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ABSTRACT 
 
Increasing human population placed stress on the 
environment, as well as shifting in land use pattern 
to increase food production, significantly influence 
the dynamics of soil organic matter and associated 
nutrients (phosphorus) in terrestrial ecosystems. 
This review is based on the published work carried 
out in recent years and critically examines how the 
P cycling occurs within different terrestrial 
ecosystems, possible mechanisms involved in its 
transformation from one form to another and gaps to 
be investigated. In terrestrial ecosystems P mainly 
occurs as phosphate ion; generally precipitated with 
Ca, Al and Fe under varying pH conditions and 
become relatively immobile in soils. In agricultural 
fields, change in inorganic (Pi) and organic (Po) 
phosphorus are attributed due to fertilization and 
tillage while in forest and grasslands it is the       
matter of litter addition and its decomposition by 
microbes. Afforestation of grassland enhances the 
mineralization of organic matter and P availability 
through higher microbial activity, production of  
low molecular weight organic acids and root 
associations of mycorrhizae. Phosphorus losses 
primarily occur due to export in the form of erosion 
and product removal from ecosystem. Heavy export 
of P from terrestrial ecosystem accelerated the 
problem of eutrophication. Future studies should be 

focused on efficient practices to increase the use of 
accumulated surface P, estimating P bioavailability 
in soil and improved methods of runoff control               
to control P export into aquatic ecosystems. 
Optimization of practices and exploring novel 
approaches for sustainable production will maintain 
the enduring supply of this globally limited nutrient 
and reduce environmental consequences. 
 
Keywords: Ecosystems; P dynamics; Organic P; 
Inorganic P; Land use; Litter; Soil microbes. 
 
1. INTRODUCTION 
 
 Terrestrial ecosystems, particularly forests, 
are the major body expected to store a large amount 
of the increased atmospheric carbon (C) [1]. 
However, the extent of storage depends on different 
soil conditions of forests such as soil fertility, 
moisture and temperature [2]. Carbon (C) seques-
tration potential of vegetation, to sequester this 
rising level of CO2 is checked by the low nitrogen 
availability in soil [3-4]. Many of the workers 
ignored P but it is likely to be a major obstacle                
in enhancing C sequestration, because low P 
availability can limit nitrogen (N) fixation and plant 
development [5-6], so it can be considered as a 
constraint in the sustainable management of 
ecosystem productivity [7-8]. However, in forest 
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ecosystems, fertilization is not a common practice, 
especially P fertilizers [9], so there is need to give 
more emphasis on appropriate management of P 
resources, as existing P reserves are limited and 
rapidly going to be used up. However, to cope up 
with the increased concentration of atmospheric 
CO2, there is need to increase the forest productivity 
which results in depletion of P in surface soil and in 
response to P insufficiency, trees roots may mine 
soil deeper to acquire the same. Thus, understanding 
the P dynamics in soils is necessary to know the 
processes governing P availability. This manuscript 
synthesizes the available information regarding P 
content, factors affecting its dynamics and different 
fractions present in soils. 

Phosphorus (P) is one of the most important 
macro-nutrient after nitrogen in terrestrial eco-
system productivity [10]. Phosphorus is an essential 
element and plays an important role in the 
functioning of all living bodies because, as it is the 
structural component of nucleic acids, co-enzymes, 
phosphoproteins, phospholipids and also determines 
many metabolic processes (provides energy as ADP 
and ATP). Low solubility of natural P-containing 
compounds and the slow natural cycle of P are the 
major constraints to check the availability of this 
essential nutrient and efficiency of the ecological 
unit [11-12]. 

 
2. FORMS OF PHOSPHORUS IN SOIL 
 
 Phosphorus in soils mainly comes from 
parental rock and fertilizers [10-13]. In soil, there 
are two major forms of P, inorganic and organic. 
Inorganic P forms are associated with hydrous 
sesquioxides and Al and Fe compounds in acidic 
soils whereas with Ca-compounds in alkaline soils. 
The inorganic phosphates in soils have been 
classified into easily soluble phosphate (ES-P), 
aluminium phosphates (Al-P), iron phosphates (Fe-
P), reductant soluble phosphates (RS-P) and calcium 
phosphates (Ca-P) [14]. According to Brady and 
Weil [15], organic matter, calcium carbonate and 
sesquioxides are the key factors, controlling the 
distribution of different forms of P. Organic P (Po) 
can account for 5-95% of the total P (TP) in the soil. 
Po is derived mainly from manures, plant material, 
and products of microbial decomposition. Po is 
highest under wetland soils, as characterized by high 

