©2022 Ada Academica https://adac.eeEur. J. Math. Anal. 2 (2022) 12doi: 10.28924/ada/ma.2.12 Some Investigations on a Class of Analytic and Univalent Functions Involving q-Differentiation Ayotunde Olajide Lasode∗ , Timothy Oloyede Opoola Department of Mathematics, Faculty of Physical Sciences, University of Ilorin, Ilorin, Nigeria lasode_ayo@yahoo.com, opoola.to@unilorin.edu.ng ∗Correspondence: lasode_ayo@yahoo.com Abstract. We use the concept of q-differentiation to define a class Eq(β,δ) of analytic and univalentfunctions. The investigations thereafter includes coefficient estimates, inclusion property and someconditions for membership of some analytic functions to be in the class Eq(β,δ). Our results generalizesome known and new ones. 1. Introduction and Definitions We let UD = {z : z ∈ C, |z| < 1} represent the unit disk and A represent the class ofnormalized analytic functions of the form f (z)= z + ∞∑ m=2 amz m, z ∈UD (1) where f (0) = 0 = f ′(0)−1. Also, let S represent a subset of A containing functions univalentin UD. A function f in S is a member of class BT (δ) of bounded turning functions of order δ if itsatisfies the geometric condition Ref ′(z) > δ ∈ [0,1), z ∈UD. Let BT (0)=BT represent the class of bounded turning functions. It is known (see [1]) that f ∈BTare univalent functions. Also, a function f in S is a member of class CV(δ) of convex functions oforder δ if it satisfies the geometric condition Re ( z f ′′(z) f ′(z) +1 ) > δ ∈ [0,1), z ∈UD. Let CV(0)= CV represent the class of convex functions.The importance of operators in geometric function theory cannot be underrated. For instancesee [2, 13, 15] for some known ones.In 1908, Jackson [7] (see also [3, 4, 8–11]) initiated the concept of q-calculus as follows. Received: 21 Jan 2022. Key words and phrases. Analytic functions; Carathéodory functions; univalent functions; bounded turning function;coefficient bound; inclusion property and q-calculus. 1 https://adac.ee https://doi.org/10.28924/ada/ma.2.12 https://orcid.org/0000-0002-2657-7698 Eur. J. Math. Anal. 10.28924/ada/ma.2.12 2 Definition 1.1. For q ∈ (0,1), the q-differentiation of function f ∈A is defined by Dqf (0)= f ′(0), Dqf (z)= f (z)− f (qz) z(1−q) (z 6=0) and D2qf (z)=Dq(Dqf (z)). (2) Obviously, applying (2) in (1) gives us Dqf (z)=1+ ∞∑ m=2 [m]qamz m−1 and zD2qf (z)= ∞∑ m=2 [m−1]q[m]qamzm−1 (3) where [m]q = 1−qm1−q and lim q↑1 [m]q = m.For example if f (z)= zm, then by using (2), Dqf (z)=Dq(zm)= 1−qm 1−q zm−1 = [m]qz m−1 and observe that lim q↑1 Dqf (z)= lim q↑1 ( [m]qz m−1) = mzm−1 = f ′(z) where f ′(z) is the classical differentiation.In this work, the q-differential operator was used to define a class of analytic functions andgeneralize some results. 