©2021 Ada Academica https://adac.eeEur. J. Math. Anal. 1 (2021) 34-44doi: 10.28924/ada/ma.1.34 Katugampola Fractional Calculus With Generalized k−Wright Function Ahmad Y. A. Salamooni1,∗ , D. D. Pawar2 1Department of Mathematics, Faculty of Education Zabid, Hodeidah University, Al-Hodeidah, Yemen ayousss83@gmail.com 2School of Mathematical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431606, India dypawar@yahoo.com ∗Correspondence: ayousss83@gmail.com Abstract. In this article, we present some properties of the Katugampola fractional integrals andderivatives. Also, we study the fractional calculus properties involving Katugampola Fractional inte-grals and derivatives of generalized k−Wright function nΦkm(z). 1. Introduction and Preliminaries In recent years, researchers have introduced new fractional integral and differential operatorswhich are generalizations of the famous definitions of Riemann-Liouville, Caputo, Hadamard, Hilfer,etc. They have made a qualitative contribution to fractional differential equations. For more details,see [1, 5-7, 9-14] and references therein. Definition 1.1. [9] Let Ω = [a,b], the Katugampola fractional integrals ρIγ0+ϕ and ρIγ−ϕ of order γ ∈C(R(γ) > 0) are defined for ρ > 0, a = 0 and b = ∞ as (ρI γ 0+ϕ)(s) = ρ1−γ Γ(γ) ∫ s 0 τρ−1ϕ(τ) (sρ −τρ)1−γ dτ (s > 0), (1.1) and (ρI γ −ϕ)(s) = ρ1−γ Γ(γ) ∫ ∞ s τρ−1ϕ(τ) (τρ − sρ)1−γ dτ (s > 0), (1.2) the corresponding Katugampola fractional derivatives ρDγ0+ϕ and ρDγ−ϕ are defined with (n = 1 + [R(γ)] ) as (ρD γ 0+ϕ)(s) := ( s1−ρ d ds )1+[R(γ)]( ρ I 1−γ+[R(γ)] 0+ ϕ ) (s) Received: 30 Aug 2021. Key words and phrases. Katugampola fractional integral and derivative; k−Gamma function; k−Wright function.34 https://adac.ee https://doi.org/10.28924/ada/ma.1.34 https://orcid.org/0000-0001-8227-3093 https://orcid.org/0000-0001-8986-5243 Eur. J. Math. Anal. 1 (2021) 35 = ργ−[R(γ)] Γ(1 −γ + [R(γ)]) ( s1−ρ d ds )1+[R(γ)] ∫ s 0 τρ−1ϕ(τ) (sρ −τρ)γ−[R(γ)] dτ (s > 0), (1.3) and (ρD γ −ϕ)(s) := ( − s1−ρ d ds )1+[R(γ)]( ρ I 1−γ+[R(γ)] − ϕ ) (s) = ργ−[R(γ)] Γ(1 −γ + [R(γ)]) ( − s1−ρ d ds )1+[R(γ)] ∫ ∞ s τρ−1ϕ(τ) (τρ − sρ)γ−[R(γ)] dτ (s > 0). (1.4) Definition 1.2. [2] The generalized K−Gamma function Γk(y) is defined by Γk(y) = lim n→∞ n!kn(nk) y k −1 (y)n,k (k > 0; y ∈C\kZ−), (1.5) where (y)n,k is the k−Pochhammer symbol given as (y)n,k :=  Γk (y+nk) Γk (y) (k ∈R; y ∈C\{0}) y(y + k)(y + 2k)...