organic matter. Although a large proportion of TP 
occur in organic form, of which, only a small 
portion of this pool may be bioavailable.  
 There are many chemical fractionation 
schemes developed to assess the specific P form 
[16-17]. After that, Bowmen and Cole [18] 
developed method to fractionate various Po forms. 
But there are some difficulties in identifying 
specific inorganic (Pi) and organic (Po) forms which 
include: modification of unidentified compounds 
from their original forms and also effects of the 
reagents on pure compounds and mineral 
associations [19-21]. To overcome these problems, 
Hedley et al. [22] developed a sequential fractio-
nation scheme to differentiate available and non 
available form. This method has more advantages; 
like, extraction of both Pi and Po forms, extraction 
of microbial P during the process. Despite the 
limitation of time requirement and complexity, this 
method is more reliable and been in use from last 30 
years. Major fractions, which can be extracted by 
this method, are: Resin P, Bicarbonate P, Hydroxide 
P, Acid P and Residual P (further description given 
in Table 1).  
 
3. PHOSPHORUS CYCLING OR DYNAMICS  
 
 Phosphorus, one of the essential macro-
nutrient limiting plant growth and development, 
especially in subtropical and tropical region [10, 
23]. Major pools of P are present in terrestrial 
ecosystems, which generally account 100-3000 kg 
ha-1, so its cycle is also termed as sedimentary cycle 
[11, 12, 24]. Sparingly soluble calcium phosphate 
i.e apatite, in rocks and other deposits are the major 
source of P in terrestrial ecosystems [10, 25]. 
Primary minerals of P, present in stratum rock are 
apatite, hydroxyapatite, and oxyapatite and their 
chief characteristic is that, they are water insoluble. 
But, in spite of this fact, they are also the principal 
source of P and under suitable environment, they 
can be solubilized and become available for living 
organisms. Inorganic phosphate are also found, in 
soils having higher or lower soil pH and P is   
rapidly converted to sparingly soluble amorphous 
and crystalline compounds, i.e. Ca2+ and Mg2+ phos-
phates in neutral to alkaline soils; variscite (Al-P) 
and strengite (Fe-P) in acid soils [26], which belong 
to the slowly cycling P pool and are not directly 
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available to biota [27]. Second major component of 
soil P is organic matter. The organic P pool, 
accounts for 15-80% of the total P pool [28-29]    
and can be greatly influenced by the quantity and 
quality of organic inputs and shifts in soil microbial 
community structure [30-32]. Organic P in soil is 
largely in the form of inositol phosphate, synthe-

sized by microorganisms and plants and forms the 
most stable form of organic P (50% of the total 
organic P) in soil [33]. Soil P which occurs in 
equilibrium with the soil solution (bioavailable P)               
is referred as ‘Labile P’ and other P forms which  
are slowly available to plants are known as ‘non-
labile’ [34].  

 
 
Table 1. Forms of phosphorus extracted by Hedley et al. [22].   
Sl. 
No 

Form extracted Form of P Availability to plant 

1. Resin Pi 
Adsorbed on surface  
of crystalline compounds 

Soluble and easily available  

2. 
 

Bicarbonate - Pi 
Adsorbed on 
surface of soil compounds  

Available and remain in equilibrium  
with the soil solution 

Bicarbonate - Po 
Labile Po inside the internal  
surfaces of soil aggregates 

Available after mineralization and remain  
in equilibrium with the soil solution 

3. 

Hydroxide - Pi 
Adsorbed on surfaces of secondary 
mineral (Al and Fe-P) 

Low plant availability 

Hydroxide - Po 
Extracts Po that is strongly held  
by chemisorption to Al and 
Fe components in the soil 

Stable P involved with the long term 
transformation of soil P 

4. Acid - P 
Associated with Ca and occluded  
within sesquioxides; acid extractable 

Stable and low solubility  

5. Residual- P Occluded  and most recalcitrant P 
Most stable, highly resistant  
and low bioavailability 

 
 

 
Figure 1. Phosphorus cycle in soil. 
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Phosphorus cycling or dynamics in soil can 
be defined as a series of processes influenced by the 
nature of the inorganic and organic solid phases 
present, the type and intensity of biological activity, 
the chemistry of the soil solution (pH, ionic 
strength, redox potential), and abiotic factors like 
texture and moisture content, [11, 34-35]. The natu-
ral P cycle starts with the disintegration (physical, 
chemical and microbial) of primary apatite P rocks 
and here, microbes play key role (oxidation and 
reduction of phosphorus compounds) so we can call 
them "forerunner of  P cycle”. After weathering,          
P comes in soil solution and incorporates into              
the system as different secondary Pi and Po form, 
which are of limited availability [10]. These forms 
are inter-exchangeable via different chemical and 
biochemical (sorption-desorption, oxidation-reduc-
tion and mineralization-immobilization) processes 
[11, 34]. 
 
