©2022 Ada Academica https://adac.eeEur. J. Math. Anal. 2 (2022) 10doi: 10.28924/ada/ma.2.10 Weak and Strong Convergence Theorems of Modified Projection-Type Ishikawa Iteration Scheme for Lipschitz α-Hemicontractive Mappings Imo Kalu Agwu∗, Donatus Ikechi Igbokwe Department of Mathematics, Micheal Okpara University of Agriculture, Umudike, Umuahia Abia State, Nigeria agwuimo@gmail.com, igbokwedi@yahoo.com ∗Correspondence: agwuimo@gmail.com Abstract. In this paper, we establish weak and strong convergence theorems of a two-step modifiedprojection-type Ishikawa iterative scheme to the fixed point of α-hemicontractive mappings withoutany compactness assumption on the operator or the space. Our results extend, improve and generalizeseveral previously known results of the existing literature. 1. Introduction Let H be a real Hilbert space with inner product 〈, .,〉 and induced norm ‖, .,‖, K a nonemptyconvex and closed subset of H and T : K −→ K a selfmap on K. We use F (T ) to denote the setof fixed point of T , N to denote the set of natural numbers and xn → x (respectively xn ⇀ x) todenote the strong (weak) convergence of the sequence {xn}∞n=0 to the point x. Definition 1.1. Let T : K −→ K be a maaping. Then I. T is said to be L-Lipschitizian if there exists L > 0 such that ‖Ts −Tz‖≤‖s −z‖,∀s,z ∈ K. (1.1) From the definition, it easy to observe that every nonexpansive mapping is Lipschitizian with L = 1. II. T is called k-strictly pseudocontraction (see, for example, [9]) if there exists k ∈ (0, 1] such that for all s,z ∈ K, the inequality ‖Ts −Tz‖2 ≤‖s −z‖2 + k‖(I −T )s − (I −T )z‖2 (1.2) hods. Note that if k = 1 in (1.2), then T is a pseudocontraction. It well-known that in real Hilbert spaces, the class of nonexpansive mapping is a proper subclass of the class of Received: 1 Nov 2021. Key words and phrases. strong convergence; modified Ishikawa iterative scheme; weak convergence; α-hemicontractive operator; fixed point; real Hilbert space. 1 https://adac.ee https://doi.org/10.28924/ada/ma.2.10 Eur. J. Math. Anal. 10.28924/ada/ma.2.10 2 k-strictly pseudocontive mapping. Also, the class of k-strictly pseudocontive mapping is a proper subclass of the class of pseudocontive mapping. III. T is called demicontractive mapping (see, for example, [?]) if F (T ) = {x ∈ K : x = Tx} 6= ∅ and ∀(s ×q) ∈ (K ×F (T )), there exists k ∈ [0, 1) such that the inequality ‖Ts −Tq‖2 ≤‖s −q‖2 + k‖s −Ts‖2 (1.3) hods. IV. T is said to satisfy condition A (see, for example [?]) F (T ) = {x ∈ K : x = Tx} 6= ∅ and there exists λ > 0 such that 〈s −TS,s −q〉≥ λ‖s −Ts‖2,∀(s ×q) ∈ (K ×F (T )). (1.4) It is worthy to mention that the class of k-strictly pseudocontions with a nonempty fixed point set is a proper subclass of the class demicontractions. T is called hemicontraction (see, for example, [17]) if k = 1 in (1.3). The class of pseudocontractive maps is a proper subclass of the class of hemicontractive maps. Again, the class of demicontractive maps is a proper subclass of the class of hemicontractive maps (see, for example, [?]). These two classes of mappings have been studied extensively by many researchers (see, for