� EXTRACTA MATHEMATICAE Volumen 33, Número 2, 2018 instituto de investigación de matemáticas de la universidad de extremadura EXTRACTA MATHEMATICAE Vol. 35, Num. 1 (2020), 21 – 34 doi:10.17398/2605-5686.35.1.21 Available online October 16, 2019 Identities in the spirit of Euler A. Sofo College of Engineering and Science, Victoria University P. O. Box 14428, Melbourne City, Victoria 8001, Australia anthony.sofo@vu.edu.au Received March 26, 2019 Presented by Jesús M.F. Castillo Accepted September 17, 2019 Abstract: In this paper we develop new identities in the spirit of Euler. We shall investigate and report on new Euler identities of weight p+ 2, for p an odd integer, but with a non unitary argument of the harmonic numbers. Some examples of these Euler identities will be given in terms of Riemann zeta values, Dirichlet values and other special functions. Key words: Polylogarithm function, recurrence relations, Euler sums, Zeta functions, Dirichlet functions, Multiple zeta values. AMS Subject Class. (2010): 11M06, 11M32, 33B15. 1. Introduction In a previous paper, [16] we investigated families of integrals, where the integrand is the product of an inverse trigonometric or inverse hyperbolic trigonometric and the polylogarithmic function, J(a,δ,p,m) = ∫ 1 0 ym−1f(y) Lip ( δy2am ) dy , for a ∈ R+, δ = ±1, p ∈ N, m ∈ R+ and where f(y) = arctan (ym) or tanh−1 (ym). It was demonstrated that integrals of products of inverse trigono- metric and polylogarithmic functions can be associated with Euler sums. It is well known that integrals with polylogarithmic integrands can be associated with Euler sums. Therefore in the spirit of Euler we shall investigate integrals of the type I (a,δ,p,q) = ∫ 1 0 ln x x Lip(x) Liq (δx a) dx (1.1) for a ∈ R+, δ = ±1, p ∈ N, q ∈ N. Some examples are highlighted, almost none of which are amenable to a computer mathematical package. We shall ISSN: 0213-8743 (print), 2605-5686 (online) https://doi.org/10.17398/2605-5686.35.1.21 mailto:anthony.sofo@vu.edu.au https://www.eweb.unex.es/eweb/extracta/ https://creativecommons.org/licenses/by-nc/3.0/ 22 a. sofo also develop new Euler identities for sums of the type ∞∑ n=1 H (2) n 2 np , ∞∑ n=1 (−1)n+1 H(2)n 2 np , ∞∑ n=1 H (2) n−1 2 (2n− 1)p (1.2) and again, some examples are highlighted, almost none of which are amenable to a computer mathematical package. This work also extends the results given in [7], where the author examined integrals with positive arguments of the polylogarithm. Devoto and Duke [4] also list many identities of lower order polylogarithmic integrals and their