(y + (n− 1)k) (n ∈N+; y ∈C) (1.6) and for R(y) > 0, the K−Gamma function Γk(y) is defined by the integral Γk(y) = ∫ ∞ 0 xy−1e− xk k dx. (1.7) This gives a relation with Euler’s Gamma function as Γk(y) = k y k −1Γ( y k ). (1.8) Also, in [8], we have Γ(1 −y)Γ(y) = π sin(yπ) . (1.9) Definition 1.3. [14] The Beta function B(υ,ω) is defined as B(υ,ω) = ∫ 1 0 zυ−1(1 −z)ω−1dz, R(υ) > 0, R(ω) > 0, = Γ(υ)Γ(ω) Γ(υ + ω) (1.10) Furthermore, we have∫ ∞ x̂ (z − x̂)υ−1(z − ŷ)ω−1dz = (x̂ − ŷ)υ+ω−1B(υ, 1 −υ −ω), x̂ > ŷ, 0 < R(υ) < 1 −R(ω). (1.11) Recently, the Generalized K−Wright function introduced by (Gehlot and Prajapati [3]) is definedas follows: Eur. J. Math. Anal. 1 (2021) 36 Definition 1.4. For k ∈ R+; z ∈ C; pi,qj ∈ C, αi,βj ∈ R (αi,βj 6= 0; i = 1, 2, ...,n; j = 1, 2, ...,m) and (pi + αir), (qj + βjr) ∈ C \ kZ−, the generalized k−Wright function nΦkm isdefined by nΦ k m(z) = nΦ k m [ (pi,αi )1,n (qj,βj)1,m ∣∣∣z] = ∞∑ r=0 ∏n i=1 Γk(pi + αir)∏m j=1 Γk(qj + βjr) zr r! , (1.12) with the convergence conditions described as ∆ = m∑ j=1 (βj k ) − n∑ i=1 (αi k ) ; µ = n∏ i=1 ∣∣αi k ∣∣−αik m∏ j=1 ∣∣βj k ∣∣βjk ; ν = m∑ j=1 (qj k ) − n∑ i=1 (pi k ) + n−m 2 . Lemma 1.1. [3] For k ∈ R+; z ∈ C; pi,qj ∈ C, αi,βj ∈ R (αi,βj 6= 0; i = 1, 2, ...,n; j = 1, 2, ...,m) and (pi + αir), (qj + βjr) ∈C\kZ− (1) If ∆ > −1, then series (1.12) is absolutely convergent for all z ∈C and generalized k−Wrightfunction nΦkm(z) is an entire function of z. (2) If ∆ = −1, then series (1.12) is absolutely convergent for all |z| < µ and of |z| = µ,R(µ) > 1 2 . 2. Properties of Katugampola Fractional Integral and Derivative In this section, we investigate some properties of the Katugampola fractional integrals andderivatives (1.1), (1.2) and (1.3), (1.4) for the power function ϕ(s) = sα−1 and the exponentialfunction e−λ sρ. Lemma 2.1. Let ρ > 0,R(γ) = 0 and n = 1 + [R(γ)] (1) If R(α) > 0, then (ρI γ 0+τ α−1)(s) = ρ−γΓ(1 + α−1 ρ ) Γ(1 + α−1 ρ + γ) sργ+(α−1) (R(γ) ≥ 0; R(α) > 0) (2.1) (ρD γ 0+τ α−1)(s) = ργ−nΓ(1 + α−1 ρ ) Γ(1 + α−1 ρ −γ) s(α−1)−ργ (R(γ) = 0; R(α) > 0). (2.2) (2) If α ∈C, then (ρI γ −τ α−1)(s) = ρ−γΓ( 1−α ρ −γ) Γ( 1−α ρ ) sργ+(α−1) (R(γ) ≥ 0; R(γ + α) < 1) (2.3) (ρD γ −τ α−1)(s) = ργ−nΓ( 1−α ρ + γ) Γ( 1−α ρ ) s(α−1)−ργ (R(γ) = 0; R(γ + α− [R(γ)]) < 1). (2.4) (3) If R(λ) > 0, then (ρI γ −e −λτρ)(s) = (λρ)−γe−λ s ρ (R(γ) ≥ 0) (2.5) Eur. J. Math. Anal. 1 (2021) 37 (ρD γ −e −λτρ)(s) = (λρ)γe−λ s ρ (R(γ) = 0). (2.6) Proof. To prove this Lemma, let the substitution x = τρ sρ in parts (1) and (2). (1) Firstly, by the equation (1.1) and the given substitution, we have (ρI γ 0+τ α−1)(s) = ρ−γsργ+α−1 Γ(γ) ∫ 1 0 x α−1 ρ (1 −x)1−γ dx = ρ−γsργ+α−1 Γ(γ) B ( γ, 1 + α− 1 ρ ) . Now, using equation (1.10), we obtain the result (2.1).Secondly, by the equation (1.3), the given substitution and by using the result (2.1), we have (ρD γ 0+τ α−1)(s) = ( s1−ρ d ds )n( ρ I n−γ 0+ τ α−1)(s) = ργ−nΓ(1 + α−1 ρ ) Γ(1 + α−1 ρ + n−γ) ( s1−ρ d ds )n sρ(n−γ)+α−1 = ργ−nΓ(1 + α−1 ρ ) Γ(1 + α−1 ρ −γ) s(α−1)−ργ. (2) Firstly, by the equation (1.2) and the given substitution, we have (ρI γ −τ α−1)(s) = ρ−γsργ+α−1 Γ(γ) ∫ ∞ 1 x α−1 ρ (x − 1)γ−1dx. Now, using the equation (1.11) with x̂ = 1 and ŷ = 0, we obtain (ρI γ −τ α−1)(s) = ρ−γsργ+α−1 Γ(γ) B ( γ, 1 −γ − (1 + α− 1 ρ ) ) . By using equation (1.10), we obtain the result (2.3).Secondly, by the equation (1.4), the given substitution and by using the result (2.3), we have (ρD γ −τ α−1)(s) = ( − s1−ρ d ds )n( ρ I n−γ − τ α−1)(s) = (−1)nργ−nΓ( 1−α ρ + γ −n) Γ( 1−α ρ ) ( s1−ρ d ds )n sρ(n−γ)+α−1 = (−1)nργ−n Γ( 1−α ρ ) Γ( 1−α ρ + γ −n)Γ(1 − [ 1−α ρ + γ −n]) Γ(1 − [γ − α−1 ρ ]) . (2.7) Also, by using (1.9), we have Γ( 1 −α ρ + γ −n)Γ(1 − [ 1 −α ρ + γ −n]) = π sin([ 1−α ρ + γ −n]π) = (−1)nπ sin([γ − α−1 ρ ]π) (2.8) and 1 Γ(1 − [γ − α−1 ρ ]) = Γ(γ − α−1 ρ ) Γ(γ − α−1 ρ )Γ(1 − [γ − α−1 ρ ]) = Γ(γ − α−1 ρ ) π sin([γ − α− 1 ρ ]π) (2.9) Substituting relations (2.8) and (2.9) in (2.7), we obtain (2.4). Eur. J. Math. Anal. 1 (2021) 38 (3) For this part, let the substitution x = τρ − sρ.Firstly, by the equation (1.2) and the given substitution in this part, we have (ρI γ −e −λτρ)(s) = ρ−γ Γ(γ) e−λ s ρ ∫ ∞ 0 e−λ xxγ−1dx, then by use the substitution ϑ = λ x, we obtain (ρI γ −e −λτρ)(s) = ρ−γ Γ(γ) e−λ s ρ λ−γ ∫ ∞ 0 e−ϑϑγ−1dϑ, since ∫∞ 0 e−ϑϑγ−1dϑ = Γ(γ) [8], then the result is satisfied.Secondly, by the equation (1.4) and by using the result (2.5), we have (ρD γ −e −λτρ)(s) = ( − s1−ρ d ds )n( ρ I n−γ − e −λτρ)(s) = (−1)n ( s1−ρ d ds )n( (λρ)γ−ne−λ s ρ) = (−1)n s(1−ρ)n (λρ)γ−n ( dn dsn e−λ s ρ) = (λρ)γe−λ s ρ . � Remark 2.1. (a) In Lemma 2.1, if the power function is ϕ(s) = (sρ ρ )α−1 , then (1) If R(α) > 0, then( ρI γ 0+ (τρ ρ )α−1) (s) = Γ(α) Γ(α + γ) (sρ ρ )α+γ−1 (R(γ) ≥ 0; R(α) > 0) ( ρD γ 0+ (τρ ρ )α−1) (s) = Γ(α) Γ(α−γ) (sρ ρ )α−γ−1 (R(γ) = 0; R(α) > 0). (2) If α ∈C, then( ρI γ − (τρ ρ )α−1) (s) = Γ(1 −γ −α) Γ(1 −α) (sρ ρ )α+γ−1 (R(γ) ≥ 0; R(γ + α) < 1) ( ρD γ − (τρ ρ )α−1) (s) = Γ(1 + γ −α) Γ(1 −α) (sρ ρ )α−γ−1 (R(γ) = 0; R(γ + α− [R(γ)]) < 1). (b) If R(α) > R(γ) > 0, then (ρI γ −τ −α)(s) = ρ−γΓ(α ρ −γ) Γ(α ρ ) sργ−α. (2.10) Eur. J. Math. Anal. 1 (2021) 39 3. Katugampola Fractional