©2023 Ada Academica https://adac.eeEur. J. Math. Anal. 3 (2023) 11doi: 10.28924/ada/ma.3.11 Woven K −g−Fusion Frames in Hilbert C∗−Modules Fakhr-dine Nhari1, Mohamed Rossafi2,∗ 1Laboratory Analysis, Geometry and Applications Department of Mathematics, Faculty Of Sciences, University of Ibn Tofail, P. O. Box 133 Kenitra, Morocco nharidoc@gmail.com 2LaSMA Laboratory, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, P. O. Box 1796 Fez Atlas, Morocco rossafimohamed@gmail.com ∗Correspondence: rossafimohamed@gmail.com Abstract. In this paper, we introduced the notion of woven K − g−fusion frames in Hilbert C∗−modules. We present necessary and sufficient conditions for these woven and also constructthem by linear bounded operator. Finally we study perturbation of weaving K−g−fusion frames. 1. Introduction Basis is one of the most important concepts in Vector Spaces study. However, Frames generaliseorthonormal bases and were introduced by Duffin and Schaefer [3] in 1952 to analyse some deepproblems in nonharmonic Fourier series by abstracting the fundamental notion of Gabor [5] for signalprocessing. In 2000, Frank-larson [4] introduced the concept of frames in Hilbet C∗−modulesas a generalization of frames in Hilbert spaces. The basic idea was to consider modules over C∗−algebras of linear spaces and to allow the inner product to take values in the C∗−algebras [6].Many generalizations of the concept of frame have been defined in Hilbert C∗-modules [7,9,11–16].Throughout this paper, H is considered to be a countably generated Hilbert C∗−module. Let {Hj}j∈J are the collection of Hilbert C∗−module and {Wj}j∈J is a collection of closed orthogonallycomplemented submodules of H, where J be finite or countable index set. End∗A(H,Hj) is a setof all adjointable operator from H to Hj . In particular End∗A(H) denote the set of all adjointableoperators on H. PWj denote the orthogonal projection onto the closed submodule orthogonally Received: 31 Jul 2022.2010 Mathematics Subject Classification. Primary 41A58; Secondary 42C15. Key words and phrases. fusion frames; K − g−fusion frames; woven K − g−fusion frames; C∗-algebra; Hilbert C∗-modules. 1 https://adac.ee https://doi.org/10.28924/ada/ma.3.11 Eur. J. Math. Anal. 10.28924/ada/ma.3.11 2 complemented Wj of H. Define the module l2({Hj}j∈J) = {{fj}j∈J : fj ∈ Hj,‖ ∑ j∈J 〈fj, fj〉‖ < ∞} with A−valued inner product 〈f ,g〉 = ∑j∈J〈fj,gj〉, where f = {fj}j∈J and g = {gj}j∈J, clearly l2({Hj}j∈J) is a Hilbert A−module. Definition 1.1. [8] Let A be a unital C∗-algebra and H be a left A-module, such that the linearstructures of A and H are compatible. H is a pre-Hilbert A-module if H is equipped with an A-valued inner product 〈., .〉 : H×H →A, such that is sesquilinear, positive definite and respectsthe module action. In the other words, (i) 〈f , f 〉≥ 0 for all f ∈ H and 〈f , f 〉 = 0 if and only if f = 0.(ii) 〈af + g,h〉 = a〈f ,h〉 + 〈g,h〉 for all a ∈A and f ,g,h ∈ H.(iii) 〈f ,g〉 = 〈g,f 〉∗ for all f ,g ∈ H. For f ∈ H, we define ||f || = ||〈f , f 〉||12 . If H is complete with ||.||, it is called a Hilbert A-moduleor a Hilbert C∗-module over A. For every a in a C∗-algebra A, we have |a| = (a∗a) 12 and the A-valued norm on H is defined by |f | = 〈f , f 〉12 for f ∈ H. Lemma 1.2. [10] Let {Wj}j∈J be a sequence of orthogonally complemented closed submodules of H and T ∈ End∗A(H) invertible, if T ∗TWj ⊂ Wj for each j ∈ J, then {TWj}j∈J is a sequence of orthogonally complemented closed submodules and PWjT ∗ = PWjT ∗PTWj . Lemma 1.3. [2]. Let H and K two Hilbert A-modules and T ∈ End∗A(H,K). Then the following statements are equivalent: (i) T is surjective.(ii) T∗ is bounded below with respect to norm, i.e., there is m > 0 such that ‖T∗x‖ ≥ m‖x‖ for all x ∈ K.(iii) T∗ is bounded below with respect to the inner product, i.e., there is m′ > 0 such that 〈T∗x,T∗x〉≥ m′〈x,x〉 for all x ∈ K. Lemma 1.4. [1]. Let U and H two Hilbert A-modules and T ∈ End∗A(U,H). Then:(i) If T is injective and T has closed range, then the adjointable map T∗T is invertible and ‖(T∗T )−1‖−1 ≤ T∗T ≤‖T‖2. (ii) If T is surjective, then the adjointable map TT∗ is invertible and ‖(TT∗)−1‖−1 ≤ TT∗ ≤‖T‖2. Definition 1.5. [10] Let {Wi}i∈I be a sequence of closed orthogonally complemented submodulesof H, {vi}i∈I be a familly of positive weights in A, i.e., each vi is a positive invertible element from https://doi.org/10.28924/ada/ma.3.11 Eur. J. Math. Anal. 10.28924/ada/ma.3.11 3 the center of the C∗−algebra A and Λi ∈ End∗A(H,Hi ) for all i ∈ I. We say that Λ = {Wi, Λi,vi}i∈Iis a g−fusion frame for H if and only if there exists two constants 0 < A ≤ B < ∞ such that A〈x,x〉≤ ∑ i∈I v2i 〈ΛiPWix, ΛiPWix〉≤ B〈x,x〉, ∀x ∈ H. (1.1) The constants A and B are called the lower and upper bounds of g−fusion frame, respectively. If A = B then Λ is called tight g-fusion frame and if A = B = 1 then we say Λ is a Parseval g−fusionframe. If Λ satisfies the inequality∑ i∈I v2i 〈ΛiPWix, ΛiPWix〉≤ B〈x,x〉, ∀x ∈ H. then it is called a g−fusion bessel sequence with bound B in H. Definition 1.6. [10]let Λ = {Wj, Λj,vj}j∈J be a g−fusion bessel sequence for H. Then the operator TΛ : l2({Hj}j∈J) → H defined by TΛ({fj}j∈J) = ∑ j∈J vjPWj Λ ∗ j fj, ∀{fj}j∈J ∈ l 2({Hj}j∈J). Is called synthesis operator. We say the adjoint UΛ of the synthesis operator the analysis operatorand it