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Abstract-Privacy and data analytics are two conflicting domains 

that have gained interest due to the advancements of technology 
in the big data era. Organizations in sectors such as finance, 

healthcare, and e-commerce take advantage of the data collected, 

to help them enable innovative decision making and analysis. 

What is sidelined is the fact that the collected data have 

associated private data of the individuals involved, and may be 

exploited and used for unjustified purposes. Defending privacy 

and performing useful analytics are two sides of the same coin, 

and hence achieving a good balance between these is a 

challenging scenario. This paper proposes an optimized 

differentially private deep learning mechanism that enhances the 

trade-off between the conflicting objectives of privacy, accuracy, 

and performance. The goal of this paper is to provide an optimal 

solution that gives a quantifiable trade-off between these 
contradictory objectives. 
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I. INTRODUCTION  

Nowadays, privacy is a tough bargain. With the onset of 
digitization, online activities are on the rise and so is the 
increase in the risk of private information disclosure. Online 
services like shopping, trading, banking, and entertainment are 
sources of data collection that include sensitive information of 
the people involved. While not all these services target at the 
exploitation of personal information, certain applications use 
them to their benefit. For instance, online browsing information 
of people is utilized for providing personalized 
recommendations as a part of the marketing strategy. In 
healthcare, sensitive information such as disease conditions are 
used for research and analysis which in turn may be helpful for 
diagnostic research. Such usage scenarios can be extended to 
many fields. To safeguard privacy, data transformation 
methods are employed, which protect sensitive information, 
while still enabling useful analytics. This is easier said than 
done, since privacy defense and effective analysis conflict each 

other. Given the size of big data, the challenge becomes even 
bigger, rendering it a multi-objective perspective. A privacy 
preserving analytic system should be able to balance the 
multiple criteria of privacy-utility-performance. Numerous 
privacy mechanisms have been proposed that manage privacy 
preserving analytics for big data. They revolve around privacy 
algorithms namely k-anonymity [1] and its variants of k-
anonymity and l-diversity [2]. K-anonymity methods apply 
data transformation techniques that make the data 
unidentifiable. In approaches based on k-anonymity, k 
determines the degree of anonymity and hence the choice of k 
is an important decision. Optimizing k can pave the way for 
better privacy, but at the cost of degradation in data utility. 
Moreover, optimization approaches have the added limitation 
of performance overhead. 

With anonymization, a compromise solution is acceptable, 
provided preference is given to one of the objectives and this is 
attributed to the practical setting of the application. More 
recently, there has been a growing interest in the mathematical 
foundation provided by the privacy algorithm called 
differential privacy [3]. The core algorithm is specifically ε-
differential privacy, after which relaxed variants have been 
proposed [4]. Companies such as Google [5] and Apple [5] 
have used the algorithm for protecting the privacy of their 
customers, thereby ensuring that they see only a transformed 
form of the original data. The basic notion of the algorithm is 
to protect private information of a user, irrespective of the 
user’s participation or non-participation in data analysis. While 
the algorithm has been strongly recommended for privacy 
protection [5], only an equally stronger learning mechanism 
can provide worthwhile analytical results.  

II. PAPER CONTRIBUTION 

Deep learning [6] with differential privacy is a recently 
emergent domain that has many research applications in the 
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field of privacy preserving analysis. Specifically, the most 
likely developments in the domain may be: 

• Optimizing epsilon for trade-off benefit. 

• Developing an efficient learning technique to balance trade-
off. 

• Extending trade-off beyond privacy and quality of data 
analysis.  

The core idea of the current paper is based on bridging the 
afore-mentioned research gap in differentially private learning. 
This paper is targeted at the second and third of the above 
cases. The main contributions of the paper are: 

• Firstly, given the strong mathematical background of 
differential privacy, an optimized deep learning architecture 
is developed that enhances the efficiency of differentially 
private learning through effective hyperparameter 
optimization.  

• Secondly, an attempt is made to consider privacy 
preserving analytics from the performance perspective and 
the triple trade-off between privacy, utility and performance 
is enhanced in comparison to the existing techniques. 

• Thirdly, a single optimum solution for the problem is 
identified by adapting a prototypical decision-making 
strategy which is challenging in any multi-objective 
problem scenario. 

