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Abstract—Intermittent and stochastic characteristics of wind 

energy sources cause many challenges for the existing power 

networks. One of these challenges is the violation of the energy 

balance constraint due to the high penetration of wind power. 

The use of Energy Storage Systems (ESSs) can facilitate the high 
penetration of wind power and mitigate the effect of its 

intermittency. Within this context, ESS incorporate the Dynamic 

Economic Emission Dispatch (DEED) problem. The problem is 

formulated as a multi-objective problem and the Strength Pareto 

Evolutionary Algorithm (SPEA) is used for its resolution. 

Simulations were carried out on a well-known ten-unit system 
and the results show the importance of using ESSs in reducing 

the total production cost of electricity and total emissions. 

Keywords-dynamic dispatch; wind energy; energy storage 

systems; evolutionary algorithm 

I. INTRODUCTION  

Due to the energy shortage and the increasing pressure to 
protect the environment, wind energy is gaining attention. 
Wind is considered a clean energy source and can mitigate the 
dependence on fossil fuels. However, the random 
characteristics of the wind speed result in volatility and 
uncertainty of the wind power output. Consequently, high 
penetration of wind power may cause a negative impact on the 
system stability and lead to the violation of the energy balance 
constraint [1]. In fact, once the wind power penetration 
becomes more than 5% of the total energy production, the 
power quality will be influenced by the uncertainty of the wind 
power [2]. Therefore, in wind-thermal systems, it is important 
to allocate perfectly the generation of all units including wind 
power in order to alleviate wind power curtailment. This 
problem is referred to as the power dispatch problem. Several 
research works have handled the optimal dispatch for the wind-
thermal systems. The resolutions of such problems have been 
based on quadratic programming, Genetic Algorithm (GA) [3], 
Particle Swarm Optimization (PSO) [4], simulated annealing 
[5], harmony search [6], firefly algorithm [7], chemical 
reaction optimization [8], etc. The uncertainty of the wind 

power output is handled with different manners, such as 
scenario method [9], forecast error method [10], stochastic 
programming [11], probability theory-based model [12], fuzzy 
logic [13], and chance constraint model [14]. For example, a 
chance constraint-based formulation for the dispatch problem 
was described in [15]. In [16], the intermittent nature of the 
wind power was described by evaluating its underestimation 
and overestimation costs and was then incorporated in the 
wind-based economic emission dispatch problem. 

The recent trend is directed towards the integration of ESSs 
into wind-thermal systems regarding the power dispatch 
problem. Recent studies [17, 18] have demonstrated that ESSs 
can decrease operational cost, improve the power system’s 
reliability, and mitigate the impact of wind power fluctuations. 
Battery energy storage sizing technique has been intensively 
discussed in [19]. The study explored the relationship between 
the size of centralized battery storage and operation cost of 
distributed generation in a microgrid using economic power 
dispatch. It explained how optimal capacity storage within a 
specified investment cost and predefined system constraints 
could provide a significant reduction in operation cost. The 
battery storage of the study has also created opportunities for 
the microgrid to trade energy in the electricity market during 
off-peak times, which increases the benefits of the dispatchable 
generating units. A technique based on back-propagation 
neural network and multi-objective PSO was proposed in [17] 
for optimum sitting and sizing of ESSs in hybrid wind-diesel 
power networks. In [18], an ESS was utilized in the DEED 
problem when intermittency and uncertainty of the wind power 
is described by a chance constraint. Authors in [20] used 
Markov chain to simulate PV and wind power and then applied 
the PSO algorithm to dispatch the thermal units and ESSs’ 
outputs. The DEED problem aims to find the optimum 
schedule of power generation in order to minimize 
simultaneously total production cost and emission of harmful 
gases. The focus of this paper is to solve the DEED problem 
incorporating wind farms and ESSs. The main contributions of 
this study are:  
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• The problem is represented as a multi-objective problem 
and the SPEA is used to provide the best solutions. Total 
fuel cost and total emission functions are minimized 
simultaneously.  

• To address the uncertainty of the wind power output, the 
energy balance is converted into a stochastic constraint.  

• The effectiveness of the proposed method is verified on a 
ten-unit system and through comparison with other 
published optimization techniques. The simulation results 
show that the incorporation of wind power and ESSs into 
the DEED problem may decrease cost and emissions. 