is defined by UΛ : H→ l2({Hj}j∈J) such that UΛ(f ) = {vjΛjPWj (f )}j∈J, ∀f ∈ H. The operator SΛ : H → H defined by SΛf = TΛUΛf = ∑ j∈J v2j PWj Λ ∗ j ΛjPWj (f ), ∀f ∈ H. Is called g−fusion frame operator. It can be easily verify that 〈SΛf , f 〉 = ∑ j∈J v2j 〈ΛjPWj (f ), ΛjPWj (f )〉, ∀f ∈ H. (1.2) Furthermore, if Λ is a g−fusion frame with bounds A and B, then A〈f , f 〉≤ 〈SΛf , f 〉≤ B〈f , f 〉, ∀f ∈ H. It easy to see that the operator SΛ is bounded, self-adjoint, positive, now we proof the inversibilityof SΛ. Let f ∈ H we have ||UΛ(f )|| = ||{vjΛjPWj (f )}j∈I|| = || ∑ j∈J v2j 〈ΛjPWj (f ), ΛjPWj (f )〉|| 1 2 . Since Λ is g−fusion frame then √ A||〈f , f 〉|| 1 2 ≤ ||UΛf ||.Then √ A||f || ≤ ||UΛf ||. https://doi.org/10.28924/ada/ma.3.11 Eur. J. Math. Anal. 10.28924/ada/ma.3.11 4 Frome lemma 1.3, TΛ is surjective and by lemma 1.4, TΛUΛ = SΛ is invertible. We now, AIH ≤ SΛ ≤ BIH and this gives B−1IH ≤ S−1Λ ≤ A−1IH. 2. Woven K −g−fusion frames in Hilbert C∗−modules Throughout this paper, [m] = {1, 2, ...,m} for each m > 1, {Wij}j∈J,i∈[m] is a collection of closedorthogonally complemented submodules of H, {vij}j∈J,i∈[m] is a family of weights, K ∈ End∗A(H)and {Λij}j∈J,i∈[m] ∈ End∗A(H,Hij) where Hij are Hilbert A−modules. Definition 2.1. A family of g−fusion frames {Wij, Λij,vij}j∈J,i∈[m] for H is said to be K−g−fusionwoven if there exist universal positive constants 0 < A ≤ B such that for each partition {σi}i∈[m]of J, the family {Wij, Λij,vij}j∈σi,i∈[m] is a K −g−fusion frame for H with bounds A and B. In next theorem, we provide a necessary and sufficient condition for weaving K−g−fusion frames. Theorem 2.2. Assume that {Wj, Λj,vj}j∈J and {Vj,θj,µj}j∈J are two K − g−fusion frames for H where Λj ∈ End∗A(H,Hj) and θj ∈ End ∗ A(H,Hj) for any j ∈ J, the following assertions are equivalent. (1) {Wj, Λj,vj}j∈J and {Vj,θj,µj}j∈J are K −g−fusion woven.(2) there exists α > 0 such that for each σ ⊂ J there exists a bounded linear operator ψσ : l σ 2 ({Hj}j∈J) → H, ψσ{xj}j∈J = ∑ j∈σ vjPWj Λ ∗ j xj + ∑ j∈σc µjPVjθ ∗ j xj, such that αKK∗ ≤ ψσψ∗σ, where lσ2 ({Hj}j∈J) = {{xj}j∈J = {fj}j∈σ ∪{gj}j∈σc : fj ∈ Hj,gj ∈ Hj,‖ ∑ j∈J 〈xj,xj〉‖ < ∞}. Proof. (1) =⇒ (2): Suppose that A is an universal lower frame bound for {Wj, Λj,vj}j∈J and {Vj,θj,µj}j∈J. Choose α = A and ψσ = Tσ for every σ ⊂ J, where Tσ is the synthesis operator of {Wj, Λj,vj}j∈σ ∪{Vj,θj,µj}j∈σc . Then, for any {xj}j∈J ∈ lσ2 ({Hj}j∈J) we have ψσ{xj}j∈J = Tσ{xj}j∈J = ∑ j∈σ vjPWj Λ ∗ j xj + ∑ j∈σc µjPVjθ ∗ j xj, and also, for each f ∈ H, A〈K∗f ,K∗f 〉≤ 〈T∗σf ,T ∗ σf 〉 = 〈ψ ∗ σf ,ψ ∗ σf 〉. Thus, αKK∗ ≤ ψσψ∗σ. (2) =⇒ (1): Let σ ⊂ J and f ∈ H, so it is easy to check that ψ∗σf = {vjΛjPWjf}j∈σ ∪{µjθjPVjf}j∈σc. https://doi.org/10.28924/ada/ma.3.11 Eur. J. Math. Anal. 10.28924/ada/ma.3.11 5 Therefore, α〈K∗f ,K∗f 〉 = 〈αKK∗f , f 〉 ≤ 〈ψσψ∗σf , f 〉 = 〈ψ∗σf ,ψ ∗ σf 〉 = ∑ j∈σ v2j 〈ΛjPWjf , ΛjPWjf 〉 + ∑ j∈σc µ2j 〈θjPVjf ,θjPVjf 〉. This gives that α is an universal lower frame bound of {Wj, Λj,vj}j∈J and {Vj,θj,µj}j∈J. � In next results, we construct a K −g−fusion woven by using a bounded linear operator. Theorem 2.3. Let {Wij, Λij,vij}j∈J,i∈[m] be a K−g−fusion woven for H with common frame bounds A,B and assume that U ∈ End∗A(H) has closed range so that R(K ∗) ⊂ R(U) and KU = UK. Then {UWij, ΛijPWijU ∗,vij}j∈J,i∈[m] is also K −g−fusion woven for R(U). Proof. By the open mapping theorem, UWij is closed for any j ∈ J and i ∈ [m]. Using Lemme(refk-g-fusion ), we can write for each f ∈R(U), A〈K∗f ,K∗f 〉 = A〈(U+)∗U∗K∗f , (U+)∗U∗K∗f 〉 ≤ A‖U+‖2〈K∗U∗f ,K∗U∗f 〉 ≤ ‖U+‖2 ∑ i∈[m] ∑ j∈J v2ij〈ΛijPWijU ∗f , ΛijPWijU ∗f 〉 = ‖U+‖2 ∑ i∈[m] ∑ j∈J v2ij〈ΛijPWijU ∗PUWijf , ΛijPWijU ∗PUWijf 〉. The upper bound is obvious. � Theorem 2.4. Let K have closed range, {Wij, Λij,vij}j∈J,i∈[m] be a K−g−fusion woven for H with the universal bounds A,B and U ∈ End∗A(H) has closed range so that R(U ∗) ⊂ R(K). Then {UWij, ΛijPWijU ∗,vij}j∈J,i∈[m] is a K − g−fusion woven for H if and only if there exists a δ > 0 such that for every f ∈ H, 〈U∗f ,U∗f 〉≥ δ〈K∗f ,K∗f 〉. Proof. Let f ∈ H and {UWij, ΛijPWijU∗,vij}j∈J,i∈[m] is a K − g−fusion woven for H with lowerbound C, we get C〈K∗f ,K∗f 〉≤ ∑ i∈[m] ∑ j∈J v2ij〈ΛijPWijU ∗PUWijf , ΛijPWijU ∗PUWijf 〉 = ∑ i∈[m] ∑ j∈J v2ij〈ΛijPWijU ∗f , ΛijPWijU ∗f 〉 ≤ B〈U∗f ,U∗f 〉. https://doi.org/10.28924/ada/ma.3.11 Eur. J. Math. Anal. 10.28924/ada/ma.3.11 6 Therefore, 〈U∗f ,U∗f 〉≥ √C B 〈K∗f ,K∗f 〉. For the opposite implication, we can write for all f ∈ H, 〈U∗f ,U∗f 〉 = 〈(K+)∗K∗U∗f , (K+)∗K∗U∗f 〉≤ ‖K+‖2〈K∗U∗f ,K∗U∗f 〉. Hence, we have Aδ‖K+‖−2〈K∗f ,K∗f 〉≤ A‖K+‖−2〈U∗f ,U∗f 〉 ≤ A〈K∗U∗f ,K∗U∗f 〉 ≤ ∑ i∈[m] ∑ j∈J v2ij〈ΛijPWijU ∗f , ΛijPWijU ∗f 〉 = ∑ i∈[m] ∑ j∈J v2ij〈ΛijPWijU ∗PUWijf , ΛijPWijU ∗PUWijf 〉 ≤ B‖U‖2〈f , f 〉. So, {UWij, ΛijPWijU∗,vij}j∈J,i∈[m] is a K − g−fusion woven for H with frame bounds Aδ‖K+‖−2and B‖U‖2. � Theorem 2.5. Let {Wij, Λij,vij}j∈J,i∈[m] be a K − g−fusion woven for H with common frame bounds A and B. Suppose that 0 ≤ C ≤ |w(i) j |2 ≤ D < ∞ for any i ∈ [m] and j ∈ J, then {Wij,w (i) j Λij,vij}j∈J,i∈[m] is a K −g−fusion woven for H with frame bounds AC and BD. Proof. For any partition {σi}i∈[m] of J and f ∈ H, we get AC〈K∗f ,K∗f 〉 = min i∈[m] |w(i) j |2A〈K∗f ,K∗f 〉≤ ∑ i∈[m] ∑ j∈σi v2ij〈w (i) j ΛijPWijf ,w (i) j ΛijPWijf 〉 ≤ max i∈[m] |w(i) j |2B〈f , f 〉 = BD〈f , f 〉. � Theorem 2.6. Let I ⊂ J be