III. BACKGROUND 

Differential privacy [3, 7] is a notable algorithm used in the 
field of privacy preserving analysis. It was proposed in 2006 
[3] and has been proven to provide strong mathematical 
guarantees for efficiently quantifying privacy. The key element 
behind the working of the algorithm is that the analysis of any 
dataset is not affected by the participation or non-participation 
of an individual. Alternately, it conveys the theory that 
information about any individual learnt from the data, remains 
effectively the same before and after analysis. Mathematically 
defining, the algorithm works by adding noise to data. The 
addition of random noise distorts data, thereby biasing the 
outcome of the analysis and preserving privacy. It is based on 
the probabilistic theory and promises that sensitive information 
of individuals in data is not affected by its use in any type of 
study. The most popular use of the algorithm is ε-differential 
privacy [3] in which epsilon (ε) defines a bound on the privacy 
loss. It can be used to formally quantify privacy loss and is 
used as the basis for effective analytics. 

• Definition  

A randomized algorithm A gives ε-differential privacy if for 
all data sets D′ and D′′ that have a difference of one instance, 
and for any S⊆ Range (A), (1) stands [3]: 

������	
∈�


������		�∈��
� ����    (1) 

In (1), the datasets D′ and D′′ follow the constraint  
||D′ - D′′|| � 1 and epsilon is a positive real number, which 
quantifies privacy loss with change in data. 

IV. MATHEMATICAL PROBLEM FORMULATION 

The mathematical problem formulation is conceived as a 
multi-objective optimization problem and will be alternately 
referred to as multi-attribute or multi-criteria problem in the 
rest of this paper. 

A. Mathematical Modeling of the Proposed Model 

Consider M as the vector space of decision variables. Let 
P(m) and U(m) represent the objective functions to be 
maximized. Mathematically, the problem can be formulated as: 

max�.�.�∈�� �!�, #�!�$    (2) 

where P(m) and U(m) represent the privacy and utility of the 
system respectively. In the context of differential privacy, the 
problem is re-defined as: 

argmax'()*+�+'(�!,-., /00$    (3) 

where, !,-. 1
������	
∈�


������		�∈��
� ����    (4) 

/00�-,, 0� 1 2

34
∗ 100    (5) 

where Ni is the overall number of instances and c is the number 
of correctly classified instances. 

B. Pareto-Optimality 

When resolving a multi-attribute optimization problem, a 
solution that simultaneously achieves all objectives is not 
possible, since maximizing/minimizing one objective degrades 
the other. Consider a set of solutions 8 1 �9'::::;, 9<::::;, 9=::::;, … … 9?::::;$	to 
a multi-attribute problem. A solution 9'::::; 	∈ @  is said to be 
better than another solution 9<::::; 	 ∈ @ if it satisfies the following 
condition: 

A4�9'::::;� B A4�9<::::;�∀, ∈ �1,2,3… �$    (6) 

 

 
Fig. 1.  Visualization of the Pareto-optimal front. 

Such a set S is called a Pareto-optimal set [8], in which all 
solutions are possible candidates for becoming an optimal 
solution, but one cannot dominate the other, without degrading 
one of the objectives involved. Pareto-optimality is a common 
occurrence in multi-objective optimization problems. Figure 2 
shows the general occurrence of Pareto-optimality in a two-
dimensional Euclidean space. 
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V. DESIGN METHODOLOGY 

This section describes the scheme of the proposed system. 
A differential privacy-based optimized deep learning neural 
network architecture for implementing privacy preserving 
learning is suggested. This approach addresses the twin 
challenges of privacy loss and efficiency of the learning 
technique. Deep learning frameworks for differential privacy 
are gaining importance for privacy preserving analytics. An 
appropriate blend of these techniques will be able to provide 
robust solutions for the problem of privacy preserving learning, 
primarily due to two reasons. Firstly, differential privacy is an 
algorithm that can provide strict data privacy guarantee. Thus, 
analysis on private data must incorporate complex learning 
architectures whose outcome can quantitatively substantiate 
data privacy guarantee. Hence this methodology develops a 
Bayesian optimized deep neural network architecture for 
private learning with accounting of epsilon that determines the 
privacy assurance offered by the model.  

A. Overview of System Architecture 

A deep neural network is trained on differentially private 
data, and the intended learning task is classification analysis. 
The model topology initiates with an embedding layer to 
handle the categorical parameters of the input data. The 
transformed input is reshaped, and layers are concatenated 
before passing to the dense layer. The topology then alternates 
between dense and normalization layers. Each dense layer has 
1000 units. Batch normalization is carried out to stabilize the 
output structure. This architecture is considered as the standard 
learner. In the standard learner, these neural net parameters are 
chosen arbitrarily and they are fixed as the reference model 
against which the optimized variant will be compared. Since 
these parameters determine the strength of the learning process, 
a good combination of the parameters provides significant 
performance improvement. Specifically, in deep learning 
parlance, these parameters are known as hyperparameters [7]. 
Hyperparameter values have a deciding role in the learning 
process. Selecting optimal values for the hyperparameters is 
called hyperparameter optimization [7, 9]. Fine-tuning of the 
hyperparameters of the model can allow the privacy-utility-

performance trade-off in a quantitatively principled fashion. In 
this work, the proposed architecture with tuned 
hyperparameters is referred to as DPBODL (Differentially 
Private Bayesian Optimized Deep Learner). The design of the 
system is shown in Figure 3.  