integration for Generalized k−Wright Function In this section, we establish the Katugampola fractional integration for generalized k−Wrightfunction (1.12). Theorem 3.1. Let γ, α ∈ C such that R(γ) > 0, R(α) > 0; λ ∈ C, ρ > 0, ν > 0, then for ∆ > −1, the Katugampola fractional integration ρIγ0+ for generalized k−Wright function nΦkm(z)is given as( ρI γ 0+ ( τ α k −1 nΦ k m [ (pi,αi )1,n (qj,βj)1,m ∣∣∣ λ τ νk ]))(s) = ( k ρ )γ s α k +ργ−1 n+1Φ k m+1 [ ( pi,αi ) 1,n , ( 1 ρ (α + (ρ− 1)k), ν ρ )( qj,βj ) 1,m , ( 1 ρ (α + (ρ(γ + 1) − 1)k), ν ρ )∣∣∣∣∣ λ s νk ] . (3.1) Proof. According to Lemma 1.1, a generalized k−Wright function in both sides of the equation (3.1)exists for s > 0. We consider that M ≡ ( ρI γ 0+ ( τ α k −1 nΦ k m [ (pi,αi )1,n (qj,βj)1,m ∣∣∣ λ τ νk ]))(s). Using (1.12), we can write the above equation as M ≡ ( ρI γ 0+ ( τ α k −1 ∞∑ r=0 ∏n i=1 Γk(pi + αir)∏m j=1 Γk(qj + βjr) (λ τ ν k )r r! )) (s). Now, using the integration of the series term by term, we obtain M ≡ ∞∑ r=0 ∏n i=1 Γk(pi + αir)∏m j=1 Γk(qj + βjr) (λ)r r! ( ρI γ 0+ ( τ α k + νr k −1 )) (s). Applying (2.1), the above equation is reduced to M ≡ ∞∑ r=0 ∏n i=1 Γk(pi + αir)∏m j=1 Γk(qj + βjr) (λ)r r! ρ−γΓ(1 + α k + νr k −1 ρ ) Γ(1 + α k + νr k −1 ρ + γ) s α+νr k +ργ−1. Using (1.8), we obtain M ≡ ( k ρ )γ s α k +ργ−1 n+1Φ k m+1 [ ( pi,αi ) 1,n , ( 1 ρ (α + (ρ− 1)k), ν ρ )( qj,βj ) 1,m , ( 1 ρ (α + (ρ(γ + 1) − 1)k), ν ρ )∣∣∣∣∣ λ s νk ] . � Theorem 3.2. Let γ, α ∈ C such that R(γ) > 0, R(α) > 0; λ ∈ C, ρ > 0, ν > 0, then for ∆ > −1, the Katugampola fractional integration ρIγ− for generalized k−Wright function nΦkm(z) isgiven as ( ρI γ − ( τ− α k nΦ k m [ (pi,αi )1,n (qj,βj)1,m ∣∣∣ λ τ−νk ]))(s) Eur. J. Math. Anal. 1 (2021) 40 = ( k ρ )γ sργ− α k n+1Φ k m+1 [( pi,αi ) 1,n , ( α ρ −kγ, ν ρ )( qj,βj ) 1,m , ( α ρ , ν ρ ) ∣∣∣∣∣ λ s−νk ] . (3.2) Proof. According to Lemma 1.1, a generalized k−Wright function in both sides of the equation (3.2)exists for s > 0. We consider that N ≡ ( ρI γ − ( τ− α k nΦ k m [ (pi,αi )1,n (qj,βj)1,m ∣∣∣ λ τ−νk ]))(s). Using (1.12), we can write the above equation as N ≡ ∞∑ r=0 ∏n i=1 Γk(pi + αir)∏m j=1 Γk(qj + βjr) (λ)r r! ( ρI γ − ( τ− α+νr k )) (s). Applying (2.10), the above equation is reduced to N ≡ ∞∑ r=0 ∏n i=1 Γk(pi + αir)∏m j=1 Γk(qj + βjr) (λ)r r! ρ−γΓ( α+νr k ρ −γ) Γ( α+νr k ρ ) sργ− α+νr k . Using (1.8), we obtain N ≡ ( k ρ )γ sργ− α k n+1Φ k m+1 [( pi,αi ) 1,n , ( α ρ −kγ, ν ρ )( qj,βj ) 1,m , ( α ρ , ν ρ ) ∣∣∣∣∣ λ s−νk ] . � 4. Katugampola Fractional Differentiation