3.1. Phosphorus cycling in agriculture ecosystem 
 
 P cycling is continuous in nature and 
governed by the need of users while in crop field it 
is disturbed due to addition and removal in the form 
of fertilizers and crop produce, respectively. It is 
quite necessary to understand P dynamics in 
agricultural soil, for managing the P usage, its 
consumption by roots according to their potential 
and ultimately to increase P use-efficiency by 
plants. P cycling in soil is governed by some biotic 
and abiotic factors, including adsorption, dissolu-
tion and microbial activity, respectively [36]. 
Mineralization of Po and its cycling is the main 
factor on which availability of P to plant depends 
[37]. Effect of P fertilization on availability of soil P 
had been studied from last century. Now, it is 
established that soils not getting P fertilizer had low 
total P (TP) while fertilized soil had have high TP 
[38-40]. Application of P fertilizers increases the 
inorganic P content [41-42] while addition of 
organic sources increases organic P content [43]. 
There is more inorganic (63 to 92%) P than organic 
(5 to 25%) P in manure and application of manure 
produces positive effect on content of P fractions           
in soil [44]. Relevance of manures has considerable 
impacts because there is progressive turnover of                 
P into other forms [45] and higher application                
of manures increases the amount of labile Po, 

moderately labile Po, moderately resistant Po, 
highly resistant Po, Al-P, Fe-P, O-P and Ca-P in soil 
[46]. Application of P fertilizers will surly give 
more yield but it may also have long term effect on 
the P fractions [47] and especially labile Po pool in 
soil [48].  
 Lots of work have been done in past to study 
the effect of organic and inorganic P application on 
yield of crop, solely or in different proportions,  
their effects on different P pools, soil modification 
like pH, tillage and application of microbial 
inoculants just to increase the P use efficiency. 
Agricultural practices can also contribute in the 
composition of soil P like, the content of organic P 
in soil heavily depends on cropping system and 
tillage depth than the fertilizer used [49]. According 
to McLauchlan [50], tillage and crop removal have 
the tendency to reduce organic C of soil and 
concentration of the organic P in soil is directly 
proportional to organic matter content of soil [48, 
51]. However, no-tilled surface soils have higher 
amount of organic C and available P in comparison 
to conventionally tilled soil [52], due to non-
incorporation of applied P fertilizers. But in heavy 
soils like clayey ones, competition is there between 
organic anions and PO4-P for the same sorption sites 
so, the availability of P is enhanced [53]. Another 
important factor which plays a role in deciding the P 
cycling is rhizosphere, association between plant 
roots, soil and microbial activity; where different 
exudates such as mucilage, organic acids, phospha-
tases modify the soil environment. According to 
Marschner [54], roots can decrease the pH of 
rhizoshpere by 2-3 units and increase the P 
availability. Rhizosphere pH can also be changed  
by uptake of cation and anion like in case of 
nitrogen, where ammonium uptake causes acidi-
fication while nitrate causes alkalization. pH change 
in the rhizosphere is mainly affected by uptake 
ratios and nitrogen assimilation. Now in recent  
years rhizospheric P management became a novel 
approach and Jing et al. [55] reported that by using 
P plus ammonium, maize growth improved in a 
calcareous soil due to rhizosphere acidification. 
Similarly, faba bean (Vicia faba) can also acidify its 
rhizosphere [56]. Rhizospheric microorganisms like 
arbuscular mycorrhizal fungus (AMF), phosphorus 
solubilizing microorganisms (PSM) and plant 
growth promoting rhizobacteria (PGPR) are also 
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known to increase P cycling [57] and it has been 
found that combined usage of AMF and PSM 
showed the positive response in P uptake [58].  
 These results with respect to the effect of 
different strategies on P cycling or improvement  are 
not clear-cut and it can be supported with the 
findings of Jalali and Ranjbar [59] who suggested 
that different P pools, like Ca-P, Fe-P, Al-P and 
organic P, are highly  active and  their content 
depend on the actual properties of the soil. So 
management practices for increasing the organic C 
should be imparted in field to maintain availability 
of P. Many studies are there on the effects of pH 
modification on P availability, but a consistent plan 
to manage soil phosphorus for sustainable crop 
production and to minimize P loss from soils have 
not been fixed.  Different forms of P are available in 
soil due to the inherent properties of soil, which are 
not available to plants and changing these 
characteristics of soil on long term basis may be 
difficult to achieve.  
 
3.2. Phosphorus cycling in forest ecosystems 
 
 Soil nutrients are the key drivers of any 
ecosystems, however in forest ecosystems; they  
play an important role in development and main-
tenance of the ecosystem sustainability [60-61].            
In forests, the nutrient cycle is maintained by itself, 
as there is development of thick forest floor due                 
to addition of litter. Litter fall is in form of  
branches, leafs, bark and fruit, which contain an 
appropriate amount of nutrient and by their 
decomposition nutrient are returned back in soil  
[62-63]. But released nutrients may be immobilized 
or mineralized, depending on the site conditions 
[62-64]. Nutrient use efficiency in any forest 
depends on the amount of nutrients content in litter, 
root and woody biomass of trees [65]. In areas 
having permanent vegetation, like forests, Po 
fractions are present in higher proportions [29, 66]. 
According to Chen et al. [67], amount of dry matter 
produced per unit of P is scientifically inferior in 
temperate forests as compared to tropical ones. 
There is always difference in organic matter 
deposition and nutrient cycling, between forests            
and other ecosystem, because, both affect the 
mineralization and immobilization processes and 
show significant impact at ecosystem level.  

 First report on P dynamics in forest 
ecosystem was published by Fisher and Stone [68], 
they observed that under pine plantation minera-
lization of organic P was higher as compared to the 
adjacent abandoned fields and larch plantations.              
In New Zealand, several workers also reported           
that under recently established forest, there was 
increased mineralization of organic P but the level 
of microbial biomass P and enzyme activities 
responsible for organic P mineralization is lower 
[67, 69].  This may be attributed to lower inputs of 
organic matter and in addition due to decrease in 
soil pH [67]. Davis [69] also found that concen-
trations of total and organic P were lower under the 
P. radiata stand, which is attributed due to enhanced 
nutrient uptake and decompostion of organic matter 
by the pines. Chiu et al. [70] reported that 
concentration of bioaviliable inorganic P was 
greater in soils under Chinese hemlock (Tsuga 
chinensis) as compared to the dwarf bamboo 
(Yushania niitakayamensis) and in NMR analysis, 
they found that inorganic orthophosphate mono-
esters was the major forms of P extracted by trees. 
Decline in the content of orthophosphate monoesters 
under pine vegetation is mainly due to the utilization 
of these compounds by conifers through root-
microbe symbiotic interactions [67, 71]. Plant root-
microbial association is important activity in any 
terrestrial ecosystem, because it plays most vital role 
in alteration or decomposition of soil organic matter 
and release of associated nutrients. Roots are the 
secretors of various exudates in form of chemical 
compounds into the soil [67, 72], which become 
signals for microbes to initiate the transformation 
process of soil organic matter and associated 
nutrients [11]. There are many reports defining the 
ability of different bacterial species (Pseudomonas, 
Bacillus, Rhizobium, Burkholderia, Achromobacter, 
Agrobacterium, Microccocus, Aerobacter, etc.) to 
solubilize insoluble inorganic phosphate compounds 
[73]. Microorganism associations like mycorrhizae 
are known to modify root structure and their 
functions also [74-75] and mediating the availability 
of soil P to associated plants. There are ample 
reports suggesting that mycorrhizae releases low 
molecular organic acids such as citric, oxalic, 
maleic, and acetic acid, to solublise the organically 
bound P [76]. Chen et al. [67] also reported that 
mineralization of organic P was higher under pine 
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forest due to the symbiotic association between pine 
roots and ecto-mycorrhizae. As ecto-mycorrhizae, 
releases organic acids and cause acidification of the 
rhizosphere zone, thus promoting the solubilisation 
of inorganic and organic P.  
 The studies mentioned above provided 
background information about the studies conducted 
by the various researchers. Therefore, from the 
above studies, it has been concluded that, in forests 
there is dominance Po (Table 2), its mineralization 
mainly depends on microbial aspects and availa-
bility or transportation from soil to plant is governed 

by mycorrhizae. However, it can also be assumed 
that in P scarcity, trees have to absorb from inside 
the deeper layers of soil to take more nutrients           
and in this case, there is more below ground 
development of roots which may hamper the 
aboveground canopy development. To overcome 
this, there is need to improve our knowledge 
regarding to the processes controlling P availability 
in surface and deep soil layers. There is also need to 
develop certain strategies which can enhance the 
mineralization of Po, as it is the major P pool in 
forest ecosystem.   

 
 
Table 2. Literature reports on soil P fractions (mg kg-1) in surface soil (0-15 cm) under different vegetation types.  

Sl. 
No 

Study Area Vegetation type 
pH 

(H2O) 
SOC 

(g kg−1) 
TP Po Pi MBP Reference 

1. 