II. MATHEMATICAL MODELING OF THE PROBLEM 

A. Modeling of the Wind Power for the Dispatch Problem 

The uncertainty of the wind power is modeled by a chance 
constraint and a Probability Distribution Function (PDF) is 
used to describe the stochastic nature of the wind speed. The 
Weibull PDF given in (1) is proposed to describe the wind 
speed distribution. The corresponding Cumulative Distribution 
Function (CDF) is given in (2). 
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where, v is the wind speed. Parameters k and c are the shape 
and scale factors. These parameters depend on the geographical 
location of the wind source. Several techniques such as least 
squares fit method and method of moments have been 
suggested to estimate the values of k and c [15].  

The probability to have wind power equal to or less than w 

is given in (3) [18], where, 
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B. Objective Functions and Constraints 

The DEED problem is formulated as an optimization 
problem, where the objective functions to be minimized are the 

total fuel cost FT and the total emission ET. These functions 
are [21]: 
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where ai, bi, ci, di, and ei are cost coefficients and αi , βi , γi , ηi ,  
and λi are emission coefficients. 

The previous objective functions are optimized under the 
following constraints: 

1) Generation Limits 
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(6) 
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2) Ramp Rate Limits 
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where down
iU  and up

iU  are the prohibited operating zones of 

unit i. 

3) Constraints Related to the ESS 

The Constraints of the ESS are described below. Equation 
(10) states the energy conversion. Equations (11), (12) and 
correspond to the limits of charging and discharging powers of 
the ESS and its storage capacity respectively.  
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where [ ]0,1sck ∈  and [ ]0,1sdk ∈ . 

4) Energy Balance Constraint 

When wind power and ESSs are integrated into the DEED 
problem, the energy balance constraint can be described by a 
chance constraint in order to take into account the wind power 
intermittency. This constraint can be written as: 
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where hloss  is the total losses at hour h. It may be calculated 

using B-loss formula as given in (16): 
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where Bij, Boi and Boo are the loss-coefficient matrices. 

III. PROPOSED ALGORITHM: SPEA APPROACH 

SPEA [21] is an elitist multi-objective evolutionary 
algorithm. A brief description of the SPEA is given in this 
section. For more detailed explanation, the interested reader 
can be referred to [21]. The main steps of an iteration of SPEA 
are: 

• Step 1: Generate the initial population 0P  with Npop 

individuals, set the external archive 0P′ = ∅  and t=0. 

• Step 2: Extract the Pareto solutions from tP  referred as 

PARETO(Pt). 

• Step 3: Set ( )t t tP P PARETO P′ ′= ∪ .  

• Step 4: Set ( )t tP PARETO P′ ′= . 

• Step 5: If ( )tsize P N′ ′> , reduce tP′  with the clustering 
method. 

• Step 6: Assign the strength Pareto of each individual i from 

tP′  defined as given in (17), where in  is the number of 

solutions from tP  that are dominated by or are equal to the 

individual i.  
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• Step 7: Assign the fitness jf of each solution Xj from the 

current population Pt as given in the flowing equation: 

1j ii j
f S= +∑

≺     
(18) 

• Step 8: Combine the current population Pt and the external 
archive tP′ . Then, use selection, crossover, and mutation 

operations to generate the new population 1tP+ . 

• Step 9: Set t=t+1. 

• Step 10: If maxt t<  return to step 2. Else the archived 

members are the Pareto optimal solutions. 

IV. SIMULATION RESULTS 

A. Presentation of the Ten-unit System 

In this section, the ten-unit system is used to prove the 
feasibility of the proposed optimization method for solving the 
DEED problem. All cited operating constraints are considered. 
The B-loss matrix of the ten-unit system is given in (19). Both 
cost and emissions are optimized individually and 
simultaneously according to the variation of the power 

demand ,D hP
 
in MW over a time period of one day, 

subdivided into 24 time intervals of one hour. Unit data are 

taken from [18]. Wind source and ESS parameters are as given 
in [18]. 
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B. Implementation of the Proposed Method 

Two cases for the ten-unit system are considered in this 
sub-section. Case 1: only thermal units are considered and case 
2: with WP and ESSs. Figure 1 shows the convergence of total 
cost and emissions for case 1, by using the proposed algorithm 
and the Non-dominated Sorting Genetic Algorithm (NSGA). 
Convergence is obtained after 100 iterations. Figure 2 shows 
the Pareto solutions of the static EED problem where the power 
demand equals to 1700MW. From Figures 1 and 2 it is clear 
that the proposed method provides better solutions when 
compared to the NSGA. 
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Fig. 1.  Convergence of the objective functions: (a) cost, (b) emissions 

