
ISSN 2449-8955 
European Journal  

of Biological Research 
Research Article 

 

European Journal of Biological Research 2021; 11(4): 480-492 

DOI: http://dx.doi.org/10.5281/zenodo.5539705  

Diversity and extracellular enzyme profiles of yeasts                

on organic and fungicide treated strawberries 

Tülay Turgut Genç 1,*, Melih Günay 2 

1 Çanakkale Onsekiz Mart University, Faculty of Arts and Science, Department of Biology, Çanakkale, Turkey 

2 Çanakkale Onsekiz Mart University, Graduate School of Natural and Applied Sciences, Çanakkale, Turkey 

* Corresponding author e-mail: tturgutgenc@comu.edu.tr 

Received: 18 July 2021; Revised submission: 17 August 2021; Accepted: 27 September 2021 

 

https://jbrodka.com/index.php/ejbr 

Copyright: © The Author(s) 2021. Licensee Joanna Bródka, Poland. This article is an open access article distributed under the 

terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) 

ABSTRACT: Since yeasts can survive under variable environmental conditions using different food sources 

they have a wide distribution in nature. Fruits are suitable living spaces for yeasts and other microorganisms 

due to their high and different sugar contents. Strawberry fruit as well as other fruits are very sensitive to 

pathogenic fungi. Due to their residues on fruits, limitations on the use of fungicides have led to increased use 

of microorganisms with antagonistic effects as biological control agents. The biological agents to be used are 

selected mainly from the microorganisms found in the natural microbiota of the fruit. Therefore, in this study 

yeast biota on strawberry fruit collected from fungicide treated (Klorzon and Topas) and organic fields was 

determined using molecular identification methods. In addition, extracellular enzyme profiles of the identified 

yeast species were determined by the APIZYM-based system. There was no difference in the diversity of 

yeast species on strawberries collected from fungicide treated and organic fields, but the yeast density on 

organic strawberries was greater than fungicide treated fruits. The identified yeast species on fruits were 

determined as Metschnikowia pulcherrima (61.7%), Hanseniaspora uvarum (34.0%) and Wickerhamomyces 

pijperi (4.3%). W. pijperi yeast species was reported on strawberry fruit in our study first time. It was 

determined that H. uvarum and W. pijperi yeast species showed no α-glucosidase enzyme activity. All yeast 

strains showed industrially important β-glucosidase enzyme activity. 

Keywords: Strawberry; Fungicide treatment; D1/D2 rDNA; RFLP; Extracellular enzyme; Yeast. 

1. INTRODUCTION 

Fruits are suitable environments for microbial growth due to their high sugar and nutrient content. 

Although the low pH and the amount of water in the fruits often inhibit the growth of bacteria preferring 

neutral pH to some extent, fruits are vulnerable to fungal organisms. Regardless of their pathogenicity, all 

fungi can damage the fruit, and these damages on fruits before or after harvest can cause economic losses as 

well as threaten human health. It is known that some pathogenic fungi cause allergic infections [1, 2]. Yeast 

and yeast-like organisms found in the natural microbiota of plants and fruits are necessary for epiphytic 

microbial balance, and disruption of this balance causes the formation of different diseases. Citrus fruit 

washed with water decays more quickly than unwashed fruit which occurs as a result of the loss of the natural 

epiphytic microbial balance [3]. Determining the natural microbial flora of fruits contributes to the 
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development of different biological control agents for different fruits. Thus, it may be possible to preserve the 

fruit for a long time using sprays containing appropriate microbial flora before and after harvest. Fruits can be 

consumed naturally or used in manufacturing the different products such as wine, vinegar, jam, ice cream. In 

particular, the natural microbiota of fruits is important not only in making the primary aroma of the wine but 

also in the amount of alcohol and the formation of permanent aroma in the following process. For this reason, 

it is of great importance for wine producers to know the microbiota of fruits. 

Strawberry (Fragaria spp.), one of the most widely grown fruits in the world, is a small pinkish-red 

fruit covered with seeds. Strawberry is widely used in ice cream, dairy products (fruit-flavored yoghurt and 

milk), candies and chocolates, bakery products, frozen foods, jam, vinegar and winemaking [4, 5]. Strawberry 

fruit is open to microbial contamination as it has a soft surface with indented-protruding [6]. Especially 

Colletotrichum acutatum and Botrytis cinerea are the most important fungus species that damage strawberry 

fruit [7]. C. acutatum and B. cinerea causes anthracnose fruit rot and grey mold diseases, respectively. 