2. Relevant Lemmas We represent by P the well-known class of analytic functions of the form p(z)=1+ ∞∑ m=1 cmz m, Re p(z) > 0, z ∈UD (4) and by P(δ)⊆P(0)=P the class whose members are of the form pδ(z)=1+ ∞∑ m=1 (1−δ)cmzm, Re p(z) > δ ∈ [0,1), z ∈UD. (5) The following lemmas shall be required to proof our results. Lemma 2.1 ( [14]). Let g(z) = ∞∑ m=1 amz m ≺ G(z) = ∞∑ m=1 bmz m, z ∈ UD where G(z) is univalent in UD and G(UD) is a convex domain, then |am| ≤ |b1|, m ∈ N. Equality holds for the function g(z)= G(τzm), |τ|=1. The lemmas that follow are the q-analogous versions of the original ones as referenced. Lemma 2.2 ( [6]). Let p(z) be analytic in UD such that p(0)=1. If Re ( zDq(p(z)) p(z) +1 ) > 3δ −1 2δ , z ∈UD, then for α =(δ −1)/δ (δ ∈ [1/2,1)), Re p(z) > 2α. The constant 2α is the best possible. Lemma 2.3 ( [5]). Let u = u1+u2i and v = v1+v2i such that γ(u,v) :C2 −→C is a complex-valued function such that https://doi.org/10.28924/ada/ma.2.12 Eur. J. Math. Anal. 10.28924/ada/ma.2.12 3 (1) γ(u,v) is continuous in Π ⊂C2,(2) (1,0)∈ Π and Re(γ(1,0)) > 0 and(3) Re(γ(ξ+(1−ξ)u2i,v1))≤ ξ (0≤ ξ < 1)) if (ξ+(1−ξ)u2i,v1)∈ Π and v1 ≤−12(1−ξ)(1+u 2 2) and Re(γ(ξ+(1−ξ)u2i,v1))≥ ξ (ξ > 1) if (ξ+(1−ξ)u2i,v1)∈ Π and v1 ≥ 12(1−ξ)(1+u 2 2). If p(z)∈P for (p(z),zDqp(z))∈ Π and Re(γ(p(z), zDqp(z))) > ξ, z ∈UD, then Rep(z) > ξ in UD. 3. Main Results The definition of the investigated class is as follows.A function f (z)∈A is a member of the class Eq(β,δ) if the condition Re ( Dqf (z)+ 1+eiβ 2 zD2qf (z) ) > δ, δ ∈ [0,1), β ∈ (−π,π], z ∈UD (6) holds.When parameters in (6) are varied, the class Eq(β,δ) reduces to some well-known classes ofanalytic functions that have been studied by some authors. These are cited in our corollaries andremarks.The following are the proved results. Theorem 3.1. Let β ∈ (−π,π] and δ ∈ [0,1), if condition (6) holds, then Eq(β,δ)⊂BT q(δ). BT q(δ) is the class of q-bounded turning function of order δ. Proof. Let p(z) = Dqf (z) so that Dqp(z) = D2qf (z) and for κ = (1+ eiβ)/2, then (6) can beexpressed as Re(p(z)+κzDqp(z)) > δ. (7) In view of the conditions in Lemma 2.3 and for p(z) in (7), we define the function γ(u,ν)= u +κν on the domain Π of C2, then (i) clearly, γ(u,ν) satisfies the condition (1) in Lemma 2.3,(ii) for (1,0)∈ Π, γ(1,0)=1 =⇒ Re(γ(1,0)) > 0 and(iii) γ(δ +(1−δ)u2i,ν1)= δ + 1+cosδ2 ν1 +((1−δ)u2 + sinδ2 ν1) i, thus, Re(γ(δ +(1−δ)u2i,ν1))= δ + 1+cosβ 2 ν1 ≤ δ for ν1 ≤−12(1−δ)(1+u22). https://doi.org/10.28924/ada/ma.2.12 Eur. J. Math. Anal. 10.28924/ada/ma.2.12 4 Now since γ(u,ν) satisfies all the conditions (1−3) in Lemma 2.3, then it implies that Rep(z)=Re(Dqf (z)) > δ, z ∈UD hence the proof is complete. � Corollary 3.2 ( [1]). Since class BT q(δ) is well-known to consist of univalent functions, then Eq(β,δ)⊂BT q(δ) consists of univalent functions. Corollary 3.3. lim q↑1 Eq(β,δ)⊂BT (δ), z ∈UD. Theorem 3.4. If f ∈A is such that Re ( zDq(Dqf (z)+κzD2qf (z)) Dqf (z)+κzD2qf (z) ) > δ −1 2δ , (8) then Re(Dqf (z)+κzD2qf (z)) > 2 (δ−1)/δ, δ ∈ [1/2,1), z ∈UD and κ =(1+eiβ)/2. Proof. From (6), let p(z)=Dqf (z)+κzD2qf (z), then by logarithmic q-differentiation we obtain zDqp(z) p(z) +1= zDq(Dqf (z)+κzD2qf (z)) Dqf (z)+κzD2qf (z) +1. Now applying Lemma 2.2 gives Re ( zDqp(z) p(z) +1 ) =Re ( zDq(Dqf (z)+κzD2qf (z)) Dqf (z)+κzD2qf (z) +1 ) > 3δ −1 2δ implies that Re ( zDq(Dqf (z)+κzD2qf (z)) Dqf (z)+κzD2qf (z) ) > δ −1 2δ and by the same Lemma 2.2 the proof in complete. � Corollary 3.5. If f ∈A satisfies condition (8), then f ∈Eq(β,2(δ−1)/δ). Corollary 3.6. If f ∈ lim q↑1 Eq(β,1/2) is such that Re ( z(1+κ)f ′′(z)+κz2f ′′′(z) f ′(z)+κzf ′′(z) ) > − 1 2 , then Re(f ′(z)+κzf ′′(z)) > 1/2, z ∈UD. https://doi.org/10.28924/ada/ma.2.12 Eur. J. Math. Anal. 10.28924/ada/ma.2.12 5 Corollary 3.7. If f ∈Eq(π,1/2) is such that Re ( zDq(Dqf (z)) Dqf (z) ) > − 1 2 , (9) then Re(Dqf (z)) > 1 2 . This means that if condition (9) holds, then f is a q-bounded turning function of order 1/2. Now if q ↑ 1, then Re ( zf ′′(z) f ′(z) ) > − 1 2 , (10) implies Re(f ′(z)) > 1 2 z ∈UD. This means that if condition (10) holds, then f is a bounded turning function of order 1/2. Corollary 3.8. If f ∈Eq(0,1/2) is such that Re ( zDq(Dqf (z)+zD2qf (z)) Dqf (z)+zD2qf (z) ) > − 1 2 , (11) then Re(Dqf (z)+zD2qf (z)) > 1 2 and if q ↑ 1, Re ( 2zf ′′(z)+z2f ′′′(z) f ′(z)+zf ′′(z) ) > − 1 2 implies that Re(f ′(z)+zf ′′(z)) > 1/2, z ∈UD. Theorem 3.9. Let β ∈ (−π,π] and δ ∈ [0,1), then the function f (z)= z +amz m ∈Eq(β,δ), m = {2,3, . . .} (12) if |am| ≤ 2 [m]q { |Xm|− ((2+[m−1]q)cosθ+[m−1]q cos(β +θ0)) } (13) where Xm =2+[m−1]q(1+eiβ) |Xm|= √ 2 { 2+[m−1]q(2+[m−1]q)(1+cosβ) } ≥ 2  (14) and θ0 attains minimum at θ0 = π +arctan ( −[m−1]q sinβ 2+[m−1]q(1+cosβ) ) . (15) https://doi.org/10.28924/ada/ma.2.12 Eur. J. Math. Anal. 10.28924/ada/ma.2.12 6 Proof. Firstly, applying (2) in (12) gives Dqf (z)=1+[m]qamzm−1 zD2qf (z)= [m−1]q[m]qamzm−1 } . (16) Note that it suffices to study the condition that for |z|=1,∣∣∣∣Dqf (z)+ 1+eiβ2 zD2qf (z)−1 ∣∣∣∣ < Re {Dqf (z)+ 1+eiβ2 zD2qf (z) } (17) so that by putting (16) into (17) we obtain∣∣∣∣[m]qamzm−1 + 12[m−1]q[m]q(1+eiβ)amzm−1 ∣∣∣∣ < Re { 1+[m]qamz m−1 + 1 2 [m−1]q[m]q(1+eiβ)amzm−1 } . Now letting |am|= r , amzm−1 = reiθ and using (14) we obtain∣∣∣∣12[m]qreiθXm ∣∣∣∣ ≤Re {1+[m]qreiθ + 12[m−1]q[m]q(1+eiβ)reiθ } (18) so that 1 2 [m]qr|Xm| ≤ReF (19) where F =1+[m]qreiθ + 1 2 [m−1]q[m]q(1+eiβ)reiθ in (18). Further simplification gives F =1+[m]qr cosθ+ 1 2 [m−1]q[m]qr cosθ+ 1 2 [m−1]q[m]qr cos(β +θ)+Im(F) so that ReF =1+ 1 2 [m]qr{2cosθ+[m−1]q cosθ+[m−1]q cos(β +θ)}= ψ. (20) Now (19) becomes 1 2 [m]qr|Xm| ≤ 1+ 1 2 [m]qr{(2+[m−1]q)cosθ+[m−1]q cos(β +θ)} and by simplification we obtain (13).To know the values of θ where (20) attains minimum implies that ∂ψ ∂θ =− r[m]q 2 { (2+[m−1]q)sinθ+[m−1]q sin(β +θ) } implies that (2+[m−1]q)sinθ+[m−1]q sin(β +θ)=0 so that tanθ = −[m−1]q sinβ 2+[m−1]q(1+cosβ)which simplifies to (15). � https://doi.org/10.28924/ada/ma.2.12 Eur. J. Math. Anal. 10.28924/ada/ma.2.12 7 Corollary 3.10. Let f (z)= z +amzm ∈Eq(0,δ) and m = {2,3, . . .}, then |am| ≤ 1 [m]q {√ 1+2[m−1]q +[m−1]2q +1+[m−1]q } and if q ↑ 1, then |am| ≤ 1 2m2 . Corollary 3.11. Let f (z)= z +amzm ∈Eq(π,δ) and m = {2,3, . . .