B. Hyperparameter Optimization 

Methods such as Grid Search and Random Search [7], 
search the entire space of available parameters to arrive at 
optimal values. These methods are costly and training a model 
using them is challenging. The use of genetic algorithms [10] 
for efficient optimization has also been reported. Bayesian 
optimization [7] reduces the time required for the parameter 
search which in turn limits the model training time, because 
only a selected set of parameters are chosen for a subsequent 
iteration, resulting in a search space which has the local 
optimal values from the previous evaluations. In this way, the 
method can efficiently select the global optimal 
hyperparameter set when the search terminates.  

 
Fig. 2.  DPBODL-design. 

Although the hyperparameterized approach for non-private 
models has been used [11, 12], experimenting its efficiency for 
private deep learning models has far-reaching research 
possibilities. The proposed DPBODL exploits this possibility. 

C. Steps for Optimizing the Deep Learner 

Let Hq be the initial hyperparameter search space and Acc 

the classification accuracy. Let F���33 �G, HI
 be the objective 

function of the Differentially Private Deep Neural Network 
(DPDNN) with X as the input space. 

• Step 1: 

Initialize the search space with default hyperparameters to 
be tuned. They are chosen randomly at stage one of the 
iteration. The search space consists of the hyperparameter set : 
Hq = {learning rate, number of iterations, batch size, number of 
dense layers, number of dense nodes, number of input nodes, 
decay function}. 

• Step 2: 

If function values follow a Gaussian distribution, the 
optimization function is defined as: 

J00 1 F���33�G, HI
    (7) 

HKL� 1 argmaxMNF���33	�G, HI
O    (8) 

• Step 3: 

Calculate the maximum a posteriori hypothesis of the set of 

hyperparameters  �J00|HKL�
 . The optimizer selects the 

hyperparameters that maximize the accuracy of the deep 
learner. 

VI. EXPERIMENTAL SETUP  

The deep learning model is trained and hyperparametrized 
using Tensorflow core 2.0 [13]. For the purpose of 
experimental evaluation, two different types of tabular data 
varying in size and dimension have been selected. The adult 
and diabetes datasets adapted from the UCI data repository [14] 
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are used. Adult data are chosen since they are the de-facto 
benchmark for privacy related studies. The dataset provides 14 
inputs that are a combination of categorical, numerical, and 
ordinal types. The target variable requires classification of data 
into two salaried classes, those belonging to "less than 50k" 
group and another belonging to the "greater than 50k" group. 
Diabetes dataset has 20 attributes containing categorical and 
numerical data with around 200,000 instances with presence 
/absence of disease condition as the target. For both the 
datasets, the optimization ranges of the different 
hyperparameters considered are shown in Table I. 

TABLE I.  FINE-TUNED HYPERPARAMETERS 

Tuned hyperparameters Range of values 

Learning rate <1e-4 ,1e-1> 

Batch size <1,28> 

Number of dense layers <1,5> 

Number of dense nodes <1,28> 

No of input nodes <1,512> 

Decay function adam decay 

Activation function <relu,sigmoid> 

 

VII. EVALUATION  

In this section, the performance of DPBODL is compared 
with the standard deep learner's. Epsilon, accuracy, and 
execution time were noted for both learners. The tabulation 
(Table II and Table III) shows the values of epsilon, accuracy, 
and execution time for adult and diabetes datasets respectively. 
The graphs in Figures 3 and 4 show the comparison of results 
between the standard learner and DPBODL for the two 
datasets. Maximizing the privacy and the utility of the analysis 
in the current context involves minimizing epsilon and 
maximizing the classification accuracy. The standard learner’s 
performance for the two datasets is shown in Figure 3. Epsilon 
degrades with increasing accuracy and execution time ranges 
up to 600s. The DPBODL’s performance is shown in Figure 4. 
The DPBODL achieves enhanced trade-off in comparison with 
the standard learner with reference to epsilon and accuracy. 
While DPBODL gives epsilon values ranging between <0.78, 
5.34> for adult and <0.87, 8.34> for diabetes, it is apparent that 
the standard model’s learning initiates with larger values for 
epsilon in the range <5, 11>. Similarly, the enhanced learning 
speed of the optimized learner is due to the optimization of the 
number of epochs for the training of the model. It can be 
observed that, on average, 3-6 epochs are required to give an 

accuracy of approximately 80% .On the other hand, the 
standard learner requires at least 10 epochs to give a starting 
accuracy of 80%. Essentially, DPBODL’s enhanced 
performance is attributed to efficient hyperparameter 
optimization. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 3.  Privacy-utility performance analysis-standard learner. 