Fungicides containing tetraconazole or penconazole active components are used against these diseases in 

strawberries. The commercial combination of active ingredients, such as the combination of cyprodinil with 

fludioxonil or the combination of fenhexamid with captan, were often the most effective in the treatments of 

anthracnose fruit rot and grey mold diseases [7]. It is known that the long-term use of specific fungicides 

caused an increase in the density of resistant isolates in the population and the effect of the fungicide 

decreased in subsequent applications [8]. 

It is very important to determine the fruit surface microbiota in the production of biological sprays to 

be developed against such fungi and other microorganisms that damage the fruit. It was reported that the 

intensity of yeast species on strawberry fruit was lower (at 3%) than other fruits (raspberries and blueberries), 

the main reason being that the yeast cells could not pass the epidermis [6]. The indigenous yeast population 

on fruits can be affected by many different factors such as geographical location, climatological conditions, 

soil structure, pesticide handling, fruit variety, degree of maturity, and also parts of the fruit plant [9-12]. For 

example, some fungus species (Botrytis cinerea, Rhizoctonia fragariae, Acremonium spp., Alternaria spp., 

Cladosporium spp., Aspergillus spp., Penicillium sp., and Phoma spp.,) were observed in fruit as well as in 

other parts of the plant. However, Rhizopus stolonifer and Sclerotinia minor fungus species exist only in the 

fruit part of the plant [11]. The intensity of yeast on ripe strawberry fruits was 10 times higher than the 

intensity of yeast on unripe fruit [12]. In addition, the natural yeast flora of strawberries was 10 times more 

sensitive to fungicides such as Switch and Signum than mould fungi such as C. acutatum and B. cinerea [12]. 

This result indicates that fungicides developed against strawberry pathogens are predominantly more effective 

on yeast flora. Despite the restrictions and prohibitions introduced in the use of fungicides in recent years, 

these fungicides are still in use and cause to change the profile of microbial flora, especially on the fruits. For 

this reason, it is necessary to determine the natural surface flora of fruits produced without using fungicides. 

Microbial enzymes are utilized in many fields such as agricultural, chemical industry, food 

processing industry, textile industry, pharmaceuticals, wood processing industry, analytical applications, 

cosmetics, and environmental pollution control, such as bioremediation and biodegradation [13]. In the food 

industry, these enzymes are used in mainly dairy products, wine production and bakery. Microbial enzymes 

are effective in enhancing the flavor and nutrient values of the products during the fermentation process [14].  

This research aims to determine yeast biota on strawberry surfaces and to identify the yeast species 

having industrially important extracellular enzyme activities. The yeast diversity was determined on 

strawberry fruits collected from fungicide treated and organic gardens and a totally 47 of yeast strains were 
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isolated. These yeast strains were identified as M. pulcherrima, H. uvarum and W. pijperi according to 

sequence analysis of the 26S rDNA gene region. The distribution of W. pijperi yeast species on strawberry 

fruit was determined for the first time in our study. The evolutionary history was inferred with the Maximum 

Parsimony method using MEGAX software [15, 16]. The extracellular enzyme profiles of yeast strains were 

determined with the API-ZYM kit system. All yeast strains were displayed a high industrially important β-

glucosidase activity. 

2. MATERIALS AND METHODS 

2.1. Fruit sampling and isolation 

Strawberry samples were collected from two different fruit gardens located in Gelibolu peninsula 

(40° 51' 50'' N 26° 37' 20'' E) in Çanakkale, Turkey, during harvest (between June and October) in 2009 

vintage. While different fungicides are applied in the first strawberry garden, no chemical is applied in the 

second garden since organic farming is carried out. In the fungicide-applied strawberry garden, Klorzon 10 

EC (tetraconazole 100 g/l) and Topas 100 EC (penconazole 100 g/l) was applied twice with 7-day intervals 

and twice with 10-day intervals, respectively. From each garden, 250 g of healthy strawberry samples were 

randomly and aseptically collected. Samples were transported in cold boxes to the laboratory and analyzed 

within 24 h of harvest. About 10 g of each sample was aseptically homogenized in 100 ml of distilled water. 