for Generalized k−Wright Function This section deals with the Katugampola fractional differentiation for generalized k−Wrightfunction (1.12). Theorem 4.1. Let γ, α ∈ C such that R(γ) > 0, R(α) > 0; λ ∈ C, ρ > 0, ν > 0, thenfor ∆ > −1, the Katugampola fractional differentiation ρDγ0+ for generalized k−Wright function nΦ k m(z) is given as( ρD γ 0+ ( τ α k −1 nΦ k m [ (pi,αi )1,n (qj,βj)1,m ∣∣∣ λ τ νk ]))(s) = ( k ρ )−γ s α k −ργ−1 n+1Φ k m+1 [ ( pi,αi ) 1,n , ( 1 ρ (α + (ρ− 1)k), ν ρ )( qj,βj ) 1,m , ( 1 ρ (α + (ρ(1 −γ) − 1)k), ν ρ )∣∣∣∣∣ λ s νk ] . (4.1) Proof. According to Lemma 1.1, a generalized k−Wright function in both sides of the equation (4.1)exists for s > 0. Let n = 1 + [R(γ)]. Then, we consider that P ≡ ( ρD γ 0+ ( τ α k −1 nΦ k m [ (pi,αi )1,n (qj,βj)1,m ∣∣∣ λ τ νk ]))(s). Eur. J. Math. Anal. 1 (2021) 41 Using (1.3), we have P ≡ ( s1−ρ d ds )n( ρI n−γ 0+ ( τ α k −1 nΦ k m [ (pi,αi )1,n (qj,βj)1,m ∣∣∣ λ τ νk ]))(s). Using Theorem 3.1, we obtain P ≡ ( s1−ρ d ds )n( ( k ρ )n−γ s α k +ρ(n−γ)−1 n+1Φ k m+1 [ ( pi,αi ) 1,n , ( 1 ρ (α + (ρ− 1)k), ν ρ )( qj,βj ) 1,m , ( 1 ρ (α + (ρ(n−γ + 1) − 1)k), ν ρ )∣∣∣∣∣ λ s νk ]) . Using (1.12), we can write the above equation as P ≡ ( k ρ )n−γ ∞∑ r=0 ∏n i=1 Γk(pi + αir)Γk( 1 ρ (α + (ρ− 1)k) + ν ρ r)∏m j=1 Γk(qj + βjr)Γk( 1 ρ (α + (ρ(n−γ + 1) − 1)k) + ν ρ r) (λ)r r! ( s1−ρ d ds )n( s α k + ν k +ρ(n−γ)−1). Also, the above equation can be written as P ≡ kn−γ ργ ∞∑ r=0 ∏n i=1 Γk(pi + αir)Γk( 1 ρ (α + (ρ− 1)k) + ν ρ r)∏m j=1 Γk(qj + βjr)Γk( 1 ρ (α + (ρ(n−γ + 1) − 1)k) + ν ρ r) (λ)r r! × Γ( 1 ρ (α k + νr k + (n−γ)ρ + ρ− 1) Γ( 1 ρ (α k + νr k −γρ + ρ− 1) s α k + ν k −ργ−1. Using (1.8), we obtain P ≡ ( k ρ )−γ s α k −ργ−1 n+1Φ k m+1 [ ( pi,αi ) 1,n , ( 1 ρ (α + (ρ− 1)k), ν ρ )( qj,βj ) 1,m , ( 1 ρ (α + (ρ(1 −γ) − 1)k), ν ρ )∣∣∣∣∣ λ s νk ] . � Theorem 4.2. Let γ, α ∈C such that R(γ) > 0, R(α) > 1+[R(γ)]−R(γ); λ ∈C, ρ > 0, ν > 0, then for ∆ > −1, the Katugampola fractional differentiation ρDγ− for generalized k−Wrightfunction nΦkm(z) is given as( ρD γ − ( τ− α k nΦ k m [ (pi,αi )1,n (qj,βj)1,m ∣∣∣ λ τ−νk ]))(s) = ( k ρ )−γ s−ργ− α k n+1Φ k m+1 [( pi,αi ) 1,n , ( α ρ + kγ, ν ρ )( qj,βj ) 1,m , ( α ρ , ν ρ ) ∣∣∣∣∣ λ s−νk ] (4.2) Proof. According to Lemma 1.1, a generalized k−Wright function in both sides of the equation (4.2)exists for s > 0. Let n = 1 + [R(γ)]. Then, we consider that Q ≡ ( ρD γ − ( τ− α k nΦ k m [ (pi,αi )1,n (qj,βj)1,m ∣∣∣ λ τ−νk ]))(s). Using (1.4), we have Q ≡ ( − s1−ρ d ds )n( ρI n−γ − ( τ− α k nΦ k m [ (pi,αi )1,n (qj,βj)1,m ∣∣∣ λ τ−νk ]))(s). Eur. J. Math. Anal. 1 (2021) 42 Using Theorem 3.2, we obtain Q ≡ ( − s1−ρ d ds )n ( k ρ )n−γ sρ(n−γ)− α k n+1Φ k m+1 [( pi,αi ) 1,n , ( α ρ −k(n−γ), ν ρ )( qj,βj ) 1,m , ( α ρ , ν ρ ) ∣∣∣∣∣ λ s−νk ] . Using (1.12), we can write the above equation as Q ≡ (−1)n( k ρ )n−γ ∞∑ r=0 ∏n i=1 Γk(pi + αir)Γk( α ρ − (n−γ)k + ν ρ r)∏m j=1 Γk(qj + βjr)Γk( α ρ + ν ρ r) (λ)r r! ( s1−ρ d ds )n( sρ(n−γ)− α k −ν k ) . On simplifying the above equation, we obtain Q ≡ (−1)nkn−γργ ∞∑ r=0 ∏n i=1 Γk(pi + αir)Γk( α ρ − (n−γ)k + ν ρ r)∏m j=1 Γk(qj + βjr)Γk( α ρ + ν ρ r) (λ)r r! × Γ(1 + (n−γ) − α ρk − ν ρk r) Γ(1 −γ − α ρk − ν ρk r) ( s−ργ− α k −ν k ) . Using (1.8), we obtain Q ≡ (−1)nργ ∞∑ r=0 ∏n i=1 Γk(pi + αir)∏m j=1 Γk(qj + βjr)Γ( α ρk + ν ρk r) (λ)r r! × Γ(γ −n + α ρk + ν ρk r)Γ(1 − (γ −n + α ρk + ν ρk r)) Γ(1 − (γ + α ρk + ν ρk r)) ( s−ργ− α k −ν k ) . (4.3) Using (1.9), we have Γ(γ −n + α ρk + ν ρk r)Γ(1 − (γ −n + α ρk + ν ρk r)) = π sin[(γ + α ρk + ν ρk r)π −nπ] = π sin[(γ + α ρk + ν ρk r)π] cos(nπ) = (−1)nπ sin[(γ + α ρk + ν ρk r)π] (4.4) and 1 Γ(1 − (γ + α ρk + ν ρk r)) = Γ(γ + α ρk + ν ρk r) sin[(γ + α ρk + ν ρk r)π] π . (4.5) Substituting (4.4) and (4.5) in (4.3) and finally by using (1.8), we obtain Q ≡ ( k ρ )−γ s−ργ− α k n+1Φ k m+1 [( pi,αi ) 1,n , ( α ρ + kγ, ν ρ )( qj,βj ) 1,m , ( α ρ , ν ρ ) ∣∣∣∣∣ λ s−νk ] . � Eur. J. Math. Anal. 1 (2021) 43 5. Concluding Remarks • If ρ = 1, thenTheorems 3.1, 3.2, 4.1 and 4.2, are reduced to Theorems 2, 3, 4 and 5 respectively(see [4]). • Some general properties of the Katugampola fractional integrals and derivatives for thepower function ϕ(s) = sα−1 and the exponential function e−λ sρ are investigated. • The Katugampola fractional integration ρIγ0+ and ρIγ− for generalized k−Wright function nΦ k m(z) are established. • The Katugampola fractional differentiation ρDγ0+ and ρDγ− for generalized k−Wright func-tion nΦkm(z) are established. Acknowledgment The authors are would like to thank the reviewers for their important remarks and suggestions. References [1] R. Almeida, A.B. Malinowska, T. Odzijewicz, Fractional differential equations with dependence on the Ca-puto?Katugampola derivative, J. Comput. Nonlinear Dynam. 11 (2016) 061017. https://doi.org/10.1115/1. 4034432.[2] R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol. Divulgaciones Math. 15 (2) (2007)179-192.[3] K.S. Gehlot, J.C. Prajapati, On generalization of K−Wright function and its properties, Pac. J. Appl. Math. 5 (2)(2013) 81-88.