arbitrary and {Wij, Λij,vij}j∈I,i∈[m] be a K − g−fusion woven for H. Then {Wij, Λij,vij}j∈J,i∈[m] is a K −g−fusion woven. Proof. Assume that σi ⊂ J, so σi ∩I⊂ I and A is the lower bound of {Wij, Λij,vij}j∈σi∩I,i∈[m], thenfor every f ∈ H we have A〈K∗f ,K∗f 〉≤ ∑ i∈[m] ∑ j∈σi∩I v2ij〈ΛijPWijf , ΛijPWijf 〉 ≤ ∑ i∈[m] ∑ j∈σi v2ij〈ΛijPWijf , ΛijPWijf 〉. This implies the statement. � Next theorem is shows that even if one subspace is deleted, it dose not still remain a K−g−fusionwoven. https://doi.org/10.28924/ada/ma.3.11 Eur. J. Math. Anal. 10.28924/ada/ma.3.11 7 Theorem 2.7. Let K has closed range, I⊂ J and {Wij, Λij,vij}j∈J,i∈[m] be a K −g−fusion woven for H with the bounds A,B. If C = ∑ i∈[m] ∑ j∈I v2ij‖ΛijPWij‖ 2 < A‖K+‖2, then {Wij, Λij,vij}j∈J−I,i∈[m] is a K −g−fusion woven for R(K). Proof. The upper bound is obvious. Suppose that σi i∈[m] ⊂ J− I and f ∈R(K), so we get∑ i∈[m] ∑ j∈σi v2ij〈ΛijPWijf , ΛijPWijf 〉 = ∑ i∈[m] ∑ j∈σi∪I v2ij〈ΛijPWijf , ΛijPWijf 〉− ∑ i∈[m] ∑ j∈I v2ij〈ΛijPWijf , ΛijPWijf 〉 ≥ A〈K∗f ,K∗f 〉− ∑ i∈[m] ∑ j∈I v2ij‖ΛijPWij‖ 2〈f , f 〉 ≥ (A−C‖K+‖2)〈K∗f ,K∗f 〉. � Theorem 2.8. Let {Wij, Λij,vij}j∈J,i∈[m] be a K − g−fusion woven for H with bounds A,B. For each i ∈ [m],j ∈ J and a index set Iij , suppose that {f (k) ij }k∈Iij ∈ Λij(Wij) is a Parseval frame for Hij such that for every finite subset Kij ⊂ Iij , the set {f kij }k∈Iij−Kij is a frame with the lower bound Cij . Let W̃ij = span{Λ∗ijf (k) ij }k∈Iij−Kij for any i ∈ [m] and j ∈ J, then {W̃ij, Λij,vij}j∈J,i∈[m] is a K −g−fusion woven for H with the bounds (mini∈[m],j∈JCij)A and B. Proof. Obviously, B is the upper bound of {W̃ij, Λij,vij}j∈J,i∈[m]. Assume that f ∈ H and {σi}i∈[m] ∈ J, so ∑ i∈[m] ∑ j∈σi v2ij〈ΛijPW̃ijf , ΛijPW̃ijf 〉 = ∑ i∈[m] ∑ j∈σi v2ij ∑ k∈Iij 〈ΛijPW̃ijf , f (k) ij 〉〈f (k) ij , ΛijPW̃ij f 〉 ≥ ∑ i∈[m] ∑ j∈σi v2ij ∑ k∈Iij−Kij 〈ΛijPW̃ijf , f (k) ij 〉〈f (k) ij , ΛijPW̃ij f 〉 ≥ ∑ i∈[m] ∑ j∈σi v2ijCij〈ΛijPWijf , ΛijPWijf 〉 ≥ ( min i∈[m],j∈J Cij) ∑ i∈[m] ∑ j∈σi v2ij〈ΛijPWijf , ΛijPWijf 〉 ≥ ( min i∈[m],j∈J Cij)A〈K∗f ,K∗f 〉. � Theorem 2.9. Let {Wij, Λij,vij}j∈J is a K−g−fusion frame for H for each i ∈ [m]. Suppose that for a partition collection of disjoint finite sets {δi}i∈[m] of J and for any � > 0 there exists a partition {σi}i∈[m] of the set J−∪i∈[m]δi such that {Wij, Λij,vij}j∈(σi∪δi ),i∈[m] has a lower K − g−fusion frame bound less than �. Then {Wij, Λij,vij}j∈J,i∈[m] is not a woven. https://doi.org/10.28924/ada/ma.3.11 Eur. J. Math. Anal. 10.28924/ada/ma.3.11 8 Proof. We can write J = ∪j∈NJj , where Jj are disjoint index sets. Assume that δ1j = ∅ for all i ∈ [m] and � = 1. Then, there exists a partition σi1i∈[m] of J such that {Wij, Λij,vij}j∈(σi1∪δi1),i∈[m]has a lower bound (also, optimal lower bound) less than 1. Thus, there is a f1 ∈ H such that∑ i∈[m] ∑ j∈(σi1∪δi1) v2ij〈ΛijPWijf1, ΛijPWijf1〉 < 〈K ∗f1,K ∗f1〉. Since ∑ i∈[m] ∑ j∈J v2ij〈ΛijPWijf1, ΛijPWijf1〉 < ∞, so, there is a k1 ∈N such that∑ i∈[m] ∑ j∈K1 v2ij〈ΛijPWijf1, ΛijPWijf1〉 < 〈K ∗f1,K ∗f1〉, where, K1 = ∪i≥k1+1Jj . Continuing this way, for � = 1n and a partition {δni}i∈[m] of J1 ∪ ...∪Jkn−1such that δni = δ(n−1)i ∪ (σ(n−1)i ∩ (J1 ∪ ...∪Jkn−1)) for all i ∈ [m], there exists a partition {σni}i∈[m] of J − (J1 ∪ ... ∪ Jkn−1) such that {Wij, Λij,vij}j∈(σni∪δni ),i∈[m] has a lower bound less than 1n . Therefore, there is a fn ∈ H and kn ∈N such that kn > kn−1 and∑ i∈[m] ∑ j∈Kn v2ij〈ΛijPWijfn, ΛijPWijfn〉 < 1 n 〈K∗fn,K∗f1〉, where, Kn = ∪i≥kn+1Jj . Choose a partition {αi}i∈[m] of J, where αi = ∪j∈N{δji} = δ(n+1)i ∪ (αi ∩ J− (J1 ∪ ... ∪ Jn)). Assume that {Wij, Λij,vij}j∈αi,i∈[m] is a K − g−fusion frame for H with theoptimal lower bound A. Then, by the Archimedean Property, there exits a r ∈N such that r > 2 A .Now, there exists a fr ∈ H such that∑ i∈[m] ∑ j∈αi v2ij〈ΛijPWijfr, ΛijPWijfr〉 = ∑ i∈[m] ∑ j∈δ(r+1)i v2ij〈ΛijPWijfr, ΛijPWijfr〉 + ∑ i∈[m] ∑ j∈αi∩J−(J1∪...∪Jr ) v2ij〈ΛijPWijfr, ΛijPWijfr〉 ≤ ∑ i∈[m] ∑ j∈(σri∪δri ) v2ij〈ΛijPWijfr, ΛijPWijfr〉 + ∑ i∈[m] ∑ j∈∪k≥r+1Jk v2ij〈ΛijPWijfr, ΛijPWijfr〉 < 1 r 〈K∗fr,K∗fr〉 + 1 r 〈K∗fr,K∗fr〉 < A〈K∗fr,K∗fr〉 and this is a contradiction with the lower bound of A. � https://doi.org/10.28924/ada/ma.3.11 Eur. J. Math. Anal. 10.28924/ada/ma.3.11 9 Corollary 2.10. Let {Wij, Λij,vij}j∈J,i∈[m] be a K − g−fusion woven for H. Then there exists a collection of disjoint finite subsets {δi}i∈[m] of J and A > 0 such that for each partition {σi}i∈[m] of the set J−∪i∈[m]δi , some the family {Wij, Λij,vij}j∈(σi∪δi ),i∈[m] is a K −g−fusion frame for H with the lower frame bound A. Theorem 2.11. Let {Wij, Λij,vij}j∈J be a K−g−fusion frame for H with bounds Ai and Bi for each i ∈ [m]. Suppose that there exists N > 0 such that for all i,k ∈ [m] with i 6= k, I⊂ J and f ∈ H,∑ j∈I 〈(vijΛijPWij −vkjΛkjPWkj )f , (vijΛijPWij −vkjΛkjPWkj )f 〉≤ N min{ ∑ j∈I v2ij〈ΛijPWijf , ΛijPWijf 〉,∑ j∈I v2kj〈ΛkjPWkjf , ΛkjPWkjf 〉}. Then the family {Wij, Λij,vij}j∈J,i∈[m] is woven with universal bounds A (m− 1)(N + 1) + 1 and B, where A = ∑ i∈[m] Ai and B = ∑ i∈[m] Bi . Proof. Let {σi}i∈[m] be a partition of J and f ∈ H. Therefore,∑ i∈[m] Ai〈K∗f ,K∗f 〉 ∑ i∈[m] ∑ j∈J v2ij〈ΛijPWijf , ΛijPWijf 〉 = ∑ i∈[m] ∑ k∈[m] ∑ j∈σk v2ij〈ΛijPWijf , ΛijPWijf 〉 ≤ ∑ i∈[m] (∑ j∈σi v2ij〈ΛijPWijf , ΛijPWijf 〉 + ∑ k∈[m],k 6=i ∑ j∈σk {v2kj〈ΛkjPWkjf , ΛkjPWkjf 〉 + 〈(vijΛijPWij −vkjΛkjPWkj )f , (vijΛijPWij −vkjΛkjPWkj )f 〉} ) ≤ ∑ i∈[m] (∑ j∈σi v2ij〈ΛijPWijf , ΛijPWijf 〉 + ∑ k∈[m],k 6=i ∑ j∈σk (N + 1)v2kj〈ΛkjPWkjf , ΛkjPWkjf 〉 ) = {(m− 1)(N + 1) + 1} ∑ i∈[m] (∑ j∈σi v2ij〈ΛijPWijf , ΛijPWijf 〉 ) . Thus, we get A (m− 1)(N + 1) + 1 〈K∗f ,K∗f 〉≤ ∑ i∈[m] (∑ j∈σi v2ij〈ΛijPWijf , ΛijPWijf 〉 ) ≤ B〈f , f 〉. � In next theorem we study a Paley-Wiener type perturbation for weaving K −g−fusion frames. https://doi.org/10.28924/ada/ma.3.11 Eur. J. Math. Anal. 10.28924/ada/ma.3.11 10 Theorem 2.12. Let {Wj, Λj,wj}j∈J and {Vj,θj,vj}j∈J be two K−g−fusion frames for H with frame bounds A1,B1 and A2,B2, respectively. Suppose that there exist non-negative scalers µ and 0 ≤ λ < 1 2 such that ( 1 2 −λ)A1 > µ and for each f ∈ H,∑ j∈J 〈(wjΛjPWj −vjθjPVj )f , (wjΛjPWj −vjθjPVj )f 〉≤ λ ∑ j∈J 〈wjΛjPWjf ,wjΛjPWjf 〉 + µ〈K ∗f ,K∗f 〉. Then, {Wj, Λj,wj}j∈J and {Vj,θj,vj}j∈J are K−g−fusion woven for H with universal frame bounds ( 1 2 −λ)A1 −µ and B1 + B2. Proof. The upper frame bound is clear. For the lower frame bound, assume that σ ⊂ J and we get,by the arithmetic-quadratic mean, for any f ∈ H ∑ j∈σ w2j 〈ΛjPWjf , ΛjPWjf 〉 + ∑ j∈σc v2j 〈θjPVjf ,θjPVjf 〉 = ∑ j∈σ w2j 〈ΛjPWjf , ΛjPWjf 〉 + ∑ j∈σc 〈wjΛjPWjf − (wjΛjPWj −vjθjPVj )f ,wjΛjPWjf − (wjΛjPWj −vjθjPVj )f 〉 ≥ ∑ j∈σ w2j 〈ΛjPWjf , ΛjPWjf 〉 + 1 2 ∑ j∈σc w2j 〈ΛjPWjf , ΛjPWjf 〉 − ∑ j∈σc 〈(wjΛjPWj −vjθjPVj )f , (wjΛjPWj −vjθjPVj )f 〉 = 1 2 ∑ j∈J w2j 〈ΛjPWjf , ΛjPWjf 〉 + 1 2 ∑ j∈σ w2j 〈ΛjPWjf , ΛjPWjf 〉 − ∑ j∈σc 〈(wjΛjPWj −vjθjPVj )f , (wjΛjPWj −vjθjPVj )f 〉 ≥ 1 2 ∑ j∈J w2j 〈ΛjPWjf , ΛjPWjf 〉− ∑ j∈σc 〈(wjΛjPWj −vjθjPVj )f , (wjΛjPWj −vjθjPVj )f 〉 ≥ 1 2 ∑ j∈J w2j 〈ΛjPWjf , ΛjPWjf 〉−λ ∑ j∈J w2j 〈ΛjPWjf , ΛjPWjf 〉−µ〈K ∗f ,K∗f 〉 ≥ ( ( 1 2 −λ )A1 −µ ) 〈K∗f ,K∗f 〉. This completes the proof. � Declarations Availablity of data and materialsNot applicable. https://doi.org/10.28924/ada/ma.3.11 Eur. J. Math. Anal. 10.28924/ada/ma.3.11 11 Human and animal rightsWe would like to mention that this article does not contain any studies with animals and does notinvolve any studies over human being. Competing interestOn behalf of all authors, the corresponding author states that there is no conflict of interest. FundingsAuthors declare that there is no funding available for this article. Authors’ contributionsThe authors equally conceived of the study, participated in its design and coordination, drafted themanuscript, participated in the sequence alignment, and read and approved the final manuscript. References [1] A. Alijani, M. Dehghan, ∗-Frames in Hilbert C∗modules, U.P.B. Sci. Bull., Ser. A, 73 (2011), 89-106.[2] Lj. Arambašić, On frames for countably generated Hilbert C∗-modules, Proc. Amer. Math. Soc. 135 (2007) 469-478. https://doi.org/10.1090/s0002-9939-06-08498-x.