example, [?], [13], [17] and the references therein). V. T is called α-demicontraction (see, for examole, [13] ) if F (T ) = {x ∈ K : x = Tx} 6= ∅ and ∀(s ×q) ∈ (K ×F (T )), there exist λ > 0 and α ≥ 1 such that the inequality 〈s −TS,s −αq〉≥ λ‖s −Ts‖2,∀(s ×q) ∈ (K ×F (T )). (1.5) holds. Clearly, (1.5) is equivalent to ‖Ts −αq‖2 ≤‖s −αq‖2 + k‖s −Ts‖2, (1.6) where k = 1 − 2λ ∈ [0, 1). V. T is called α-hemicontraction (see, for examole, [17] ) if F (T ) = {x ∈ K : x = Tx} 6= ∅ and ∀(s ×q) ∈ (K ×F (T )), there exists α ≥ 1 such that the inequality ‖Ts −αq‖2 ≤‖s −αq‖2 + ‖s −Ts‖2 (1.7) holds. Observe that (1.7) is equivalent to 〈s −Ts,s −αq〉≥ 0,∀(s ×q) ∈ (K ×F (T )). (1.8) In [ [17], Example 2.2], Osilike and Onah gave an example of α-hemicontractive mapping with α > 1 which is not hemicontractive mapping, and also showed that there are hemicontractive (1-hemicontractive) mappings which are not α-hemicontraction for α > 1(see [ [17], Example 2.1] for details). Again, Osilike and Onah [17] presented an example of a mapping which is hemicontractive (1-hemicontractive) and alpha-hemicontractive mapping for α > 1 but https://doi.org/10.28924/ada/ma.2.10 Eur. J. Math. Anal. 10.28924/ada/ma.2.10 3 neither demicontractive (1-demicontractive) nor α-demicontractive mapping for α > 1(see [17], Example 2.3 for details). For further cheracterisation of α-hemicontractive mapping, interested reader should consult [17]. A mapping T : H −→ H is called ν-strongly monotone if there exists ν > 0 such that 〈s −Ts,s −z〉≥ ν‖s −z‖2,∀s,z ∈ H.. (1.9) Iterative method for approximating fixed point of L-Lipschitz pseudocontractive mapping has beenan active area of investigation in recent times (see, for example, [?], [?], [20], [14], [26], [27] and thereferences contained in them). In [24], Voluhan introduced the modified projection-type Ishikawaiterative method in the following way: Let H be a Hilbert space, K nonempty, closed and convexsubset of H and T : K −→ K be an L-Lipshitz pseudocontractive mapping. For an arbitrary x0 ∈ K, define the sequence {xn}∞n=0 iteratively as follows. xn+1 = PK[(1 −αn −γn)xn + γnTyn] yn = (1 −βn)xn + βnTxn,n ≥ 1, (1.10) where {αn}∞n=0,{βn}∞n=0,{γn}∞n=0 ∈ (0, 1) and PK is a projection map from H onto K. Using(1.10), she proved the following theorem. Theorem 1.1. Let H be a Hilbert space, D a nonempty closed convex subset of H and T : D −→ D an L-Lipschitz pseudocontractive mapping such that F (T ) 6= ∅. For any given x0 ∈ H, let {xn}∞n=0 be the sequence defined by (1.10). Assume the sequences {αn}∞n=0,{βn}∞n=0,{γn}∞n=0 ∈ (0, 1) satisfy (1) βn(1 −αn) > γn,∀n ≥ 1;(2) limn→∞αn = 0 and ∑∞n=0αn = ∞;(3) 0 < α ≤ γn ≤ βn ≤ β < 1√ 1 + L2 + 1 ,∀n ≥ 1. Then, the sequence {xn}∞n=0 strongly converges to the fixed point of T . Remark 1.1. If αn = 0,∀n ≥ 1, and PK is an identity, (1.10) reduces to the well-known Ishikawa iteration method  xn+1 = (1 −γn)xn + γnTyn yn = (1 −βn)xn + βnTxn,n ≥ 1, (1.11) which has been used by several researchers to approximate the fixed points of different operators or operator equations in different spaces. Motivated and inspired by the works in [17], [24] and some ongoing research in this direction, itis our purpose in this paper to extend the results in [24] and other related results from Lipschitzpseudocontractive mapping to the more general α-hemicontractive mapping. Our results is more https://doi.org/10.28924/ada/ma.2.10 Eur. J. Math. Anal. 10.28924/ada/ma.2.10 4 general and also more applicable because fewer and simpler conditions are required to attainconvergence. 