TABLE II.  TRADE-OFF RESULTS-STANDARD LEARNER 

Epochs 

Adult data Diabetes data 

Epsilon 
Classification 

accuracy 

Execution time 

(s) 
Epsilon 

Classification 

accuracy 

Execution time 

(s) 

10 5.68 0.81 61.2 4.36 0.76 65.2 

30 6.23 0.82 102.3 5.11 0.772 112.3 

50 6.59 0.83 150.3 6.78 0.778 167.3 

70 7.21 0.87 253.25 6.923 0.79 292.33 

90 7.86 0.87 310.32 7.23 0.81 320.32 

110 8.3 0.8723 340.89 7.89 0.822 348.77 

130 10.21 0.8756 412.12 8.23 0.83 467.82 

150 11.19 0.879 490.11 8.45 0.842 590.71 

170 11.56 0.8792 509.12 9.23 0.84 599.42 
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TABLE III.  TRADE-OFF RESULTS-DPBODL 

Epochs 

Adult data Diabetes data 

Epsilon 
Classification 

accuracy 

Execution time 

(s) 
Epsilon 

Classification 

accuracy 

Execution time 

(s) 

1 0.783 0.84 3.2 0.87 0.82 4.8 

2 0.891 0.84 4.89 0.899 0.84 5.89 

3 0.923 0.842 6.312 0.91 0.83 7.314 

4 1.02 0.853 7.89 1.56 0.843 9.89 

5 1.15 0.86 8.21 3.78 0.87 10.26 

6 2.25 0.87 8.29 5.25 0.88 12.29 

7 3.523 0.892 9.35 6.23 0.881 13.37 

8 4.563 0.89 9.783 7.563 0.892 14.78 

9 5.34 0.89 10.56 8.34 0.897 15.723 
 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 4.  Privacy-utility performance analysis- DPBODL. 

VIII. COMPARATIVE ANALYSIS 

This section compares the proposed DPBODL mechanism 
with the state-of-the-art techniques for privacy preserving 
analytics. For the purpose of comparative analysis, three 
different techniques have been chosen, namely Bayesian 
Optimized Diff Private Pareto (BO-Dpareto)[9], Privacy 
Preserving Deep Learning (PPDL)[10], and Linear Regression-

Diff Private Convex Optimization (LR-DPCO) [15]. Both 
PPDL and BO-Dparteo have been chosen for the comparative 
study for two reasons. Primarily, these approaches use deep 
learning for privacy preserving learning. Secondly, tabular data 
for analysis are used, in comparison to many other approaches, 
which predominantly use image data. LR-DPCO uses shallow 
learning [16], but the algorithm’s results are equivalent to many 
deep learning approaches and including them here ensures a 
fair comparison. The graph in Figure 5 shows the comparative 
performance between the present prevailing techniques and 
DPBODL. PPDL is able to minimize epsilon, but at the cost of 
decline in classification accuracy. For epsilon values in the 
range <10

-2
, 10

-1
>, PPDL achieves about 63% classification 

accuracy. As epsilon is compromised (larger values of epsilon), 
accuracy improves. BO-Dpareto and LR-DPCO have 
classification accuracies of 75-80% for epsilon range  
<10

-2
, 10>. Minimizing privacy as low as 10

-2
 in the existing 

techniques causes a corresponding reduction in the accuracy of 
the analysis. Therefore, when considering the epsilon-accuracy 
compromise, DPBODL approach balances it efficiently, 
without severely affecting analysis accuracy, and hence is 
achievable in a practical scenario. It can be argued that the 
technique gives a fair compromise between the two objectives. 
Lower epsilon ranges give accuracy of about 80% for both 
datasets, and it can be noticed that analysis accuracy stabilizes 
thereafter. For values of epsilon greater than 1, a higher 
accuracy (85-90%) is achieved with DPBODL, whereas the 
known state-of-the-art approaches achieve an average accuracy 
of only 85%. Hence the hyperparameter optimization of the 
deep learner has resulted in achieving a good balance between 
privacy and utility. 