relations to Euler sums. Some other important sources of information on polylogarithm functions are the works of [9], [10], and [16]. The famous Euler identity [5], for unitary argument of the harmonic numbers, states EU (m) = ∞∑ n=1 Hn nm = (m 2 + 1 ) ζ (m + 1) − 1 2 m−2∑ j=1 ζ(m− j)ζ(j + 1) . (1.3) The famous Euler identity was further extended in the work of [1]. Relatively recently multiple zeta values (MZVs) were studied and developed by [8], [21] and others, for example, [11]. MZVs are defined by ζ (i1, i2, . . . , ik) = ∑ n1>n2···>nk≥1 1 ni11 n i2 2 . . .n ik k for positive integers ik and i1 > 1 with weight ∑ ik and length or depth k. For arbitrary p ∈ N and q ≥ 2 the Euler sum Sp,q = ∞∑ n=1 H (p) n nq (1.4) is readily expressible in terms of MZVs, that is, Sp,q+Sq,p = ζ(p)ζ(q)+ζ(p+q). Euler developed many relations, including ζ(2, 1) = ζ(3) , S2,3 = 3ζ(2)ζ(3) − 9 2 ζ(5) . integrals of polylogarithms 23 It appears that at weight eight, S2,6 cannot be reduced to zeta values and their products. We also note that we may define alternating MZVs with signs in the numerator as ζ ( i1, i2, . . . , ik ) = ∑ n1>n2>···>nk≥1 (−1)n1+n2+···+nk ni11 n i2 2 . . .n ik k . Therefore an alternating MZV converges unless the first entry is an unbanned one, and we also have ζ ( 1 ) = − ln 2 and ζ (n) = η(n) = ( 1 − 21−n ) ζ(n) for n ≥ 2, so that, for example ζ ( 3, 1, 2 ) = ∑ n1>n2>n3≥1 (−1)n1+n3 n31n2n 2 3 . For arbitrary integer weight p ≥ 1, q ≥ 1 we shall define alternating Euler sums as, S (p,q) := ∞∑ n =1 (−1)n+1 H(p)n nq . (1.5) There are some special cases where the linear Euler sum (1.4) is reducible to zeta values. For odd weight w = (p + q) we have, BW (p,q) = ∞∑ n=1 H (p) n nq = 1 2 ( 1 + (−1)p+1 ) ζ(p)ζ(q) + (−1)p [ p2 ]∑ j=1 ( p + q − 2j − 1 p− 1 ) ζ(p + q − 2j)ζ(2j) (1.6) + (−1)p [ p2 ]∑ j=1 ( p + q − 2j − 1 q − 1 ) ζ(p + q − 2j)ζ(2j) + ζ(p + q) 2 ( 1 + (−1)p+1 ( p + q − 1 p ) + (−1)p+1 ( p + q − 1 q )) , where [z] is the integer part of z. For alternating Euler sums and specified odd weights we have some particular identities. Sitaramachandra Rao, [12] gave the identity, for S(p,q), when p = 1 and for odd weight 1 + q as, 2S(1,q) = (1 + q)η(1 + q) − ζ(1 + q) − 2 q 2 −1∑ j=1 η(2j) ζ(1 + q − 2j) (1.7) 24 a. sofo and in another special case, gave the integral S(1, 1 + 2q) = 1 (2q)! ∫ 1 0 ln2q(x) ln(1 + x) x(1 + x) dx. In the case where p and q are both positive integers and p+q is an odd integer, Flajolet and Salvy [6] gave the identity: 2S(p,q) = (1 − (−1)p) ζ(p)η(q) + 2(−1)p ∑ i+2k=q ( p + i− 1 p− 1 ) ζ(p + i) η(2k) (1.8) + η(p + q) − 2 ∑ j+2k=p ( q + j − 1 q − 1 ) (−1)jη(q + j) η(2k) , where η(0) = 1 2 , η(1) = ln 2, ζ(1) = 0, and ζ(0) = −1 2 in accordance with the analytic continuation of the Riemann zeta function. We define the alternating zeta function (or Dirichlet eta function) η(z) as η(z) := ∞∑ n=1 (−1)n+1 nz = ( 1 − 21−z ) ζ(z) . The following Euler identities for harmonic numbers at half integer values have been given in [19]. Lemma 1. For δ = ±1, a ∈ R+, r ∈ N and m a positive odd integer, W(a,δ,m,r) = ∑ n≥1 δn+1H (r) an nm then W ( 1 2 , 1,m, 1 ) = EU (m) + (−1)m+1S(1,m) + m−1∑ k=2 (−1)m−kζ(k)η(m + 1 −k) , (1.9) and W ( 1 2 ,−1,m, 1 ) = ( 1 − 21−m ) EU (m) + (−1)m+1S(1,m) + m−1∑ k=2 (−1)m−kζ(k)η(m + 1 −k) . (1.10) integrals of polylogarithms 25 Therefore the main aim of this paper is to develop new Euler identities for the sums (1.2) and represent the solution of the integral (1.1), in terms of special functions, for various values of the parameters (a,δ,p,q). First we define some special functions that we will encounter in the body of this paper. The Lerch transcendent, Φ(z,t,a) = ∞∑ m=0 zm (m + a)t is defined for |z| < 1 and <(a) > 0 and satisfies the recurrence Φ(z,t,a) = z Φ(z,t,a + 1) + a−t. The Lerch transcendent generalizes the Hurwitz zeta function at z = 1, Φ(1, t,a) = ∞∑ m=0 1 (m + a)t and the polylogarithm, or de-Jonquière’s function, when a = 1, Lit(z) := ∞∑ m=1 zm mt , t ∈ C when |z| < 1 ; <(t) > 1 when |z| = 1 . Let Hn = n∑ r=1 1 r = ∫ 1 0 1 − tn 1 − t dt = γ + ψ(n + 1) = ∞∑ j=1 n j(j + n) , H0 := 0 be the nth harmonic number, where γ denotes the Euler-Mascheroni constant, H (m) n = ∑n r=1 1 rm is the mth order harmonic number and ψ(z) is the digamma (or psi) function defined by ψ(z) := d dz {log Γ(z)} = Γ′(z) Γ(z) and ψ(1 + z) = ψ(z) + 1 z , moreover, ψ(z) = −γ + ∞∑ n=0 ( 1 n + 1 − 1 n + z ) . The polygamma function ψ(k)(z) = dk dzk {ψ(z)} = (−1)k+1k! ∞∑ r=0 1 (r + z)k+1 26 a. sofo and has the recurrence ψ(k)(z + 1) = ψ(k)(z) + (−1)kk! zk+1 . The connection of the polygamma function with harmonic numbers is, H(α+1)z = ζ(α + 1) + (−1)α α! ψ(α)(z + 1) , z 6= {−1,−2,−3, . . .} , (1.11) and the multiplication formula is ψ(k)(pz) = δm,0 ln p + 1 pk+1 p−1∑ j=0 ψ(k) ( z + j p ) (1.12) for p a positive integer and δp,k is the Kronecker delta. The work in this paper also extends the results of [7], [20]. Other works including, [2], [3], [13], [14], [15], [17], and [18] cite many identities of polylogarithmic integrals and Euler sums. 2. Integral identities and Euler sums Theorem 1. For a ∈ R+, δ = {−1, 1}, p, q, positive integers, then I(a,δ,p,q) = ∫ 1 0 ln x Lip(x) Liq (δx a) x dx = (−1)p+1 ap ζ(2) Lip+q(δ) (2.1) + (−1)pp ap+1 ∞∑ n=1 δn Han np+q+1 + (−1)p ap ∞∑ n=1 δn H (2) an np+q − p∑ k=2 (−1)p−k(p + 1 −k) ap+2−k ζ(k) Lip+q+2−k(δ) . where Lip+q (δ) is the polylogarithm, Han and H (2) an are the harmonic numbers. Proof. By the definition of the polylogarithmic function we have I(a,δ,p,q) = ∞∑ n=1 δn nq ∞∑ j=1 1 jp ∫ 1 0 xj+an−1 ln x dx = − ∞∑ n=1 δn nq ∞∑ j=1 1 jp(j + an)2 integrals of polylogarithms 27 and by partial fraction decomposition, I(a,δ,p,q) = − ∞∑ n=1 δn nq ∞∑ j=1 p(−1)p+1 (an)pj(j+an) + (−1)p (an)p(j+an)2 + ∑p k=2 (−1)p−k(p+1−k) (an)p+2−kjk . Now I(a,δ,p,q) = − ∞∑ n=1 δn nq p(−1)p+1 Han (an)p+1 + (−1)p ψ′(an+1) (an)p + ∑p k=2 (−1)p−k(p+1−k) (an)p+2−k ζ(k) = (−1)p+1 ap ζ(2) Lip+q(δ) + (−1)pp ap+1 ∞∑ n=1 δn Han np+q+1 + (−1)p ap ∞∑ n=1 δn H (2) an np+q − p∑ k=2 (−1)p−k(p + 1 −k) ap+2−k ζ(k) Lip+q+2−k(δ), and Theorem 1 is proved. In the next few corollaries we investigate various special values of the pa- rameters (a,δ,p,q) which will yield solutions to I (a,δ,p,q) that are express- ible in terms of the Riemann zeta and other special functions. We shall also present new Euler type identities for the sums (1.2). Corollary 1. For a = 1, δ = 1, p, q, positive integers with arbitrary weight p + q, then I(1, 1,p,q) = ∫ 1 0 ln x Lip(x) Liq(x) x dx = (−1)p (S2,p+q + pS1,p+q+1) + (−1)p+1ζ(2)ζ(p + q) (2.2) − p∑ k=2 (−1)p−k(p + 1 −k)ζ(k)ζ(p + q + 2 −k) , where Sa,b is the linear Euler sum (1.4). 28 a. sofo Proof. Here we note that Lim(1) = ζ(m) and the sums S2,p+q = ∑∞ n=1 H (2) n np+q and S1,p+q+1 = ∑∞ n=1 Hn np+q+1 . Remark 1. For a = 1, δ = 1, p, q, positive integers with p + q an odd integer, then I(1, 1,p,q) = ∫ 1 0 ln x Lip(x) Liq(x) x dx = p(−1)p EU (p + q + 1) + (−1)p BW (2,p + q) + (−1)p+1ζ(2)ζ(p + q) (2.3) − p∑ k=2 (−1)p−k(p + 1 −k)ζ(k)ζ(p + q + 2 −k) , where EU (·) is the Euler identity (1.3) and BW (·, ·) is the identity (1.6). Example 1. I(1, 1, 4, 2) = I(1, 1, 2, 4) = S2,6 − 2ζ(3)ζ(5) + 7 6 ζ(8), I(1, 1, 4, 4) = S2,8 − 2ζ(3)ζ(7) + 33 10 ζ(10) − 2ζ2(5), I(1, 1, 4, 5) = I(1, 1, 5, 4) = ζ(4)ζ(7) + ζ(2)ζ(9) − 3ζ(11). Corollary 2. For a = 1, δ = −1, p, q, positive integers, then I(1,−1,p,q) = ∫ 1 0 ln x Lip(x) Liq(−x) x dx = p(−1)p+1S(1,p + q + 1) (2.4) + (−1)p+1S(2,p + q) + (−1)pζ(2)η(p + q) + p∑ k=2 (−1)p−k(p + 1 −k)ζ(k)η(p + q + 2 −k), where η(·) is the Dirichlet Eta function and S(·, ·) is the alternating linear Euler sum. We note that when we have odd weight (p + q), S(·, ·) may be replaced with the identity (1.8). integrals of polylogarithms 29 Proof. Here we note that Lim(−1) = −η(m) and the