2. Preliminary The following definitionS and lemmas will be needed to prove our main results. Definition 2.1. (see [27]) Let H and K be as defined above. For each x ∈ H, there exists a unique nearest point of K, denoted by PKx, such that ‖x −PKx‖≤‖x −y‖,∀y ∈ K. Such a PK is called metric projection from H onto K. It is well-known that PK is firmly nonexpansive mapping from H onto K; that is, ‖PKx −PKy‖2 ≤〈PKx −PKy,x −y〉,∀x,y ∈ H. Also, for any x ∈ H and z ∈ K,z = PKx if and only if 〈x −z,z −y〉≥ 0,∀y ∈ K. Definition 2.2. The Banach space Z is said to have Opial property, if for each weakly convergent sequence {zn}∞n=0with weak limit z ∈ Z, the following inequality holds: lim sup n→∞ ‖zn −z‖ < ‖zn −y‖,∀y ∈ Zwithz 6= y. Note that all finite dimensional Banach spaces, all Hilbert spaces and `p(0 ≤ p < ∞) satisfy the Opial property. But Lp(1 < p < ∞.p 6= 2) do not satisfies the Opial property. Definition 2.3. (see [27]) Let E be a real Banach space. A mapping T, with domain D(T ) ∈ E, is said to be demiclosed at 0 if for any sequence zn ⊂ E,zn � q ∈ D(T ) and ‖zn−Tzn‖→ 0, then Tq = q. Lemma 2.1. (see [27]) Let H be a real Hilbert space. Then, the following inequality holds: ‖λx + (1 −λ)y‖2 ≤ λ‖x‖2 + (1 −λ)‖y‖2 −λ(1 −λ)‖x −y‖,∀λ ∈ [0, 1],∀x,y ∈ H. Lemma 2.2. (see [27]) Let {sn}n∈N be a sequence of nonnegative real numbers satisfying the inequality: sn+1 ≤ (1 −γn)sn + δn,∀n ≥ 1, where {γn}n∈N and {δn}n∈N satisfy the following conditions:(i) {γn}n∈N ⊂ (0, 1);(ii) ∑∞n=1γn = ∞. Suppose ∑∞ n=1δn < ∞, then,limn→∞ sn = 0. https://doi.org/10.28924/ada/ma.2.10 Eur. J. Math. Anal. 10.28924/ada/ma.2.10 5 Lemma 2.3. (see [4]) Let E be a real Hilbert space. Then, for all x,y ∈ H, the following inequalities hold: I. ‖x −y‖2 ≤‖x‖2 − 2〈y, (x + y)〉 + ‖y‖2; II. ‖x −y‖2 ≤‖x‖2 − 2〈y, (x + y)〉. Lemma 2.4. (see [?]) Let D be a sunset of a real Hilbert space, T : D −→ H be a nonexpansive mapping and z a weak cluster point of the sequence {yn}∞n=0. If ‖Tyn −yn‖→ 0, then z ∈ F (T ) Proposition 2.5. (see [27]) Let D be a nonempty subset of a real Hilbert space amd Γ : D −→ D an α-demicontractive mapping. Assume that x ∈ D and α ≥ 1. Then, Γ is Lipschitizian. Theorem 2.6. (see [4]) A Banach space E is reflexive if and only if every (normed) bounded sequence in E has a subsequence which converges weakly to an element of E. 3. Convergence Results Now, we prove our main results. Theorem 3.1. Let H be a real Hilbert space, K a nonempty closed convex subset of H and T : K −→ K an L-Lipschitz α-hemicontractive mapping. For any arbitrary x0 ∈ H, define the sequence {xn}∞n=0 iteratively as follows: xn+1 = PK[(1 −αn −γn)xn + γnTyn] yn = (1 −βn)xn + βnTxn,n ≥ 1, (3.1) where the sequences {δn}∞n=0,{γn} ∞ n=0,{βn} ∞ n=0 ∈ (0, 