Daqinggou National 
Nature Reserve,  
Inner Mongolia, 

China 

Elm (Ulmus macrocarpa) 
savanna with dense grasses 

7.3 8.9 149.0 94.8 54.3 4.78 

[77] 
Grassland 6.5 3.6 107.0 70.7 36.3 2.89 

Mongolian pine plantation 6.7 4.0 79.9 47.7 32.2 2.69 

Chinese pine plantation 6.7 3.5 73.1 38.6 34.5 2.10 

Poplar plantation 6.7 4.3 109.5 69.7 39.9 3.53 

2. 

Qingyuan 
Experiment Station, 
Institute of Applied 

Ecology, China 

Natural secondary forest 5.82 50.45 741 475 272 40.3 

[78] Larch (Larix olgensis) 
plantation 

5.55 34.70 1025 543 481 26.1 

3. 

Rio Paja Forest plot, 
Panama Canal 

watershed, central 
Panama 

Tropical rain forests 3.55 - 45 27 18 - [79] 

4. 

Campo Chagres 
Forest plot, Panama 
Canal watershed, 
central Panama 

Tropical rain forests 7.00 - 824 494 330 - [79] 

5. 

Cave Stream forest, 
Craigieburn research 
area, central south 

island, New Zealand 

Mixed stand of Ponderosa 
pine (Pinus ponderosa) and 

Corsican pine (P. nigra) 
- - 839 552 287 37.4 [76] 

SOC: soil organic C; TP: total P; Po: organic P; Pi: inorganic P and MBP: microbial biomass P 

 
 
3.3. Phosphorus cycling in grassland ecosystems 
 
 Grasslands, a biological community, characte-
rized by mixed herbaceous (non-woody) vegetation 
cover, with high biodiversity due to high plant 
species diversity [80-81]. Plant diversity is a key 
element in grasslands because: increased forage 
production [82-83], stability against disturbances 

[84] and also improves nutrient cycling [82]. In 
grasslands, nutrient addition includes atmospheric 
inputs, fertilizers and animal feed while removal of 
nutrients through animal product, harvested forage 
and via off-site nutrient transport including leaching 
and surface runoffs [86-88]. Among the nutrients, P 
has a tremendous influence on species richness [89] 
after nitrogen. In grassland soils, total P content 
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varies between 200 to 1100 ppm and concentration 
depends upon the age of soil [90]. According to 
Kemp et al. [87], in grasslands or pastures, most of 
the nutrients taken up by plants are returned to the 
soil in the form of litter and root residues (10-70%) 
or animal excreta (50-95%). In grazed pastures, 
cycling of P is secured in comparison to N, as it is 
less soluble and mobile, so surface runoff is a major 
loss pathway through which P is lost Whitehead 
[91]. According to Parfitt [92], from intensively 
fertilized plot receiving 38 kg P ha-1, 4 kg P ha-1 yr-1 
could be lost due to runoff. Timmons and Holt [93] 
reported that from an ungrazed, unfertilized, native 
prairie in Minnesota, P loss through runoff is 0.1 kg 
P ha-1 yr-1. The plant mycorrhizal symbiosis absorbs 
P from the soil solution, which comes from 
hydrolysis of labile ortho-P or mineralization of Po 
[94]. Plant litter and animal excreta are the main 
source of P in grazed pasture. Whitehead [91] 
reported that only 100 to 250 g P kg-1 of P in the  
diet of animals is converted into live-weight gain            
or milk, while rest is recycled to soils in form of 
plant residues and animal excreta, so mineralization 
of organic compounds is the key process in 
grasslands with respect to the P dynamics. There    
are more chances of net P immobilization in    
tropical grasslands because P content in grasses is   
< 2.0 ppm [95]. 
 Land use change is the key activity which can 
alter the rate of mineralization or cycling of P in 
grasslands. The most common land use change 
occurred in all over the world is the afforestation of 
grasslands with conifers and this enhances the rate 
of mineralization of organic matter and associated P 
and hence, P availability in topsoil is increased [67]. 
Till date, most of the work has been focused on 
changes in land use and its effect on P cycling. 
There is need to know, what changes can occur in 
soil microbial community due to the particular land 
use change [67, 96-97]. We can't ignore the changes 
in the structure and activity of soil microbial 
community, as they are the fore-runners or key 
drivers in the mineralization of P. 
 
