 13-2 2009.prn D:\GEOCIENCIAS 13-2 DIC 2009\GEOCIENCIAS-VOL 13-2 2009.vp sÆbado, 30 de enero de 2010 18:16:20 p p p Composite 133 lpi at 45 degrees Wiewióra A., Perez-Rodriguez L., Perez-Maqueda L., Drapala J. (2003). Particle size distribution in sonicated high- ad low charge vermiculites. Applied Clay Science. 24, 51-58. Wilson M. (1969). Mineralogy: Spectroscopy and Chemi- cal Determinative Methods. Champan & Hall ed; Lon- don. 118 A. CAMPOS, S. MORENO, R. MOLINA ENERO 30-GEOCIENCIAS-VOL 13-2 2009.prn D:\GEOCIENCIAS 13-2 DIC 2009\GEOCIENCIAS-VOL 13-2 2009.vp sÆbado, 30 de enero de 2010 18:16:21 p p p Composite 133 lpi at 45 degrees