1) satisfy the following conditions: (i) 0 < δ ≤ δn ≤ βn ≤ γn ≤ γ ≤ 1 −δ 1 + L2 ; (ii) limn→∞δn = 0 and ∑∞ n=0δn = ∞. Then, the sequence {xn}∞n=0 generated by (3.1) weakly and strongly converges to the fixed point of T . Proof. Since F (T ) is nonempty, let αq ∈ F (T ) and x ∈ K. Using (3.1), Lemma 2.1 and the factthat T is L-Lipschitizian, we estimate as follows: ‖xn+1 −αq‖2 = ‖PK[(1 −δn −γn)xn + γnTyn] −αq‖ ≤ ‖(1 −δn −γn)xn + γnTyn −αq‖ = ‖(1 −δn −γn)(xn −αq) + γn(Tyn −αq) −δnαq‖ ≤ ‖(1 −δn −γn)(xn −αq) + γn(Tyn −αq)‖ + δn‖αq‖. (3.2) Set Qn = ‖(1 −δn −γn)(xn −αq) + γn(Tyn −αq)‖2 and observe that Qn = ‖(1 −δn)(xn −αq) − (1 −γn)(xn −αq) + γn(Tyn −αq)‖2. (3.3) https://doi.org/10.28924/ada/ma.2.10 Eur. J. Math. Anal. 10.28924/ada/ma.2.10 6 Since (1 −δn)(xn −αq) = (1 −δn)(1 −γn)(xn −αq) + γn(1 −δn))(xn −αq) (3.4) and γn(Tyn −αq) = γn(1 −δn)(Tyn −αq) + γnδn(Tyn −αq), (3.5) it follows from (3.3) that Qn = ‖(1 −δn)(1 −γn)(xn −αq) + γn(1 −δn))(xn −αq) − (1 −γn)(xn −αq) +γn(1 −δn)(Tyn −αq) + γnδn(Tyn −αq)‖2 = ‖(1 −δn)[(1 −γn)(xn −αq) + γn(Tyn −αq)] + δnγn(Tyn −xn)‖2. (3.6) (3.6) and Lemma 2.1 imply that Qn = (1 −δn)‖(1 −γn)(xn −αq) + γn(Tyn −αq)‖2 + δn‖γn(Tyn −xn)‖2 −δn(1 −δn)‖xn −αq‖2. (3.7) If we denote Vn = ‖(1 −γn)(xn −αq) + γn(Tyn −αq)‖2 and use similar technique as above, thenwe get Vn = (1 −γn)‖xn −αq‖2 + γn‖Tyn −αq‖2 −γn(1 −γn)‖xn −Tyn‖2. (3.8) (3.7) and (3.8) imply Qn = (1 −δn)[(1 −γn)‖xn −αq‖2 + γn‖Tyn −αq‖2 −γn(1 −γn)‖xn −Tyn‖2] +δnγ 2 n‖Tyn −xn‖ 2 −δn(1 −δn)‖xn −αq‖2 = (1 −δn)(1 −γn)‖xn −αq‖2 + (1 −δn)γn‖Tyn −αq‖2 −γn(1 −γn)(1 −δn)‖xn −Tyn‖2 +δnγ 2 n‖Tyn −xn‖ 2 −δn(1 −δn)‖xn −αq‖2 ≤ (1 −δn)(1 −γn)‖xn −αq‖2 + (1 −δn)γnL2‖yn −αq‖2 −(γn −δnγn −γ2n + γ 2 nδn)‖xn −Tyn‖ 2 + δnγ 2 n‖Tyn −xn‖ 2 −δn(1 −δn)‖xn −αq‖2 = (1 −δn)(1 −γn)‖xn −αq‖2 + γnL2‖yn −αq‖2 −δnγnL2‖yn −αq‖2 −(γn −δnγn −γ2n)‖xn −Tyn‖ 2 −δn(1 −δn)‖xn −αq‖2. (3.9) Observr that |xn −Tyn‖ ≤ (‖xn −αq‖ + L‖yn −αq‖)2 = ‖xn −αq‖2 + L(2‖xn −αq‖‖yn −αq‖) + L2‖yn −αq‖2 ≤ ‖xn −αq‖2 + L‖xn −αq‖2 + L‖yn −αq‖2 + L2‖yn −αq‖2 = (1 + L)‖xn −αq‖2 + L(1 + L)‖yn −αq‖2. (3.10) https://doi.org/10.28924/ada/ma.2.10 Eur. J. Math. Anal. 10.28924/ada/ma.2.10 7 (3.9) and (3.10) imply Qn ≤ (1 −δn)(1 −γn)‖xn −αq‖2 + γnL2‖yn −αq‖2 −δnγnL2‖yn −αq‖2 −(γn −δnγn −γ2n)[(1 + L)‖xn −αq‖ 2 + L(1 + L)‖yn −αq‖2] −δn(1 −δn)‖xn −αq‖2 = (1 −δn)(1 −γn)‖xn −αq‖2 − (1 + L)(γn −δnγn −γ2n)‖xn −αq‖ −[(γn −δnγn −γ2n)L−L 2γ2n]‖yn −αq‖ 2 −δn(1 −δn)‖xn −αq‖2 (3.11) Again, from (3.1), we get ‖yn −αq‖2 = ‖(1 −βn)(xn −αq) + βn(Txn −αq)‖2 (3.12) Since T is α-hemicontractive mapping, it follows from (3.12) and Lemma 2.1 that ‖yn −αq‖2 ≤ (1 −βn)‖xn −αq‖2 + βn[‖xn −αq‖2‖2 + ‖xn −Txn‖2] −βn(1 −βn)‖xn −Txn‖2 = (1 −βn)‖xn −αq‖2 + β2n‖xn −Txn‖ 2. (3.13) Putting (3.13) into (3.11), we have Qn ≤ (1 −δn)(1 −γn)‖xn −αq‖2 − (1 + L)(γn −δnγn −γ2n)‖xn −αq‖ −[(γn −δnγn −γ2n)L−L 2γ2n]{(1 −βn)‖xn −αq‖ 2 + β2n‖xn −Txn‖ 2} −δn(1 −δn)‖xn −αq‖2 ≤ (1 −δn)(1 −γn)‖xn −αq‖2 − [(γn −δnγn −γ2n)(1 + L) + δn(1 −δn) −L 2γ2n]‖xn −αq‖ 2 −β2n[(γn −δnγn −γ 2 n)L−L 2γ2n]‖xn −Txn‖ 2. (3.14) Since from condition (i), (γn −δnγn −γ2n) −L2γ2n ≥ 0, it follows from (3.14) that Qn ≤ (1 −δn)2‖xn −αq‖2 (3.15) (3.2) and (3.15) imply |xn+1 −αq‖ ≤ (1 −δn)‖xn −αq‖2 + δn‖αq‖ ≤ max{‖xn −αq‖2,‖αq‖},∀n ∈N. It is easy to see, using mathematical induction, that |xn+1 −αq‖ ≤ max{‖xn −αq‖2,‖αq‖} = ‖x0 −αq‖2. (3.16) https://doi.org/10.28924/ada/ma.2.10 Eur. J. Math. Anal. 10.28924/ada/ma.2.10 8 Hence, {xn}∞n=0 is bounded.Furthermore, since from (3.1), ‖xn+1 −αq‖2 = ‖PK[(1 −δn −γn)xn + γnTyn] −αq‖2 ≤ ‖(1 −δn −γn)xn + γnTyn −αq‖2 = ‖xn −αq −γn(xn −Tyn) −δnxn‖2, it follows from Lemma 2.3(i) that ‖xn+1 −αq‖2 ≤ ‖xn −αq −γn(xn −Tyn)‖2 − 2δn〈xn,xn+1 −αq〉. (3.17) Since ‖xn −αq −γn(xn −Tyn)‖2 = ‖(1 −γn)(xn −αq) + γn(αq −Tyn)‖2 = (1 −γn)‖xn −αq‖2 + γn‖αq −Tyn‖2 −γn(1 −γn)‖Tyn −xn‖2 ≤ (1 −γn)‖xn −αq‖2 + γnL2‖yn −αq‖2 −γn(1 −γn)‖Tyn −xn‖2, (3.18) it follows from (3.10) that ‖xn −αq −γn(xn −Tyn)‖2 ≤ (1 −γn)‖xn −αq‖2 + γnL2‖yn −αq‖2 −γn(1 −γn){(1 + L)‖xn −αq‖2 + L(1 + L)‖yn −αq‖2} = (1 −γn)‖xn −αq‖2 + γnL2‖yn −αq‖2 −γn(1 −γn)(1 + L)‖xn −αq‖2 −γn(1 −γn)L‖yn −αq‖2 −γnL2‖yn −αq‖2 + γ2nL 2‖yn −αq‖2 = (1 −γn)‖xn −αq‖2 −γn(1 −γn)(1 + L)‖xn −αq‖2 −[γn(1 −γn)L−L2γ2n]‖yn −αq‖ 2. (3.19) (3.13) and (3.19) imply ‖xn −αq −γn(xn −Tyn)‖2 ≤ (1 −γn)‖xn −αq‖2 −γn(1 −γn)(1 + L)‖xn −αq‖2 −[γn(1 −γn)L−L2γ2n]{(1 −βn)‖xn −αq‖ 2 + β2n‖xn −Txn‖ 2} ≤ (1 −γn)‖xn −αq‖2 −γnL[1 −γn −γnL]{(1 −βn)‖xn −αq‖2 +β2n‖xn −Txn‖ 2}. (3.20) By condition (i), 1 −γn −γnL > 0,∀n ≥ 0. Consequently, ‖xn −αq −γn(xn −Tyn)‖2 ≤ ‖xn −αq‖2 −(1 −γn −γnL)β2nγnL‖xn −Txn‖ 2. (3.21) https://doi.org/10.28924/ada/ma.2.10 Eur. J. Math. Anal. 10.28924/ada/ma.2.10 9 (3.17)and (3.21) imply ‖xn+1 −αq‖2 ≤ ‖xn −αq‖2 − (1 −γn −γnL)β2nγnL‖xn −Txn‖ 2 −2δn〈xn,xn+1 −αq〉. Since {xn} is bounded, there exists a constant B > 0 such that −2〈xn,xn+1 −αq〉≤ B. Thus, ‖xn+1 −αq‖2 ≤ ‖xn −αq‖2 − (1 −γn −γnL)β2nγnL‖xn −Txn‖ 2 δnB. The last inequality implies that ‖xn+1 −αq‖2 −‖xn −αq‖2 + (1 −γn −γnL)β2nγnL‖xn −Txn‖ 2 ≤ δnB. (3.22) Now, we consider the following two cases:Case A: Suppose there exists n0 ∈N such that {‖xn −αq‖} is non-increasing. Then, {‖xn −αq‖}is convergent. Clearly, ‖xn+1−αq‖−‖xn−αq‖→ 0. In view, of condition (ii) and (3.22), we have ‖xn−Txn‖→ 0. By Lemma 2.4, it is obvious that ωω(xn) ⊂ F (T ), where ωω(xn){x : ∃xnk ⇀ αx?}is the weak limit set of {xn}. This implies that the sequence {xn} converges weakly to a fixed point αx? of T .Suppose there exists some subsequences {xnk}∞k=0 ⊂{xn}∞n=0 such that xnk ⇀ αy? weakly and αy? 6= αx?. Since limn→∞‖xn −αv‖ exists for αv ∈ F (T ), by virtue of Opial condition on H, wehave lim n→∞ ‖xn −αx?‖ = lim n→∞ ‖xnj −αx ?‖ < lim n→∞ ‖xnj −αy ?‖ = lim n→∞ ‖xnk −αy ?‖ < lim n→∞ ‖xnk −αx ?‖ = lim n→∞ ‖xnj −αy ?‖, which is a contradiction. Consequently, αy? = αx?. This implies that {xnj}∞j=0 converges wealy toa common fixed point of T.Next, we prove that {xn}∞n=0 converges strongly to x?/ Let ξn = γnTyn + (1−γnxn). Then, from(3.1), we obtain xn+1 = PK[ξn −δnxn],n ≥ 0. This implies that xn+1 = PK[ξn + δnξn + δnξn −δnxn = PK[(1 −δn)ξn + δn(ξn −xn)]. (3.23) Observe that ‖ξn −αx?‖2 = ‖xn −αx? −γn(xn −Tyn)‖2. (3.24)By using the same argument as in (3.20), with αx? = αq, we get, from (3.24), that ‖ξn −αx?‖ = ‖xn −αx?