[4] K.S. Gehlot, J.C. Prajapati, Fractional calculus of generalized K−Wright function, J. Fraction. Calc. Appl. 4 (2)(2013) 83-289.[5] U.N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput. 218 (2011) 860-865. https://doi.org/10.1016/j.amc.2011.03.062.[6] U.N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl. 6 (4), (2014), 1-15.[7] U.N. Katugampola, Existence and uniqueness results for a class of generalized fractional differential equations,arXiv:1411.5229v2[math.CA] 9 Jun (2014).[8] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier,Amsterdam (2006).[9] D.S. Oliveira, E.C. De Oliveira, Hilfer-Katugampola fractional derivative, Comput. Appl. Math. 37 (2018), 3672-3690. https://doi.org/10.1007/s40314-017-0536-8.[10] A.Y.A. Salamooni, D.D. Pawar, Unique positive solution for nonlinear Caputo-type fractional q-difference equationswith nonlocal and Stieltjes integral boundary conditions, Fraction. Differ. Calc. 9 (2) (2019), 295-307.[11] A.Y.A. Salamooni, D.D. Pawar, Existence and uniqueness of generalised fractional Cauchy-type problem, Univ. J.Math. Appl. 3 (3) (2020), 121-128.[12] A.Y.A. Salamooni, D.D. Pawar, Existence and uniqueness of boundary value problems for Hilfer-Hadamard-typefractional differential equations, Ganita, 70 (2) (2020), 01-16. https://doi.org/10.1115/1.4034432 https://doi.org/10.1115/1.4034432 https://doi.org/10.1016/j.amc.2011.03.062 https://doi.org/10.1007/s40314-017-0536-8 Eur. J. Math. Anal. 1 (2021) 44 [13] A.Y.A. Salamooni, D.D. Pawar, Existence and stability results for Hilfer-Katugampola-type fractional implicit dif-ferential equations with nonlocal conditions, J. Nonlinear Sci. Appl. 14 (3) (2021), 124-138. http://dx.doi.org/ 10.22436/jnsa.014.03.02.[14] A.Y.A. Salamooni, D.D. Pawar, Existence and uniqueness of nonlocal boundary conditions for Hilfer-Hadamard-type fractional differential equations, Adv. Differ. Equations, 2021 (2021), 198. https://doi.org/10.1186/ s13662-021-03358-0.[15] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon andBreach, New York (1993). http://dx.doi.org/10.22436/jnsa.014.03.02 http://dx.doi.org/10.22436/jnsa.014.03.02 https://doi.org/10.1186/s13662-021-03358-0 https://doi.org/10.1186/s13662-021-03358-0 1. Introduction and Preliminaries 2. Properties of Katugampola Fractional Integral and Derivative 3. Katugampola Fractional integration for Generalized k-Wright Function 4. Katugampola Fractional Differentiation for Generalized k-Wright Function 5. Concluding Remarks Acknowledgment References