Optimum compromise solutions under these two cases are 
shown in Tables II and III respectively. In this study, 
compromise solutions were obtained using fuzzy theory [23]. It 
is clear from these two Tables that all constraints were taken 
into account. In addition, the total production cost and the total 
emission are decreased when the wind energy source and the 
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ESS are incorporated in the problem. The total production cost 
and the total emissions are 2530173.68$ and 315022.47ton 
respectively for the first case and 2357551.22$ and 
266882.90ton respectively for the second case. The effect of 
the use of wind source and ESS is shown in Figure 3. It is clear 
that minimum production cost and minimum emissions are 
clearly reduced when wind power and ESSs are used. 

 

Fig. 2.  Pareto solutions for PD=1700MW 

TABLE I.  COMPARISON WITH OTHER TECHNIQUES FOR CASE 1 

Method Minimum Cost Minimum emissions 

SPEA 2474311.14 295120.82 

NSGAII 2.5168x106 3.1740x105 

IBFA 2481733.3 295833.0 

 
It is clear from Table I that SPEA outperforms NSGAII 

[24] and IBFA [25] for both minimum cost and minimum 
emissions. 
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Fig. 3.  Variation of minimum cost and emission over a single day 

TABLE II.  BEST COMPROMISE SOLUTION FOR CASE 1 

Hour PD,h P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

1 1036 151.87 135.00 93.95 68.72 126.84 132.97 102.84 120.00 80.00 43.58 

2 1110 150.81 135.00 80.55 118.72 170.82 144.07 116.73 90.00 71.01 54.74 

3 1258 154.10 135.00 141.16 138.64 181.96 151.59 130.00 120.00 79.10 55.00 

4 1406 159.01 215.00 174.99 122.99 231.96 160.00 130.00 113.47 80.00 55.00 

5 1480 171.29 221.75 188.90 172.99 231.97 157.95 128.43 115.54 78.32 53.17 

6 1628 217.44 223.49 262.22 192.82 243.00 160.00 123.34 120.00 80.00 55.00 

7 1702 249.44 244.87 271.04 226.46 225.95 160.00 130.00 120.00 80.00 48.65 

8 1776 229.28 265.74 281.88 276.46 243.00 159.17 128.73 118.25 79.37 53.30 

9 1924 248.81 345.74 312.37 300.00 243.00 160.00 130.00 120.00  80.00  55.00 

10 2022 303.44 404.20 340.00 300.00 237.47 153.90 130.00 116.79 75.22 41.20 

11 2106 371.77 415.27 340.00 300.00 243.00 139.45 130.00 120.00 80.00 55.00 

12 2150 344.53 470.00 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 

13 2072 368.93 390.00 340.00 300.00 243.00 160.00 130.00 120.00 80.00 25.00 

14 1924 298.98 312.96 299.65 300.00 242.05 159.68 128.90 117.93 80.00 55.00 

15 1776 224.60 241.71 295.30 300.00 243.00 159.28 130.00 109.59 78.67 52.78 

16 1554 161.81 161.71 265.52 250.00 238.72 160.00 130.00 120.00 55.00 55.00 

17 1480 161.2867 165.25 190.72 242.21 242.21 160.00 128.15 120.00 55.00 54.83 

18 1628 198.24 155.05 270.72 292.21 243.00 160.00 130.00 120.00 55.00 52.24 

19 1776 272.35 235.05 283.41 299.61 235.61 160.00 130.00 116.50 53.27 49.63 

20 1972 346.63 315.05 307.59 300.00 243.00 160.00 130.00 120.00 70.28 55.00 

21 1924 305.13 308.83 327.88 300.00 230.08 159.72 109.96 119.88 78.89 55.00 

22 1628 227.10 228.83 247.88 250.00 243.00 160.00 96.77 120.00 48.89 55.00 

23 1332 153.70 148.83 171.15 200.00 193.00 119.83 126.77 120.00 78.89 51.95 

24 1184 154.35 135.00 106.67 118.72 163.66 152.62 130.00 119.97 75.46 52.98 

Total cost ($) 2530173.68 

Total emission (ton) 315022.47 

Total losses (MW) 1302.82 
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TABLE III.  BEST COMPROMISE SOLUTION FOR CASE 2 