4. VARIABLES INFLUENCING P DYNAMICS 
IN TERRESTRIAL ECOSYSTEM 
  
 Phosphorus occurs in soils in various forms, 
organic and inorganic which can be further divided 

into labile and non-labile P [98]. Therefore, soil P 
can be considered in terms of ‘pools’ of varying 
availability to the plants. A major portion of soil P 
exists as insoluble and fixed forms including 
primary phosphate minerals, humus P, microbial 
biomass P, insoluble phosphate of Ca, Fe and Al 
and also P fixation by hydrous oxides and silicate 
minerals. This fraction is known as non-labile P and 
is the largest pool of soil P in terms of quantity [99]. 
Whereas, labile P is the readily available fraction 
that exhibits a high dissociation rate and is in rapid 
equilibrium with solution P [99-100]. Soil P moves 
among these pools and remains in continuous 
dynamic equilibrium. Phosphorus may also move 
among pools as shown by the conversion of organic 
P into inorganic P via mineralization by microbial 
and root-released phosphatases [101]. The factors 
which influence these equilibrium reactions are 
discussed in the following sections. 
 
4.1. pH 
  
 In highly weathered soil solution, P concen-
tration primarily depends upon the soil pH levels 
that indicate how certain minerals iron and, 
aluminum, interact with phosphorus in the soil,          
and it is the interaction that affects the phospho-   
rus availability in soil [102]. The inorganic P 
compounds mainly couple with amorphous and 
crystalline forms of Al, Fe, depending upon the 
acidity of the soil [22]. Because surface adsorption 
of P increases with decreasing pH, these adsorption 
processes would often be expected to be more 
influential at low pH [103] resulting in a “positive” 
pH dependence (i.e. increased solution P level               
at higher pH), provided that adsorption is fully 
reversible within the time scale of interest. 
However, precipitation of solution P with Ca is 
expected in calcareous-alkaline soil with higher    
pH. A number of Ca-P minerals may form, such     
as amorphous calcium phosphate (ACP), octacal-
cium phosphate (OCP) and apatite (hydroxyapatite 
or fluorapatite). Precipitation/dissolution of these 
minerals will cause “negative” pH dependence 
(increased solution P level at lower pH) [104]. 
Murrmann and Peech, [105] performed back 
titrations for two soils and found decreasing P 
solubility with increasing pH until about pH 5.5            
to 6, at which pH minimum solubility occurred.         
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At higher pH, P was more increasingly dissolved 
again. At very high pH, however, (>8-9) P solubility 
decreased due to Ca-P mineral precipitation. 
 
4.2. Nature and amount of clay 
 
4.2.1. Hydrous oxides of Fe/Al 
  
 Fe/Al oxides and hydrous oxides are 
abundant in acid soils and high P retention in these 
soils is attributed to active Al and Fe associated with 
organic (mainly Al-humus complexes) and mineral 
fractions (ferrihydrite), which form in the course of 
soil development [100, 106]. These oxidized secon-
dary minerals can bind P making it temporarily 
unavailable for plants and microbes through the 
formation of labile and non-labile P [107-108]. P 
ions bind to the Fe/Al oxide surface by interacting 
with OH- and/or OH2+ groups on the mineral surface 
in two steps, a mononuclear adsorption followed by 
a binuclear  
 
4.2.2. Calcium carbonate 
 
 The solubility of P in Ca rich calcareous soil 
is mainly controlled by the solid phase dicalcium 
phosphate of chemisorption of P on calcite, with            
the formation of a surface complex of calcium 
carbonate bound P with a defined chemical compo-
sition [109]. Impure and/or, amorphous calcium 
carbonate with large specific surface area exhibits 
greater P adsorption and more rapid precipitation of 
Ca-P minerals. Calcareous soils with highly reactive 
calcium carbonate and high Ca-saturated clay 
content will exhibit very low solution P levels, since 
P can readily be precipitated or adsorbed [100]. The 
lower the Ca:P ratios of the Ca phosphates the 
higher their solubility in water. The equilibria of Ca 
phosphates from solution P to the highly insoluble 
hydroxyapaptite is shown below [110].   
H2PO4

- + Ca2+  CaHPO4 + H+ 

3 CaHPO4 + Ca2+  Ca4H(PO4)3 + 2H+ 

Ca4H(PO4)3 + Ca2+ + H2O  Ca5(PO4)3OH + 2H+ 

 From these equilibria it is clear that H+ 
promotes solubility of Ca phosphates in the soil and 
Ca2+ has the reverse effect in calcareous soil. The 
hydroxyapaptite formed in this reaction has very 
low water solubility, thereby depleting the solution 
P concentration to the greatest extent. 

4.2.3. Silicate minerals 
 
 Soils derived from volcanic ash (Andisol soil) 
are characterized by unique property of high 
phosphorus retention capacity, with main constraint 
for plant growth being usually the low solution P 
and its availability [106, 111]. Allophones (Si-Al-
Fe-O-OH-OH2) have a large surface negative charge 
which is partly or, entirely balanced by the complex 
aluminium cations. Phosphorus gets adsorbed by 
reacting with such aluminium cations [112]. In this 
way, some phosphate of the labile pool is 
continuously being transferred to non-labile P and 
thus becomes immobile. 
 