Homogenates were serially diluted with sterile distilled water and 100 μl from each dilution was plated in 

duplicate on YGC medium (5 g/l yeast extract, 20 g/l glucose, 0.1 g/l chloramphenicol, 14.9 g/l agar) 

supplemented with 0.1% sodium propionate. After incubation at 30 °C for 3 days the colonies were counted 

out in duplicates. According to colony morphology and frequency, yeast colonies were isolated and restreaked 

on YEPD (10 g/l yeast extract, 20 g/l peptone, 20 g/l glucose) medium for purification. All isolated yeast 

strains were stored at 4 °C on YEPD slants and also -80 °C for future analysis. 

2.2. DNA extraction and PCR-RFLP analysis  

Genomic DNA extraction of yeast strains was carried out by a previously developed DNA extraction 

procedure [17]. ITS1-5.8S-ITS2 rDNA gene regions of yeast strains amplified using universal primers ITS1 

(5’-TCCGTAGGTGAACCTGCGG-3’) and ITS4 (5’-TCCTCCGCTTATTGATATGC-3’) and 26S rDNA gene 

regions were amplified using NL1 (5’-GCATATCAATAAGCGGAGGAAAAG-3’) and NL4 (5’-

GGTCCGTGTTTCAAGACGG-3’) primers as previously reported conditions [18, 19]. PCR products were 

electrophoresed and the length of PCR amplicons was calculated by Gel-Pro Analyzer v4.0 software. PCR 

products of ITS1-5.8S-ITS2 rDNA and 26S rDNA gene regions were purified GeneJet PCR Purification Kit 

(Thermo Scientific, K0702) and were digested with Hae III, Hha I and Hinf I restriction endonucleases, 

according to supplier’s instructions. The length of restriction fragments was calculated by using Gel-Pro 

Analyzer v4.0 software The yeast strains were classified concerning restriction patterns. 

2.3. Phylogenetic analysis 

PCR products of selected nine yeast strains were sequenced by utilizing the Applied Biotechnologies 

3500xl Genetic Analyzer. The attained 26S rDNA gene sequences were analyzed by using BLAST (Basic 

Local Alignment Search Tool) online tool on NCBI (National Center for Biotechnology Information) 

webserver. All sequences of 26S rDNA regions were uploaded to GenBank. 26S rDNA sequences of selected 

yeast strains were studied by using MEGAX (Molecular Evolutionary Genetics Analysis) software [16]. The 
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nucleotide sequences of 26S rDNA gene regions of nine yeast strains and Saccharomyces cerevisiae as an 

outgroup were aligned with ClustalW (v1.6) algorithm in MEGA-X. The maximum parsimony tree was 

constructed by using a bootstrap method and Subtree-Pruning-Regrafting (SPR) parameters for the 

determination of phylogenetic relationships of yeast strains [15, 20]. 1000 bootstrap replicates were used to 

defined branch support and bootstrap values above 50% were given. 

2.4. Extracellular enzyme profile 

Extracellular enzyme profiles of identified yeast strains were determined by using the API-ZYM kit 

system (Bio-Mérieux, France). API-ZYM kit system is a minimized and semi-quantitative test system and 

utilized for screening 19 different enzyme activities (Alkaline phosphatase, Esterase (C 4), Esterase lipase (C 

8), Lipase (C 14), Leucine arylamidase, Valine arylamidase, Cysteine arylamidase, Trypsin, α-chymotrypsin, 

Acid phosphatase, Naphthol-AS-BI-phosphohydrolase, α-galactosidase, ß-galactosidase, ß-glucuronidase, α-

glucosidase, ß-glucosidase, N-acetyl-ß-glucosaminidase, α-mannosidase, α-fucosidase). All yeast strains were 

grown in a YEPD-Agar medium at 30 °C for 12 hours with constant shaking (120 rpm/rev). The 65 µl from 

the saturated yeast culture were transferred to each microwell of the API-ZYM strip. The API-ZYM strips 

were incubated at 37 °C for 4 hours. After that, ZYM A and ZYM B reagents were added to each cupule and 

all the strips were incubated at room temperature for 5 minutes. Enzyme profiles of yeast strains were defined 

by the color scalar of the API-ZYM kit system (0-5 scalar). 