‖. (3.25) Again, from (3.1), we obtain ‖yn −xn‖ = βn‖xn −Txn‖→ 0 as n →∞,βn ∈ (0, 1). (3.26) https://doi.org/10.28924/ada/ma.2.10 Eur. J. Math. Anal. 10.28924/ada/ma.2.10 10 In addition, since T is Lipschitz, it follows that ‖ξn −xn‖ = ‖γn[(Tyn −Txn) − (xn −Txn)]‖ ≤ γn‖Tyn −Txn‖−γn‖xn −Txn‖ ≤ γnL‖yn −xn‖ + γn‖xn −Txn‖→ 0 as n →∞. (3.27) Now, using (3.23), we get ‖xn+1 −αx?‖2 ≤ ‖(1 −δn)ξn + δn(ξn −xn) −αx?‖2 = ‖(1 −δn)(ξn −αx?) + δn(ξn −xn) −δnαx?‖2, which by Lemma 2.3 yields ‖xn+1 −αx?‖2 ≤ ‖(1 −δn)(ξn −αx?) + δn(ξn −xn)‖2 − 2δn〈αx?,xn+1 −αx?〉 = (1 −δn)‖ξn −αx?‖2 + δn‖ξn −xn‖2 −δn(1 −δn)‖xn −αx?‖2 −2δn〈αx?,xn+1 −αx?〉 ≤ (1 −δn)‖ξn −αx?‖2 + ‖ξn −xn‖2 − 2δn〈αx?,xn+1 −αx?〉 = (1 −δn)‖ξn −αx?‖2 − 2δn〈αx?,xn+1 −αx?〉 ( by (3.27)) (3.28) ≤ (1 −δn)‖ξn −αx?‖2 (3.29) (3.29) and Lemma 2.2 imply that xn → αx? as n →∞.Case B: Assume that {‖xn − αq‖}∞n=0 is not a monotonically increasing sequence. Set Vn = ‖xn −αq‖2 and let τ : N−→N be a mapping defined by τn = max{k ∈N : k ≤ n,Vn ≤ Vn+1},∀n ≥ n0, for some n0 large enough. Obviously, {τn}∞n=0 is a nondecreasing sequence given that τn → ∞ as n →∞ and Vτn ≤ Vτn+1 for all n ≥ n0. From (3.22), ‖xτ(n) −Txτ(n)‖ 2 ≤ δτ(n)B (1 −γτ(n) −γτ(n)L)β2τ(n)γτ(n)L → 0 as n →∞. (3.30) Therefore, limn→∞‖xτ(n) − Txτ(n)‖ = 0. Using similar argument as Case A above, we concludethat {xτ(n)}→ αx? →∞.From (3.28), we have 0 ≤‖xτ(n)+1 −αx ?‖2 −‖xτ(n) −αx ?‖2 ≤ δτ(n)[2〈αx ? −xτ(n)+1 −‖xτ(n) −αx ?‖2], (3.31) for δτ(n) ∈ (0, 1). Hence, limn→∞‖xτ(n) − αx?‖2 = 0. This implies that limn→∞Vτ(n) = limn→∞Vτ(n)+1 = 0. In addition, for n ≥ n0, it is easy to see that Vτ(n) = Vτ(n)+1 if n 6= τ(n)(i.e., τ(n) < n) because Vj > Vj+1, f or τ(n) + 1 ≤ n. Consequently. we obtain, for all n ≥ n0, 0 ≤ Vτ(n)max{Vτ(n),Vτ(n)+1} = Vτ(n)+1. Hence, limn→∞Vn = 0. That is, {xn}∞n=0 converges https://doi.org/10.28924/ada/ma.2.10 Eur. J. Math. Anal. 10.28924/ada/ma.2.10 11 strongly to αx?, and this completes the proof. � The following corollaries are immediate consequence of Theorem 3.1. Corollary 3.2. Let H be a real Hilbert space, K a nonempty closed convex subset of H and T : K −→ K an L-Lipschitz hemicontractive mapping. For any arbitrary x0 ∈ H, define the sequence {xn}∞n=0 iteratively as follows: xn+1 = PK[(1 −αn −γn)xn + γnTyn] yn = (1 −βn)xn + βnTxn,n ≥ 1, (3.32) where the sequences {δn}∞n=0,{γn} ∞ n=0,{βn} ∞ n=0 ∈ (0, 1) satisfy the following conditions: (i) 0 < δ ≤ δn ≤ βn ≤ γn ≤ γ ≤ 1 −δ 1 + L2 ; (ii) limn→∞δn = 0 and ∑∞ n=0δn = ∞. Then, the sequence {xn}∞n=0 generated by (3.32) weakly and strongly converges to the fixed point of T . Corollary 3.3. Let H be a real Hilbert space, K a nonempty closed convex subset of H and T : K −→ K is α-demicontractive mapping. For any arbitrary x0 ∈ H, define the sequence {xn}∞n=0 iteratively as follows: xn+1 = PK[(1 −αn −γn)xn + γnTyn] yn = (1 −βn)xn + βnTxn,n ≥ 1, (3.33) where the sequences {δn}∞n=0,{γn} ∞ n=0,{βn} ∞ n=0 ∈ (0, 1) satisfy the following conditions: (i) 0 < δ ≤ δn ≤ βn ≤ γn ≤ γ ≤ 1 −δ 1 + L2 ; (ii) limn→∞δn = 0 and ∑∞ n=0δn = ∞. Then, the sequence {xn}∞n=0 generated by (3.33) weakly and strongly converges to the fixed point of T . Corollary 3.4. Let H be a real Hilbert space, K a nonempty closed convex subset