4.3. Soil organic matter (SOM) 
 
 SOM  is  the major  source  of  organic  P  pool 
and  that,  in  highly  weathered  and  high P-sorbing  
soils,  the  P  maintained  in  organic  pools  may  be  
better protected  from  loss  via  fixation  than  by             
P  flowing  through  inorganic pools  [113]. The  
organic  P  compounds  are  associated  with  rapidly 
to  slowly  decomposable  organic  molecules,  such  
as  nucleic  acids, phospholipids,  sugar  phospha-
tes,  inositol  phosphates,  and  recalcitrant  humic  
substances [22]. Different organic anions produced 
from OM decomposition form stable complexes 
with Fe/Al, preventing the formation of non-labile P 
by reacting with phosphate anions. These complex 
ions exchange for P are adsorbed on Fe/Al oxides. 
Anions such as oxalate, citrate, tartrate and malate 
are found to be most effective in doing such [100]. 
In addition to that, SOM may be sorbed to soil 
particles at non-specific sorption sites, which would 
increase the surface negative charge of the particle. 
This would reduce the electrostatic attraction of P to 
the soil and keep more P in solution [114].  
 
4.4. Microbial biomass 
 

 The soil microbial biomass plays a central 
role in soil phosphorus dynamics, especially in the 
dynamics of soil organic P [115]. The soil microbial 
biomass has two main roles in the dynamics of P in 
soil: i) the principal driver for the transformation of 
organically-bound phosphorus to plant-available 
phosphate (solution and labile P), and ii) the 
accumulator of a significant pool of P [116]. 
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Additionally, microbes indirectly affect P availa-
bility by changing the soil pH and via organic 
molecules released during decomposition of organic 
materials (Fig. 2), which may block P sorption sites 
and complex Fe, Al and Mn [107,117]. Microbial 
biomass P responds rapidly to the addition of C 
substrate to the soil. In the short term, net 
mineralization will occur if the amount of soluble P 
in added residues is in excess of that taken up by the 
microbial biomass. However, residue P content is 
often insufficient to meet the requirements of the 
growing microbial biomass. Under such circum-
stances, the microbial biomass will take up P from 
the solution and labile pools in soil; leading to net 
immobilization of soil P, thereby depleting those 
pools of soil P [116]. In addition to that, the 
microbial biomass has a high capacity to acquire P 
from non-labile pools that are generally not 
considered to be plant-available, and will be more 

competitive than plants for solution and labile P 
[118-120].     
 
4.5. Anaerobic condition 
 
 Under anaerobic conditions, reductive 
dissolution of ferric hydroxides carrying P is an 
important mechanism of P release into the solution 
[121]. Thus, redox status of a soil is important 
determinant of the potential role of a soil to retain P. 
Other mechanisms include dissolution of occluded 
P, which increases the mineralization of organic P in 
acid soils, and also increases the solubility of Ca-P 
in calcareous soils, and maximizes P diffusion 
[100]. Alternate drying/rewetting, freezing/thawing, 
and associated microbial activity tend to destroy 
organo-mineral complexes and kill microorganisms, 
often resulting in releases of dissolved phosphorus 
from the affected soils [42]. 

 
 

 
Figure 2. Release of P through the action of low molecular weight organic acids and other naturally occurring chelates. 

 
 
4.6. Plants 
 
 Absorption of P by plant roots causes 
depletion in the solution P concentration, and labile 
P rapidly replenishes the solution P, but at a very 
slow rate depletion of labile P causes some non-
labile P to become labile. However, the depletion 

rate of different P fractions in the root rhizosphere 
varies significantly among different plant species 
and different genotypes within a given species [22, 
123-125]. Rhizospheric pH may be changed by 
imbalance uptake of cations and anions by plants, 
which can affect the P dynamics in the soil [126]. 
Organic anions secreted from plant roots (Fig. 2), 
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increase the solution P by desorbing inorganic P 
(labile P) from a mineral surface and chelating or 
complexing cations, such as Al3+, Fe3+,and Ca2+ ions 
that are bound to non-labile P [127]. Some enzymes 
secreted from plant roots, such as phosphatase,             
can catalyze hydrolysis of organic P. It has been 
suggested that higher phosphatase in the rhizo-
sphere, compared to the bulk soil, can induce 
significant depletion of organic P in the rhizosphere 
[124, 128].  
 Management of soil P bioavailability is one of 
the main challenges for many regions of the world. 
The main processes and/or factors controlling soil        
P bioavailability are P interactions with Al, Fe, and 
Ca hydrous oxides, amorphous, and crystalline com-
plexes, along with organic P mineralization [129]. 
The rate and extent to which these processes occur 
are greatly influenced by agricultural management 
practices including rate of P fertilization, nature of 
fertilizer, and method of fertilizer addition, tillage, 
and drainage etc. The phosphatic fertilizer in current 
use scenario requires a greater input that cannot be 
afforded by the small to marginal farmers of the 
developing nations. Therefore, improved methods of 
phosphate application like application in granular 
form or, as bands in close proximity to the roots and 
fertigation, as well as liming acid soils, can 
definitely increase soluble P in soil and provide 
enough time to crops for its uptake and, reduce             
the influence of these factors on P availability in 
soil. Thus, these management practices can reduce 
the rate of expensive superphosphates application 
and maintain better soil health and sustainable 
production in terrestrial ecosystem.  