3. RESULTS AND DISCUSSION 

3.1. Yeast identification and diversity  

Fruit samples were collected from two different strawberry gardens wherein one different fungicides, 

Klorozon and Topas, were applied but in the other one, no chemicals were applied which make organic 

farming. Depending on the colony morphology differences 26 yeast strains from the organic farming garden 

(Garden 1, G1) and 21 yeast strains from the fungicides applied garden (Garden 2, G2) were selected 

randomly for future identifications (Table 1). The total yeast counts in Garden 1 and Garden 2 were calculated 

as 1.5 x 107 and 1.2 x 103 CFU/ml, respectively. According to European Commission Health & Consumer 

Protection Directorate, the acceptable limits of yeast and mould count in fruits like strawberries can be less 

than 103 CFU/g or ml [21]. In our counts, although the yeast concentration was close to the acceptable limits 

in Garden 2, it was observed that the yeast counts in Garden 1 were well above the acceptable limits. The 

main reason for this situation is that the organic farming application was carried out in the first garden and 

thus the collected strawberry samples were not exposed to fungicides.  

 

Table 1. Isolated yeast strains from strawberry fruit. 

Garden No Yeast strains CFU/ml 

G-1 
S-1, S-2, S-3, S-4, S-5, S-6, S-7, S-8, S-9, S-10, S-11, S-12, S-13, S-14, S-15, S-

16, S-17, S-18, S-19, S-20, S-21, S-22, S-23, S-24, S-25, S-26 
1.5 x 107 

G-2 
S-27, S-28, S-29, S-30, S-31, S-32, S-33, S-34, S-35, S-36, S-37, S-38, S-39, S-

40, S-41, S-42, S-43, S-44, S-45, S-46, S-47 
1.2 x 103 

G-1: Organic strawberry field; G-2: fungicide treated strawberry field. 

 

The effect of fungicides on epiphytic yeasts of grapes, grasses and strawberries were determined 

previously. The fungicide treatment of grapes (including cyprodinil + fludioxonil) and grasses (including 
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phyllosphere) resulted in a dramatic reduction of yeast density as compared with the untreated control [22,23]. 

However, in another research, the yeast counts on fungicide treated grapes (including iprodione, pyrimethanil, 

and cyprodinil + fludioxonil) were found higher than on control samples [24]. The yeast counts on strawberry 

samples treated with Switch (cyprodinil + fludioxonil) or Signum (boscalid + pyraclostrobin) were found to 

be similar to the control [12]. In our research, the yeast counts in untreated samples were greater than in 

fungicide treated samples. Different sampling and isolation strategies, sampling period and fruit ripening can 

cause these kinds of variations as indicated before [12, 25].  

The morphology of colonies was determined at 25 °C on YEPD after growth for 3 days. The isolated 

forty-seven yeast strains were classified into four groups according to their colony morphology features 

(Table 2).  

 

Table 2. Grouping of isolated yeast strains according to colony morphologies. 

Group No Yeast strains 

1 S-1, S-3, S-4, S-5, S-6, S-7, S-9, S-11, S-12, S-20, S-27, S-33, S-38, S-39, S-40 

2 S-14, S-15, S-16, S-18, S-22, S-24, S-26, S-29, S-30, S-31, S-32, S-37, S-43, S-47 

3 S-17, S-19, S-21, S-23, S-25, S-28, S-34, S-35, S-36, S-45, S-46 

4 S-2, S-8, S-10, S-13, S-41, S-42, S-44 

 

Restriction analyzes of ITS1-5.8S-ITS2 and 26S rDNA gene regions are used to identify yeast strains 

isolated from different foods and to determine the differences between strains [26-28]. The amplification 

results of ITS1-5.8S-ITS2 and 26S rDNA regions were given in Table 3 and Table 4, respectively. It was 

observed that PCR products of ITS1-5.8S-ITS2 were formed in two groups with the length of ~400bp (29 

yeast strains) and ~650bp (18 yeast strains). Similarly, PCR products of 26S rDNA were grouped in two with 

the length of ~550bp (29 yeast strains) and ~650bp (18 yeast strains). Because of the variability within the 

ribosomal DNA regions, the restriction fragment length polymorphism (RFLP) analysis of these regions is 

useful for interspecies and intraspecies level identification of yeasts [29, 30]. Therefore, in this study, the 

amplified rDNA regions of 26S rDNA and ITS1-5.8S-ITS2 rDNA regions were cut with Hae III, Hha I and 