}, then |am|5 1 2[m]q and if q ↑ 1, then |am| ≤ 1 2m . Remark 3.12. Let q ↑ 1, then Theorem 3.9 becomes the result in [18]. Theorem 3.13 (Coefficient Estimates). Let β ∈ (−π,π], δ ∈ [0,1) and let G(z) = 1+ b1z + b2z 2 + · · · ∈ CV(δ). If f ∈A belongs to Eq(β,δ), then |am| ≤ 2(1−δ)|b1| [m]q|Xm| , m = {2,3, . . .} (21) where |Xm| is defined in (14). Proof. Let f (z)∈Eq(β,δ), therefore from (6) and using (5), Dqf (z)+ 1+eiβ 2 zD2qf (z)= δ +(1−δ)p(z), z ∈UD. (22) Now putting (3) and (4) into (22) and simplifying gives 1+ ∞∑ m=2 { 1+[m−1]q ( 1+eiβ 2 )} [m]qamz m−1 =1+ ∞∑ m=2 (1−δ)cm−1zm−1 which implies that {2+[m−1]q(1+eiβ)} [m]q 2 am =(1−δ)cm−1, m = {2,3, . . .} where by applying (14) we obtain Xm [m]q 2(1−δ) am = cm−1, m = {2,3, . . .}. (23) Since G(UD) is a convex domain, then from Lemma 2.1, (23) becomes∣∣∣∣Xm [m]q2(1−δ)am ∣∣∣∣ = |cm−1| ≤ |b1| and simplifying further we obtain (21). � https://doi.org/10.28924/ada/ma.2.12 Eur. J. Math. Anal. 10.28924/ada/ma.2.12 8 Corollary 3.14. Let f (z)∈Eq(0,δ), then |am| ≤ (1−δ)|b1|√ 1+2[m−1]q +[m−1]2q and if q ↑ 1, then |am| ≤ (1−δ)|b1| m , m = {2,3, . . .}. Corollary 3.15. Let f ∈Eq(π,δ), then |am| ≤ (1−δ)|b1| [m]q and if q ↑ 1, then |am| ≤ (1−δ)|b1| m , m = {2,3, . . .} Remark 3.16. Let p(z)∈P and φ(z)=1+ 2 π2 ( ln 1+ √ z 1− √ z )2. If q ↑ 1, (1) β = π and G(z)= p(z), then Theorem 3.13 becomes the result in [12].(2) and G(z)= p(z), then Theorem 3.13 becomes the result in [16].(3) and G(z)= φ(z), then Theorem 3.13 becomes the result in [18].(4) and β =0, then Theorem 3.13 becomes the result in [17]. Acknowledgment. The authors would like to thank the referees for their careful reading of thismanuscript and their valuable suggestions. References [1] J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. Second Ser. 17(1915) 12–22. https://doi.org/10.2307/2007212.[2] F.M. Al-Oboudi, On univalent functions defined by a generalized differential operator, Intern. J. Math. Math. Sci.27 (2004) 1429–1436. https://doi.org/10.1155/S0161171204108090.[3] M.H. Annaby, Z.S. Mansour, q-Fractional Calculus and Equations, Springer-Verlag Inc., New York, 2012. https: //doi.org/10.1007/978-3-642-30898-7.[4] A. Aral, V. Gupta, R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer-Verlag Inc., New York,2013. https://doi.org/10.1007/978-1-4614-6946-9_1.[5] K.O. Babalola, T.O. Opoola, Iterated integral transforms of Carathéodory functions and their application to analyticand univalent functions, Tamkang J. Math. 135 (2006) 429–446. https://doi.org/10.5556/j.tkjm.37.2006.149.[6] K.O. Babalola, λ-pseudo-starlike functions, J. Class. Anal. 3 (2013) 137–147. https://doi.org/10.7153/ jca-03-12.[7] F.H. Jackson, On q-functions and a certain difference operator, Trans. Roy. Soc. Edinb. 46 (1908) 253–281. https: //doi.org/10.1017/S0080456800002751.[8] F.H. Jackson, On q-difference, Amer. J. Math. 32 (1910) 305–314. https://doi.org/10.2307/2370183.