Hour PD,h P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

1 1036 150.00 135.00 73.00 146.30 128.40 71.58 20.00 47.00 80.00 55.00 

2 1110 151.76 135.00 73.00 106.41 114.04 118.85 50.00 77.00 80.00 55.00 

3 1258 150.00 135.00 153.00 151.77 127.58 151.19 74.11 102.39 50.00 54.29 

4 1406 153.20 135.00 181.5 160.99 177.58 160.00 104.11 120.00 80.00 55.00 

5 1480 150.00 165.28 170.80 158.21 225.60 136.77 126.35 119.39 78.24 53.41 

6 1628 170.39 245.28 250.80 208.21 175.60 160.00 130.00 89.39 80.00 55.00 

7 1702 231.92 165.28 284.85 224.68 205.50 160.00 130.00 119.39 60.97 42.45 

8 1776 205.52 210.35 299.50 234.68 241.21 159.58 118.97 110.94 80.00 54.01 

9 1924 248.74 290.35 278.77 284.68 243.00 160.00 130.00 120.00 80.00 34.62 

10 2022 269.46 308.25 340.00 300.00 218.83 152.63 130.00 120.00 80.00 55.00 

11 2106 327.73 388.25 340.00 253.67 239.77 156.49 130.00 114.17 71.40 50.83 

12 2150 354.75 436.84 340.00 283.32 189.77 160.00 128.74 104.06 73.25 46.40 

13 2072 428.66 356.84 313.83 233.32 239.77 146.08 113.72 115.90 45.15 37.55 

14 1924 361.14 276.84 233.83 283.32 243.00 124.18 130.00 119.65 75.15 55.00 

15 1776 283.53 220.45 154.90 260.62 242.65 159.91 129.79 119.25 79.76 54.80 

16 1554 212.65 155.59 158.25 218.29 243.00 160.00 130.00 96.80 49.76 55.00 

17 1480 150.00 185.98 172.47 168.29 243.00 133.65 117.49 120.00 55.00 55.00 

18 1628 230.00 215.08 246.21 218.29 243.00 160.00 105.13 90.00 25.00 26.69 

19 1776 206.54 295.08 294.86 168.29 243.00 144.32 130.00 120.00 55.00 55.00 

20 1972 277.98 365.02 336.86 209.69 242.92 156.01 130.00 119.48 51.09 52.15 

21 1924 239.14 314.48 301.78 225.77 239.65 155.98 129.80 120.00 79.85 53.83 

22 1628 163.96 235.28 221.78 181.93 218.23 160.00 129.13 107.88 78.15 52.49 

23 1332 150.00 155.28 144.70 131.93 178.00 126.78 130.00 120.00 80.00 27.41 

24 1184 150.00 135.00 156.48 81.93 176.16 76.78 100.00 118.95 58.37 55.00 

Total cost ($) 2357551.22 

Total emission (ton) 266882.90 

Total wind energy (MWh) 1190.94 

Total ESS energy (MWh) 185.05 

Total losses (MW) 1133.02 

 

V. CONCLUSION 

During the last decades, the high penetration of wind 
energy has created difficulties in energy dispatching due to the 
stochastic availability of wind power. Thus it is required to 
handle these random characteristics of energy sources. In this 
study, a method based on the SPEA technique is proposed for 
solving the DEED problem incorporating wind power. In order 
to avoid the overestimation penalty and underestimation costs, 
the wind power output is described by a chance constraint. 
Moreover, ESSs are added to the power network to increase the 
penetration of the wind energy. The effectiveness of the 
proposed method is verified on a ten-unit system. Simulation 
results show that the incorporation of ESS into the DEED 
problem can decrease clearly cost and emissions. 
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NOMENCLATURE 

( )Vf •  Probability density function (PDF) 

( )VF •  Cumulative distribution function (CDF) 

v Wind speed in m/s 

ζ Threshold tolerance 

FT Total fuel cost in $. 

ET Total emission in tons 

Pi,h Output power of unit i at hour h 

Pi
, Pi  Lower and upper generation limits of unit i 

Ν Number of thermal units 

Wh Wind power output at hour h in MW 

Es,h Stored energy of the ESS at hour h 

Psc,h Charging power at hour h in MW 

Psd,h Discharging power at hour h in MW 

ηc and ηsd ESS charging and discharging efficiency, respectively 

CHs,h and DCs,h Charging and discharging status at hour h 

E
cap
 ESS capacity in MWh 

lossh Total losses at hour h 

PD,h Demand power at hour h 
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