Hinf I restriction enzymes and regrouped again according to the restriction fragment lengths. It was observed 

that the restriction profiles of yeast strains present in the first and second ITS1-5.8S-ITS2 rDNA PCR groups 

were similar (Table 3). The yeast strains in the first 26S rDNA PCR group displayed similar restriction 

patterns while the second PCR group showed three restriction profiles (Table 4). The restriction patterns of 

Hinf I, Hae III, and Hha I restriction enzymes in this group were similar to previously reported profiles of 

Metschnikowia pulcherrima yeast species [31, 32]. Eleven yeast strains (S-17, S-19, S-21, S-23, S-25, S-28, 

S-34, S-35, S-36, S-45 and S-46) were not digested with Hha I restriction enzyme and thus it has a distinct 

profile from other yeast strains. It was observed that two yeast strains (S-8 and S-13) have differed from other 

yeast strains (S-2, S-10, S-41, S-42 and S-44) for the Hae III restriction pattern. Generally, the restriction 

patterns of yeast strains with HaeIII, HinfI and HhaI enzymes are similar to previous studies [27, 32-35].  

When the yeast strains present in colony morphology groups were compared with the PCR-RFLP 

group, the yeast strains present in the first and second colony morphology groups localized in the first group 

of ITS1-5.8S-ITS2 and 26S rDNA. All yeast strains in the third morphology group localized in the same 26S 

rDNA group. The yeast strains in the fourth morphology group were divided into two different groups: two 

yeast strains (S-8, S-13) in group 3 and five yeast strains (S-2, S-10, S-41, S-42, S-44) in group 4. No 
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difference in morphology and PCR-RFLP groups was observed in the distribution of yeast strains isolated 

from strawberries collected from organic and fungicide-treated gardens. 

 

Table 3. PCR-RFLP results of ITS1-5.8S-ITS2 rDNA gene region.  

PCR* 
Profile 

number 
Yeast strains 

Restriction Fragment* 

Hae III Hha I Hinf I 

~400 1 

S-1, S-3, S-4, S-5, S-6, S-7, S-9, S-11, S-12, S-14, S-15, 

S-16, S-18, S-20, S-22, S-24, S-26, S-27, S-29, S-30, S-

31, S-32, S-33, S-37, S-38,  S-39, S-40, S-43, S-47 

270-110 210-95-95 190-190 

~650 2 
S-2, S-8, S-10, S-13, S-17, S-19, S-21, S-23, S-25, S-28, 

S-34, S-35, S-36, S-41, S-42, S-44, S-45, S-46 
- 

315-310-

125 

325-175-

160-65 

PCR and restriction products were given as base pair (bp). 

 

Table 4. PCR-RFLP results of 26S rDNA gene region. 

PCR* 
Profile 

number 
Yeast strains 

Restriction Fragment* 

Hae III Hha I Hinf I 

~550 1 

S-1, S-3, S-4, S-5, S-6, S-7, S-9, S-11, S-12, S-14, S-15, 

S-16, S-18, S-20, S-22, S-24, S-26, S-27, S-29, S-30, S-

31, S-32,  S-33, S-37, S-38 S-39, S-40, S-43, S-47 

285-115-

110-75 
390-150-60 340-230 

~650 

2 
S-17, S-19, S-21, S-23, S-25, S-28, S-34, S-35, S-36, S-

45, S-46 

440-130-

125 
- 400-190 

3 S-2, S-10, S-41, S-42, S-44 
440-130-

125 
530-65 430-215-50 

4 S-8, S-13 
370-150-

140 
530-65 430-215-50 

*PCR and restriction products were given as base pair (bp). 

 

Employing PCR-RFLP analysis, four different restriction profiles were attained. We assumed that 

each restriction profile may represent different yeast species. At least one yeast strain from the groups formed 

according to morphological differences and PCR-RFLP profiles was randomly selected and used for 

sequencing. Therefore, nine yeast strains (S-3, S-5, S-8, S-10, S-19, S-20, S-22, S-24 and S-33) were 

sequenced and analyzed by the BLAST tool on the NCBI web server. The nucleotide sequences of the 26S 

rDNA gene region were submitted to GenBank Database on NCBI and attained accession numbers for all 

sequences (Table 5). 