 
5. LONG-TERM ECOSYSTEM MANAGE-
MENT 
 
 Primary productivity of any ecosystem 
depends on nutrients; like in terrestrial ecosystems, 
nitrogen (N) and phosphorus (P) are the most 
common limiting elements, both individually and          
in combination, while in aquatic ecosystem, P 
become most problematic as it causes eutrophi-
cation. In agriculture ecosystem, strategic P addition 
is important and it should be based on quantity of          
P available in soil, how much is going to be fixed 
and upto what extent crop can take. Combination           
of strategic P application and germplasm with           

high uptake capacity will provide agricultural 
sustainability, better P status in soil and increased P 
use efficiency. In forest ecosystem, litter produced 
is the major source of P, during the decomposition 
of woody debris by microbes, P is released in the 
soil. But in grassland ecosystems, long term 
accumulation of animal excreta is the major source 
of P and represents serious environmental concern. 
Quite well-organized nutrient recycling can be 
promoted in grazing land systems by using 
efficiently organized strategies like regular shifting 
of animal feed, supplying sufficient fertilizers and 
maintaining suitable population of animals can 
potentially improve P use efficiency by plants and 
restrict environmental pollution. In both, forest and 
grassland ecosystems, P cycling depends on the 
decomposition of organic matter and it can be 
restricted due to immobilization by plants and 
animal production. It can be assumed that to 
overcome the reduction there is release of P from 
organic pool or from weathering of rocks. To 
maintain the P cycling, intermixing of grassland and 
forest can be done. It will also lead to greater 
productivity of grasses and subsequently improved 
SOM and structural integrity. There is need of long 
term comparative studies on strategic P inputs, 
improved methods for P application and P efficient 
germplasms in agricultural ecosystems, controlled 
grazing practices and impact of intermixing of 
grassland and forest ecosystems on soil health and P 
cycling, as it will provide better solutions for P 
management. 
 
6. FURTHER RESEARCH   
 
 In future, studies will be focused on 
mechanisms to increase the P use efficiency and 
associated processes under different ecosystems: 
• Rate of P release from root and leaf litter inputs 

and its efficient utilization; 
• Changes occurring in soil microbial community 

under different ecosystems using nucleic acid 
based techniques, including production of low 
molecular weight organic acids and their 
transport processes;  

• Relationship between plant root and VAM 
associations; 

• Understanding the effects of subsurface place-
ments of P resources under different ecosystems 
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to arrest the P export and eutrophication; 
• Development of mathematical models simulating 

temporal changes in residual soil and organic P;  
• Practices to control export of P at their source, as 

it is most beneficial and effective.  
 
7. CONCLUSION 

 
 Increased human activity influences the 
nutrient cycles in ecosystems as agriculture and 
forestry removes nutrients from these ecosystems 
and also increases the transport of P to aquatic 
ecosystems. There is a considerable association 
between the type of land use and export of P, as it 
has been proved that the alteration of forest into 
agriculture ecosystems quadruples phosphorus 
export.  The key factors for controlling P export are 
geology, land use, SOM, pH and microbial aspects 
and by using these, it is easy to predict the P export 
and cycling within any ecosystems. However, heavy 
use of P fertilizers accelerated the problem of 
eutrophication, so there is need of efficient practices 
to increase the use of accumulated surface P, 
estimating P bioavailability in soil and improved 
methods of runoff control to control P export into 
aquatic ecosystems. There is need of information 
with respect to the effects of conservation on P 
cycling in long term basis. There are models 
available which simulates the changes in P 
availability in short times, using first order kinetics, 
but does not for long term changes. Therefore, use 
of these models is limited in order to estimate the 
loss of P and research should be directed towards 
the development of model, to recognize well-
organized soil and management practices that may 
increase P use efficiency and reduces the export            
of P into water bodies. 
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