[9] V. Kac, P. Cheung, Quantum Calculus, Springer-Verlag Inc., New York, 2002. https://doi.org/10.1007/ 978-1-4613-0071-7. https://doi.org/10.28924/ada/ma.2.12 https://doi.org/10.2307/2007212 https://doi.org/10.1155/S0161171204108090 https://doi.org/10.1007/978-3-642-30898-7 https://doi.org/10.1007/978-3-642-30898-7 https://doi.org/10.1007/978-1-4614-6946-9_1 https://doi.org/10.5556/j.tkjm.37.2006.149 https://doi.org/10.7153/jca-03-12 https://doi.org/10.7153/jca-03-12 https://doi.org/10.1017/S0080456800002751 https://doi.org/10.1017/S0080456800002751 https://doi.org/10.2307/2370183 https://doi.org/10.1007/978-1-4613-0071-7 https://doi.org/10.1007/978-1-4613-0071-7 Eur. J. Math. Anal. 10.28924/ada/ma.2.12 9 [10] A.O. Lasode, T.O. Opoola, Fekete-Szegö estimates and second Hankel determinant for a generalized subfamily ofanalytic functions defined by q-differential operator, Gulf J. Math. 11 (2021) 36–43. https://gjom.org/index. php/gjom/article/view/583.[11] A.O. Lasode, T.O. Opoola, On a generalized class of bi-univalent functions defined by subordination and q-derivativeoperator, Open J. Math. Anal. 5 (2021) 46–52. https://doi.org/10.30538/psrp-oma2021.0092.[12] T.H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962) 532–537. https://doi.org/10.1090/S0002-9947-1962-0140674-7.[13] T.O. Opoola, On a subclass of univalent functions defined by a generalised differential operator, Int. J. Math. Anal.11 (2017) 869–876. https://doi.org/10.12988/ijma.2017.7232.[14] W. Rogosinski, On the coefficients of subordinate functions, Proc. Lond. Math. Soc. 48 (1945) 48–82. https: //doi.org/10.112/plms/s2-48.1.48.[15] G.S. Sǎlǎgean, Subclasses of univalent functions, Lect. Notes Math. 1013 (1983) 362–372. https://doi.org/10. 1007/BFb0066543.[16] H. Silverman, E.M. Silvia, Characterizations for subclasses of univalent functions, Sci. Math. Jpn. 50 (1999) 103–109. https://www.jams.jp/notice/mj/50-1.html.[17] H.M. Srivastava, D. Rǎducanu, P. Zaprawa, A certain subclass of analytic functions defined by means of differentialsubordination, Fac. Sci. Math. Univ. Niš, Serbia 30 (2016) 3743–3757. https://doi.org/10.2298/FIL1614743S.[18] L. Trojnar-Spelina, Characterizations of subclasses of univalent functions, Demonstr. Math. 38 (2005) 35–42. https: //doi.org/10.1515/dema-2005-0106. https://doi.org/10.28924/ada/ma.2.12 https://gjom.org/index.php/gjom/article/view/583 https://gjom.org/index.php/gjom/article/view/583 https://doi.org/10.30538/psrp-oma2021.0092 https://doi.org/10.1090/S0002-9947-1962-0140674-7 https://doi.org/10.12988/ijma.2017.7232 https://doi.org/10.112/plms/s2-48.1.48 https://doi.org/10.112/plms/s2-48.1.48 https://doi.org/10.1007/BFb0066543 https://doi.org/10.1007/BFb0066543 https://www.jams.jp/notice/mj/50-1.html https://doi.org/10.2298/FIL1614743S https://doi.org/10.1515/dema-2005-0106 https://doi.org/10.1515/dema-2005-0106 1. Introduction and Definitions 2. Relevant Lemmas 3. Main Results References