According to the BLAST analysis of the 26S rDNA gene region, all sequenced yeast strains 

displayed 96-99% similarity with their reference yeast strains except S-19. This yeast strain showed 87.0% 

and 81.71% similarity with the reference strains of KT922724.1 and KY107833.1 (CBS: 2585), respectively. 

S-3, S-5, S-20, S-22, S-24 and S-33 yeast strains were identified as M. pulcherrima. Therefore, 29 yeast 

strains present in the first PCR-RFLP group of ITS1-5.8S-ITS2 and 26S rDNA can be identified as M. 

pulcherrima. Similarly, the sixteen yeast strains present in the second and third PCR-RFLP group of 26S 

rDNA can be defined as Hanseniaspora uvarum. Since the S-8 yeast strain was identified as 

Wickerhamomyces pijperi according to the BLAST result, it can be assumed that the S-13 yeast strain is the 

same species. These results showed that the restriction enzymes used for RFLP analysis were suitable for the 

discrimination of yeast strains. 

The predominant yeast species associated with strawberry fruits were M. pulcherrima (61.7%), H. 

uvarum (34.0%) and W. pijperi (4.3%). The percent distribution of M. pulcherrima yeast species on 

strawberry fruits collected from Garden 1 and Garden 2 was similar: 65.4% in the organic garden and 57.1% 
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in the fungicides applied garden. On the other hand, it was determined that the H. uvarum yeast population 

(42.9%) on strawberry fruits collected from the fungicides applied garden was higher than the organic garden 

(26.9%). W. pijperi yeast species was identified only on strawberry samples collected from the Organic 

garden. It is observed that the yeast strains belonging to M. pulcherrima and H. uvarum were dominant on 

strawberry fruits. 

 

Table 5. BLAST results of 26S rDNA gene region. 

Yeast Strains 
Similarity 

(%) 

Identified yeast strains 

(Ref. Acc. Number) 

GenBank 

Accession Number 

S-3 96.70% M. pulcherrima (KY108490.1) MZ401466 

S-5 96.08% M. pulcherrima (KY108490.1) MZ401467 

S-8 99.57% W. pijperi (KY110127.1) MZ401468 

S-10 99.82% H. uvarum (KY107833.1) MZ401469 

S-19 81.71% H. uvarum (KY107833.1) MZ401470 

S-20 97.77% M. pulcherrima (KY108498.1) MZ401471 

S-22 96.81% M. pulcherrima (KY108490.1) MZ401472 

S-24 98.59% M. pulcherrima (KY108497.1) MZ401473 

S-33 96.35% M. pulcherrima (KY108490.1) MZ401474 

 

It was shown that the application of fungicides did not affect the diversity of the epiphytic yeast 

community on strawberries [12]. Similarly, in our research the diversity of yeast species on strawberries was 

similar, but the density of some yeast species on fruits collected from fungicide treated and untreated gardens 

was different.  

Previously reported that 32 different yeast species were distributed on soft-grained fruits (raspberry, 

blackberry, strawberry, etc.) [26]. In our study, only M. pulcherrima and H. uvarum yeast species were 

identified on strawberry fruit, but the other yeast species cannot be determined. However, W. pijperi yeast 

species, which was previously reported in blackberry juice, pineapple and grape grains, was not recorded on 

strawberry fruits [36]. Thus W. pijperi yeast strain was reported on strawberry fruit for the first time in our 

study. M. pulcherrima and H. uvarum yeast species are used as biocontrol agents. It has been reported that 

they have protective properties against Botrytis cinerea-induced diseases that occur after harvest in some 

fruits [37-40]. 

3.2. Phylogenetic analysis 

The evolutionary history was inferred using the Maximum Parsimony method [15]. The phylogenetic 

analysis of sequenced yeast strains was carried out by using the MEGAX phylogenetic analysis tool [16]. The 

D1/D2 domain of the 26S rDNA gene sequences of yeast strains were aligned by the ClustalX v1.6 algorithm 

and the maximum parsimony tree was constructed by using default parameters (Figure 1). The bootstrap 

consensus tree inferred from 1000 replicates is taken to represent the evolutionary history of the taxa 

analyzed. Therefore, 1000 bootstrap replicates were used to defined branch support. The percentage of trees is 

shown next to the branch and frequencies under 50% are not given. The MP tree was obtained using the 