 

 
Fig. 5.  Comparative analysis. 
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As far as computational efficiency is concerned a straight 
comparison between DPBODL and the afore-mentioned 
algorithms is unreasonable, since they differ by factors such as 
data size, dimension, and dynamics. Hence its computational 
efficiency is compared with the standard deep learner. 
DPBODL performs well in comparison to the standard learner 
as shown in Figure 6. The comparison shows that the number 
of epochs required to train a standard learner is much higher 
than its optimized variant. So, it can be perceived from the 
comparative analysis that the proposed approach has been able 
to provide a reasonable performance trade-off.  

 

 

Fig. 6.  Performance comparison. 

The next section discusses the achieved privacy-utility 
trade-off in detail by considering the Pareto-front generated by 
the approach and the extent to which the approach generates 
optimal solutions. 

IX. STATISTICAL ESTIMATION OF OPTIMAL PRIVACY-
UTILITY TRADE-OFF 

This section makes a statistical assessment of DPBODL's 
results and computes an optimal privacy-utility trade-off. While 
selecting an optimal solution, the execution efficiency of the 
model is considered independent from these primary objectives, 
but the model does not overlook computational efficiency in 
the process of identifying a compromising solution. From the 
objective space consisting of a set of optimal solutions, as 
shown by the Pareto-front in Figure 7, an optimal solution is 
identified. The statistical analysis is carried out for the adult 
dataset. The utopian method [8] is employed to determine this 
optimum point. It is a decision-making strategy, which 
involves determining the near optimal <epsilon, accuracy> pair 
by comparing all data points to the ideal point called utopian 
point. 

Let the conflicting objective functions in the current setting 
be defined as P(m) and U(m) (defined in Section IV) .While 
P(m) determines privacy measured by epsilon, U(m) indicates 
the utility measured by the accuracy of classification analysis. 
The objective is to maximize both privacy and utility. 
Maximizing privacy in the context of differential privacy 
involves achieving smaller values of epsilon, while maximizing 
accuracy of analysis. The objective space is shown as a scatter 
plot in Figure 7. The plane shows the relationship between data 
points. The utopian point is positioned at (0.783, 89) indicating 

the ideal values for epsilon and classification accuracy. After 
estimating the distance measures of all points from the utopian 
point, the closest one is chosen as the final optimal solution, 
justifying the ideal trade-off between the objectives of the 
problem. The results of this calculation are shown in Table IV. 
In this problem setting, a point with an epsilon value of 0.783 
with corresponding classification accuracy of 84% is found to 
be the closest. Table V shows the comparison in trade-off 
between the existing and the proposed technique. The {epsilon, 
accuracy} pair shows enhanced trade-off in comparison to the 
existing techniques. Computational efficiency has been 
experimented only by PPDL, and results show that DPBODL is 
executed in a reduced number of epochs in comparison with 
PPDL for a corresponding epsilon value. 

TABLE IV.  STATISTICAL ESTIMATION OF OTPIMUM TRADE-OFF 

Epsilon Classification accuracy Distance measure 

0.783 0.84 0.063 

0.891 0.84 0.1212023102 

0.923 0.842 0.149939988 

1.02 0.853 0.2413379373 

1.15 0.86 0.3694766569 

2.25 0.87 1.468180166 

3.523 0.89 2.741001642 

4.563 0.892 3.781000132 

5.34 0.893 4.558 

 

 
Fig. 7.  Optimal trade-off computation. 

TABLE V.  TRADE-OFF COMPARISON 

Privacy technique/ 

learning technique 
Algorithms 

Optimal 

trade-off 

(epsilon, 

accuracy %) 

Performance 

(average 

number of 

epochs) 

Differential 

privacy/ 

deep learning 

Proposed DPBODL (0.783,84) 3-8 

Existing 

BO-

Dpareto 
(0.7,79) - 

PPDL (0.7,63) 10 

 

X. CONCLUSIONS 

In this paper, an optimization of deep learning technique for 
differentially private learning is proposed. Conceptualizing 
private learning as a multi-objective optimization problem, the 
proposed method aims to find an enhanced privacy-utility-
performance trade-off for private learning. Although it is 
challenging to find a single optimal solution, that is 
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mathematically best, for a multi-objective problem, the 
proposed method substantiates this trade-off by employing an 
appropriate decision-making approach. Firstly, various trade-
off solutions are generated with the optimized learner. For a 
decision to be made with reference to the optimum point, 
Pareto-optimal decision-making is done. The results show that 
the trade-off achieved is a quantifiable enhancement over the 
existing techniques. The proposed method has also considered 
execution efficiency which was not experimented by many of 
the existing techniques. 
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