of H and T : K −→ K is demicontractive mapping. For any arbitrary x0 ∈ H, define the sequence {xn}∞n=0 iteratively as follows:  xn+1 = PK[(1 −αn −γn)xn + γnTyn] yn = (1 −βn)xn + βnTxn,n ≥ 1, (3.34) where the sequences {δn}∞n=0,{γn} ∞ n=0,{βn} ∞ n=0 ∈ (0, 1) satisfy the following conditions: (i) 0 < δ ≤ δn ≤ βn ≤ γn ≤ γ ≤ 1 −δ 1 + L2 ; (ii) limn→∞δn = 0 and ∑∞ n=0δn = ∞. https://doi.org/10.28924/ada/ma.2.10 Eur. J. Math. Anal. 10.28924/ada/ma.2.10 12 Then, the sequence {xn}∞n=0 generated by (3.34) weakly and strongly converges to the fixed point of T . Competing Interest. The authors declare that there is no conflict of interest. References [1] F.E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc.73 (1967) 875-882.[2] F.E. Browder, W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal.Appl. 20 (1967) 197-228. https://doi.org/10.1016/0022-247X(67)90085-6.[3] C.E. Chidume, Picards Iteration for nonlinear Lipschitz strong pseudocontractions in uniformly strong Banachspaces, ICTP Preprint, IC/951, (1995) 88. https://www.osti.gov/etdeweb/biblio/194049.[4] C.E. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Springer-Verlag, London, (2009).[5] C. Chidume, C. Moore, Fixed point iteration for pseudocontractive maps, Proc. Amer. Math. Soc. 127 (1999) 1163-1170. https://doi.org/10.1090/S0002-9939-99-05050-9.[6] C.E. Chidume, S.A. Mutangadura, An example of the mann iterative method for lipschitz pseudocontractions, Proc.Amer. Math. Soc. 13 (1974) 2359-2363.[7] T.L. Hicks, J.D. Kubicek, On the Mann iteration process in a Hilbert space, J. Math. Anal. Appl. 59 (1977) 498-504. https://doi.org/10.1016/0022-247X(77)90076-2.[8] N. Hussain, A. Rafiq, M.S. Kang, Iteration schemes for two hemicontractive mappings in arbitrary Banach spaces,Int. J. Math. Anal. 7 (2013) 863-871.[9] D.I. Igbokwe, Construction of fixed points of strictly pseudocontractive mappings of Browder-Petryshn-type inarbitrary Banach spaces, J. Fixed Point Theory Appl. 4 (2004) 137-147.[10] E.E. Epuke, Approximation of fixed points and solutions of variational inequalities for certain classes of mappingsusing hybrid iteration scheme, Unpublished M.Sc. Thesis, University of Nigeria, Nsukka, (2010).[11] L. Qihou, On Naimpally and Singh’s open questions, J. Math. Anal. Appl. 124 (1987) 157-164. https://doi.org/ 10.1016/0022-247X(87)90031-X.[12] G. Marino, H.-K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J.Math. Anal. Appl. 329 (2007) 336-346. https://doi.org/10.1016/j.jmaa.2006.06.055.[13] L. Maruster, S. Maruster, Strong convergence of the Mann iteration for α-demicontractive mappings, Math. Com-puter Model. 54 (2011) 2486-2492. https://doi.org/10.1016/j.mcm.2011.06.006.[14] M.A. Noor, K.I. Noor, T.M. Rassias, Some aspects of variational inequalities, J. Comput. Appl. Math. 47 (1993)285-312. https://doi.org/10.1016/0377-0427(93)90058-J.[15] M.O. Osilike, Strong and weak convergence of Ishikawa iteration methods for a class of nonlinear equations, Bull.Korean Math. Soc. 37 (2000) 153-169.[16] M.O. Osilike, F.O. Isiogugu, Weak and strong convergence theorems for nonspreading-type mappings in Hilbertspaces, Nonlinear Anal.: Theory Methods Appl. 74 (2011) 1814-1822. https://doi.org/10.1016/j.na.2010. 