Subtree-Pruning-Regrafting (SPR) algorithm with search level 1 in which the initial trees were obtained by 

the random addition of sequences (10 replicates) [20]. This analysis involved 15 nucleotide sequences 

belonging to nine isolated yeast strains, three reference strains and one outgroup strain. S. cerevisiae yeast 
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species was selected as an outgroup. The included codon positions were 1st + 2nd + 3rd + Noncoding. There 

were a total of 1071 positions in the final dataset. Consistency Index for all sites (CI) and parsimony 

informative sites (iCI) were 0.846154 and 0.772021, respectively. The Retention Index for all sites (RI) and 

parsimony informative sites (iRI) were 0.840387 and 0.840387, respectively. Rescaled Index for all sites (RC) 

and parsimony informative sites (iRC) were 0.711097 and 0.648796, respectively. According to the maximum 

parsimony tree, nine yeast strains were separated into two main clades. It was determined that the first clade 

consisted of two subclades including M. pulcherrima yeast strains in the first subclade and H. uvarum yeast 

strains in the second subclade. The second clade in the maximum parsimony tree contained W. pijperi yeast 

species. 

3.3. Extracellular enzyme profiles 

The ability of the yeasts to the breakdown peptides, phosphomonoesters, lipids, 

mucopolysaccharides, polysaccharides, chitin, cellulose, starch, and galactans may be evaluated simply with 

API ZYM assay [41]. Characterization of extracellular hydrolytic enzyme activities is important for industrial 

applications of the yeast species. In addition, it is suitable for assessing microbial, biochemical and functional 

diversity of microorganisms like yeast. Thus, characterizing these enzyme activities can be utilized to define 

and discriminate the yeast strains within the species [42]. In this study, the extracellular enzyme profile of all 

isolated yeast strains was determined using the API-ZYM kit system. The activity of the enzymes was 

expressed in nanomoles of the hydrolyzed substrate according to the intensity of the color reaction on a five-

step scale: 0 means no reaction, 1 means 5 nanomoles, 2 means 10 nanomoles, 3 means 20 nanomoles, 4 

means 30 nanomoles, 5 means 40 nanomoles and more [43].  

 

 

Figure 1. Maximum-parsimony phylogenetic tree of yeast species obtained with sequences of 26S rDNA regions. MP tree 

was constructed by using the bootstrap method and Subtree-Prunning-Regrafting (SPR) parameters in MEGAX software. 

1000 bootstrap replicates were used to define branch support and above 50% bootstrap values were given. S. cerevisiae 

yeast was selected as an outgroup. 
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According to APIZYM test results, the extracellular enzyme profile of yeast strains was given in 

Table 6, and the enzyme profile of one yeast strain representing each group was presented in Figure 2. It was 

found that none of the isolates had an activity of lipase, trypsin, α-chymotrypsin, α-galactosidase,                           

β-galactosidase, β-glucuronidase, N-acetyl-β-glucosaminidase, α-mannosidase and α-fucosidase. Therefore, 

these enzymes were not included in Table 6 and Figure 2. Although high levels of leucine arylamidase and                 

β-glucosidase activity were found in all yeast strains, there were differences in other enzyme activities.  

 

 

Figure 2. The extracellular enzyme activities of yeast strains. Seven yeast strains representing each enzyme profile were 

selected and given. 

 

Table 6. Extracellular enzyme profile of yeast strains determined with API ZYM test. 

Yeast strains C 1 2 3 4 5 6 7 8 9 

M. pulcherrima 

(S-1, S-3, S-4, S-5, S-6, S-7, S-11, S-27, S-29, S-

32, S-38, S-47) 

0 3 4 2 5 2 5 4 4 3 

M. pulcherrima 

(S-9, S-14, S-15, S-16, S-18, S-22, S-37) 
0 3 2 2 5 2 5 4 5 3 

M. pulcherrima 

(S-12, S-20, S-24, S-31, S-40) 
0 2 3 2 5 2 5 4 5 3 

M. pulcherrima 

(S-26, S-30, S-33, S-39, S-43) 
0 1 2 2 5 2 5 4 4 4 

H. uvarum 

(S-2, S-10, S-41, S-42, S-44) 
0 5 3 2 5 2 5 2 0 4 

H. uvarum 

(S-17, S-19, S-21, S-23, S-25, S-28, S-34, S-35, S-

36, S-45, S-46) 

0 3 3 1 5 1 2 1 0 4 

W. pijperi 

(S-8, S-13) 
0 5 2 2 5 1 5 5 0 4 

C, Control; 1: Alkaline Phosphatase; 2: Esterase (C4); 3: Esterase Lipase (C8); 4: Leucine arylamidase; 5: Valine 

arylamidase; 6: Acid Phosphatase; 7: Naphthol-AS-BI-phosphohydrolase; 8: α-glucosidase; 9: β-glucosidase. 