[3] R.J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366. https://doi.org/10.1090/s0002-9947-1952-0047179-6.[4] M. Frank, D.R. Larson, A-module frame concept for Hilbert C∗-modules, Funct. Harm. Anal. Wavel. Contempt. Math.247 (2000) 207-233.[5] D. Gabor, Theory of communication. Part 1: The analysis of information, J. Inst. Electric. Eng. 93 (1946) 429–441. https://doi.org/10.1049/ji-3-2.1946.0074.[6] E.C. Lance, Hilbert C∗−modules: A toolkit for operator algebraist, London Math. Soc. Lecture Note Ser. CambridgeUniv. Press, Cambridge, 1995.[7] S. Kabbaj, M. Rossafi, ∗-Operator frame for End∗A(H), Wavel. Linear Algebra, 5 (2018) 1-13.[8] I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953) 839-858. https://doi.org/10.2307/ 2372552.[9] A. Khorsavi, B. Khorsavi, Fusion frames and g-frames in Hilbert C∗-modules, Int. J. Wavel. Multiresolut. Inf. Proc. 6(2008) 433-446. https://doi.org/10.1142/S0219691308002458.[10] F.D. Nhari, R. Echarghaoui, M. Rossafi, K−g−fusion frames in Hilbert C∗−modules, Int. J. Anal. Appl. 19 (2021)836-857. https://doi.org/10.28924/2291-8639-19-2021-836.[11] M. Rossafi, S. Kabbaj, ∗-K-operator frame for End∗A(H), Asian-Eur. J. Math. 13 (2020) 2050060. https://doi. org/10.1142/S1793557120500606.[12] M. Rossafi, S. Kabbaj, Operator Frame for End∗A(H), J. Linear Topol. Algebra, 8 (2019) 85-95.[13] M. Rossafi, S. Kabbaj, ∗-K-g-frames in Hilbert A-modules, J. Linear Topol. Algebra, 7 (2018) 63-71.[14] M. Rossafi, S. Kabbaj, ∗-g-frames in tensor products of Hilbert C∗-modules, Ann. Univ. Paedagog. Crac. Stud. Math.17 (2018) 17-25. https://doi.org/10.2478/aupcsm-2018-0002.[15] M. Rossafi, S. Kabbaj, Generalized frames for B(H,K), Iran. J. Math. Sci. Inf. 17 (2022) 01-09. https://doi.org/ 10.52547/ijmsi.17.1.1.[16] M. Rossafi, F.D. Nhari, C. Park, S. Kabbaj, Continuous g-frames with C∗-valued bounds and their properties,Complex Anal. Oper. Theory 16 (2022) 44. https://doi.org/10.1007/s11785-022-01229-4. https://doi.org/10.28924/ada/ma.3.11 https://doi.org/10.1090/s0002-9939-06-08498-x https://doi.org/10.1090/s0002-9947-1952-0047179-6 https://doi.org/10.1049/ji-3-2.1946.0074 https://doi.org/10.2307/2372552 https://doi.org/10.2307/2372552 https://doi.org/10.1142/S0219691308002458 https://doi.org/10.28924/2291-8639-19-2021-836 https://doi.org/10.1142/S1793557120500606 https://doi.org/10.1142/S1793557120500606 https://doi.org/10.2478/aupcsm-2018-0002 https://doi.org/10.52547/ijmsi.17.1.1 https://doi.org/10.52547/ijmsi.17.1.1 https://doi.org/10.1007/s11785-022-01229-4 1. Introduction 2. Woven K-g-fusion frames in Hilbert C-modules Declarations References