10.054.[17] M.O. Osilike, A.C. Onah, Strong convergence of the Ishikawa iteration for Lipschitz α-hemicontractive map-pings, Ann. West Univ. Timisoara - Math. Computer Sci. 53 (2015) 151-161. https://doi.org/10.1515/ awutm-2015-0008.[18] L. Wang, An iteration method for nonexpansive mappings in Hilbert spaces, Fixed Point Theory Appl. 2007 (2007)28619. https://doi.org/10.1155/2007/28619. https://doi.org/10.28924/ada/ma.2.10 https://doi.org/10.1016/0022-247X(67)90085-6 https://www.osti.gov/etdeweb/biblio/194049 https://doi.org/10.1090/S0002-9939-99-05050-9 https://doi.org/10.1016/0022-247X(77)90076-2 https://doi.org/10.1016/0022-247X(87)90031-X https://doi.org/10.1016/0022-247X(87)90031-X https://doi.org/10.1016/j.jmaa.2006.06.055 https://doi.org/10.1016/j.mcm.2011.06.006 https://doi.org/10.1016/0377-0427(93)90058-J https://doi.org/10.1016/j.na.2010.10.054 https://doi.org/10.1016/j.na.2010.10.054 https://doi.org/10.1515/awutm-2015-0008 https://doi.org/10.1515/awutm-2015-0008 https://doi.org/10.1155/2007/28619 Eur. J. Math. Anal. 10.28924/ada/ma.2.10 13 [19] K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math.Anal. Appl. 178 (1993) 301-308. https://doi.org/10.1006/jmaa.1993.1309.[20] Y. Yao, Y.-C. Liou, G. Marino, A hybrid algorithm for pseudo-contractive mappings, Nonlinear Anal.: Theory MethodsAppl. 71 (2009) 4997-5002. https://doi.org/10.1016/j.na.2009.03.075.[21] H. Zhou, Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces, J. Math. Anal.Appl. 343 (2008) 546-556. https://doi.org/10.1016/j.jmaa.2008.01.045.[22] H. Zhou, Demiclosedness principle with applications for asymptotically pseudo-contractions in Hilbert spaces,Nonlinear Anal.: Theory Methods Appl. 70 (2009) 3140-3145. https://doi.org/10.1016/j.na.2008.04.017.[23] A.B. George, Weak and strong convergence of the Ishikawa iterative sequence to fixed points of Lipschitz pseudo-contractive maps in Hilbert spaces, Adv. Fixed Point Theory, 5 (2015) 147-157.[24] E.I. Veluhan, Weak and strong convergence algorithm for Lipschitz Pseudocontractive Maps in Hilbert Spaces,Unpublished M.Sc. Thesis, Department of Mathematics, University of Nigeria, Nsukka, (2014).[25] O.O. Owojori, Some convergence results for fixed point of hemicontractive operators in some Banach spaces,Kragujevac J. Math. 31 (2008) 111-129.[26] C. Morales, J. Jung, Convergence of paths for pseudo-contractive mappings in Banach spaces, Proc. Amer. Math.Soc. 128 (2000) 3411-3419. https://doi.org/10.1090/S0002-9939-00-05573-8.[27] I. K. Agwu, D. I. Igbokwe, Hybrid-type iteration scheme for approximating fixed point of Lipschitz α-hemicontractivemappings, Adv. Fixed Point Theory, 10 (2020) 3. https://doi.org/10.28919/afpt/4442. https://doi.org/10.28924/ada/ma.2.10 https://doi.org/10.1006/jmaa.1993.1309 https://doi.org/10.1016/j.na.2009.03.075 https://doi.org/10.1016/j.jmaa.2008.01.045 https://doi.org/10.1016/j.na.2008.04.017 https://doi.org/10.1090/S0002-9939-00-05573-8 https://doi.org/10.28919/afpt/4442 1. Introduction 2. Preliminary 3. Convergence Results Competing Interest References