 

W. pijperi yeast species (S-8 and S-13) showed the same extracellular enzyme profile. Although these 

yeast strains showed high alkaline phosphatase, acid phosphatase naphthol-AS-BI-phosphohydrolase and β-

glucosidase enzyme activity, it was determined that they did not contain α-glucosidase enzyme activity as 
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seen in H. uvarum yeast species. All H. uvarum yeast strains showed high leucine arylamidase and β-

glucosidase activity but no α-glucosidase activity was recorded. The alkaline phosphatase, acid phosphatase 

and naphthol-AS-BI-phosphohydrolase enzyme activities of yeast strains (S-17, S-19, S-21, S-23, S-25, S-28, 

S-34, S-35, S-36, S-45, S-46) were lower than other H. uvarum yeast strains (S-2, S-10, S-41, S-42, S-44). 

Interestingly, it was observed that the groups formed according to the extracellular enzyme profiles of H. 

uvarum yeast strains were overlapped with the group of 26S rDNA PCR-RFLP.  

Even though all M. pulcherrima yeast strains showed a single restriction profile according to PCR-

RFLP results, it was determined that yeast strains had four different enzyme profiles according to extracellular 

enzyme results. All M. pulcherrima yeast strains showed high leucine arylamidase, acid phosphatase, 

naphthol-AS-BI-phosphohydrolase and α-glucosidase activity. However, slight differences were observed in 

the alkaline phosphatase, esterase, esterase lipase and β-glucosidase enzyme activities of yeast strains. In our 

results, M. pulcherrima yeast strains showed different enzyme activities even if they were identified as the 

same species, like H. uvarum strains. 

The β-glucosidase enzyme (EC 3.2.1.21) is an industrial enzyme used to break the β-1-4 glycosidic 

bond in oligosaccharides or glycosidic compounds. β-glucosidases are also used in fruit juice and wine 

production, as well as the sweetening, aroma formation and quality enhancement of wines. Leucine 

arylamidase enzyme (EC 3.4.11.2) is an enzyme belonging to the aminopeptidase group and hydrolyzes the 

N-terminal ends of amino acids. Like the β-glucosidase enzyme, leucine arylamidase is also used in wine 

production to increase the aroma and taste quality of wines [44-47]. 

4. CONCLUSION 

Due to the absence of antibiotics or mycotoxins production in yeast, yeasts have been used alone or 

integrated with other control methods in the biological control of some fungal diseases in fruits. [12,48-50]. It 

is important to determine yeast diversity which including potential yeast strains for the biological control, of 

fruits. Therefore, in this study, yeast diversity and extracellular enzyme profiles of yeast strains were 

determined on strawberry fruits collected from the organic and fungicide applied fields. It was determined that 

yeast density in strawberry fruits collected from organic farming fields was higher than the fungicide treated 

strawberries. W. pijperi yeast species was recorded only in organic strawberry fruits, and the distribution of 

other yeast species was determined to be similar. The results indicate that the fungicide treatment has no 

drastic effect on yeast species with high density, but it causes the elimination of rarely found yeast species in 

biota. In addition, the fungicide treatment did not affect the extracellular enzyme profile of yeast strains. All 

isolated yeast strains showed industrially important high β-glucosidase activity. Although M. pulcherrima and 

H. uvarum yeast strains were defined as the same species by 26S rDNA sequencing analysis, it was 

determined that yeast strains revealed different extracellular enzyme activities within the species. As indicated 

before, the API-ZYM system could be useful for the identification of yeast strains of the genus Metschnikowia 

and Hanseniaspora and the differentiation of the enzymotypes for epidemiological purposes. In the future, for 

the selection of industrial yeast species, it will be appropriate to determine the biochemical and metabolic 

differences of yeast strains besides the molecular differences. 
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