sum S(m,p + q) =∑∞ n=1 (−1)n+1H(m)n np+q and may be replaced with the identity (1.8) in the case when we have odd weight (p + q). Example 2. I(1,−1, 2, 4) = 2ζ(2)η(6) −S(2, 6) − 2S(1, 7), I(1,−1, 4, 2) = − 359 48 ζ(8) − 2ζ(3)η(5) −S(2, 6) − 4S(1, 7), I(1,−1, 2, 3) = 43 32 ζ(2)ζ(5) − 2ζ(7), I(1,−1, 3, 4) = 7 8 ζ(4)ζ(5) + 5 2 ζ(9) − 249 128 ζ(2)ζ(7). Corollary 3. For a = 2, δ = 1, p, q, positive integers, then I(2, 1,p,q) = ∫ 1 0 ln x Lip(x) Liq ( x2 ) x dx = (−1)p+1 2p ζ(2)ζ(p + q) (2.5) + p(−1)p2q−1 (S1,p+q+1 −S(1,p + q + 1)) + (−1)p2q−1 (S2,p+q −S(2,p + q)) − (−1)p p∑ k=2 (−1)k(p + 1 −k) 2p+2−k ζ(k)ζ(p + q + 2 −k), where S·,· and S(·, ·) are the linear Euler and alternating Euler sums (1.4) and (1.5) respectively. In the case when we have odd weight (p + q) then we may utilize S1,p+q+1 = EU (p + q + 1) is the Euler identity (1.3), S2,p+q = BW (2,p + q) is the identity (1.6) and S(·, ·) is obtained from the identity (1.8). Proof. Here we note that Lim(1) = ζ(m) and the sums S·,· and S(·, ·) are the linear Euler and alternating Euler sums (1.4) and (1.5) respectively. In the case of odd weight (p + q) the sums S1,p+q+1 = ∑∞ n=1 Hn np+q+1 , S2,p+q = BW (2,p + q) = ∑∞ n=1 H (2) n np+q and S(a,b) = ∑∞ n=1 (−1)n+1H(a)n nb . 30 a. sofo Example 3. I(2, 1, 3, 3) = 47 4 ζ(3)ζ(5) − 211 8 ζ(8) − 4S2,6 + 4S(2, 6) + 12S(1, 7), I(2, 1, 4, 2) = 415 24 ζ(8) − 31 4 ζ(3)ζ(5) + 2S2,6 − 2S(2, 6) − 8S(1, 7), I(2, 1, 3, 2) = 11 32 ζ(5) − 7 16 ζ(2)ζ(3), I(2, 1, 0,q) = 2q−1 (EU (q) −S(1,q)) , I(2, 1, 5, 0) = 107 256 ζ(7) + 1 4 ζ(4)ζ(3) − 37 64 ζ(5)ζ(2). The aim now, is to obtain the new Euler identities for the sums (1.2), hence consider the following corollary. Corollary 4. From Corollary 3, let q = 0, δ = ±1, and p, a positive odd integer, then W ( 1 2 , 1,p, 2 ) = ∑ n≥1 H (2) n 2 np (2.6) = p(−1)p+122−pζ(2)ζ(p) + 2p(−1)p (EU (p + 1) −S(1,p + 1)) + 2(−1)p (BW (2,p) −S(2,p)) + (−1)p+1 p−1∑ k=3 (−1)k(p + 1 −k) 2p−k ζ(k)ζ(p + 2 −k), where EU (·), S(·, ·) and BW (·, ·) are the same as in Corollary 3. Proof. Proceeding as in Theorem 1, I(a,δ,p, 0) = ∫ 1 0 ln x Lip(x) Li0 (δx a) x dx = − δ a2 ∑ n≥1 1 np ∑ j≥1 δj (n + aj)2 = − δ a2 ∑ n≥1 1 np Φ ( δ, 2, 1 + n a ) , where Φ ( δ, 2, 1 + n a ) is the Lerch transcendent. We have, I(a,δ,p, 0) = − 1 a2 ∑ n≥1 ψ′( na +1) np for δ = 1 , 1 4a2 ∑ n≥1 ψ′( n a +1) np ( ψ′(a+n 2a ) −ψ′( 2q+n 2a ) ) for δ = −1 . (2.7) integrals of polylogarithms 31 Now for a = 2 and δ = 1, we have I(2, 1,p, 0) = − 1 4 ∑ n≥1 ψ′(n 2 + 1) np = 1 4 ∑ n≥1 H (2) n 2 np − 1 4 ζ(2)ζ(p) and equating with (2.5) we obtain the desired result (2.6). Also, since ∑ n≥1 H (2) n np = 21−p ∑ n≥1 H (2) n 2 np ( 1 − (−1)n+1 ) we obtain the second Euler identity W ( 1 2 ,−1,p, 2 ) = ∑ n≥1 (−1)n+1H(2)n 2 np = W ( 1 2 , 1,p, 2 ) − 21−p BW (2,p) = ( 1 + (−2)p+1 ) ζ(2)ζ(p) − 2pW ( 1 2 ,−1,p + 1, 1 ) + (−2)2−pW(2, 1,p, 2) + (−2)1−p BW (2,p) + p∑ k=2 (−2)2−k(p + 1 −k)ζ(k)η(p + 2 −k) . Similarly, for the third Euler sum identity in (1.2) we have ∞∑ n =1 H (2) n−1 2 (2n− 1)p = 1 2 ( W ( 1 2 , 1,p, 2 ) + W ( 1 2 ,−1,p, 2 )) . Example 4. ∑ n≥1 Hn 2 n6 = 135 128 ζ(7) − 1 16 ζ(2)ζ(5) − 1 4 ζ(3)ζ(4), ∑ n≥1 (−1)n+1Hn 2 n6 = 119 128 ζ(7) − 1 32 ζ(2)ζ(5) − 7 32 ζ(3)ζ(4), 32 a. sofo ∑ n≥1 H (2) n 2 n5 = ζ(3)ζ(4) − 21 16 ζ(2)ζ(5) + 107 64 ζ(7), ∑ n≥1 (−1)n+1H(2)n 2 n5 = 7 8 ζ(3)ζ(4) − 13 8 ζ(2)ζ(5) + 147 64 ζ(7), ∞∑ n=1 H (2) n−1 2 (2n− 1)5 = 15 16 ζ(3)ζ(4) − 47 16 ζ(2)ζ(5) + 127 64 ζ(7). Corollary 5. For a = 1 2 , δ = ±1, p, q, positive integers with p + q an odd integer, then I (1 2 ,δ,p,q ) = ∫ 1 0 ln x Lip(x) Liq ( δx 1 2 ) x dx = 2p(−2)pW ( 1 2 , 1,p + q + 1, 1 ) − (−2)pζ(2)ζ(p + q) +(−2)pW ( 1 2 , 1,p + q, 2 ) − ∑p k=2(−1) p−k(p + 1 −k)ζ(k)ζ(p + q + 2 −k) for δ = 1 , (−2)p+1W ( 1 2 ,−1,p + q + 1, 1 ) + (−2)pζ(2)η(p + q) +(−2)pW ( 1 2 ,−1,p + q, 2 ) + ∑p k=2(−1) p−k(p + 1 −k)ζ(k)η(p + q + 2 −k) for δ = −1 , where W(·, ·, ·, ·) is evaluated from Corollary (4). Proof. The proof follows from (2.1). Example 5. In these examples we utilize some results from Example 4: I( 1 2 , 1, 5, 0) = 16ζ(3)ζ(4) + 218ζ(2)ζ(5) − 391ζ(7), integrals of polylogarithms 33 I ( 1 2 ,−1, 5, 0 ) = 371ζ(7) − 12ζ(3)ζ(4) − 210ζ(2)ζ(5), I ( 1 2 , 1, 0, 5 ) = 107 16 ζ(7) + ζ(3)ζ(4) − 37 16 ζ(2)ζ(5), I ( 1 2 ,−1, 0, 5 ) = − 147 16 ζ(7) − 7 8 ζ(3)ζ(4) + 41 16 ζ(2)ζ(5), I ( 1 2 , 1, 3, 2 ) = 75 2 ζ(2)ζ(5) − 64ζ(7), I ( 1 2 ,−1, 3, 2 ) = 63ζ(7) − 37ζ(2)ζ(5). Remark 2. The integral I(a,δ,p,q) has been represented in terms of spe- cial functions. For particular values of the constants (a,δ,p,q) the integral (1.1) has been expressed in closed form in terms of Riemann zeta and Dirich- let Eta functions. Some examples are given for the solution of the integral (1.1), most of which are not amenable to a mathematical computer package. Finally we have developed new identities for the Euler sums (1.2) in the spirit of Euler (1.3). Acknowledgements The author is thankful to a referee for the careful reading and con- sidered suggestions leading to a better presented paper. References [1] Borwein, D.; Borwein, J. M..; Girgensohn, R. Explicit evaluation of Euler sums. Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 2, 277–294. [2] Bailey, D. H. Borwein, J. M. Computation and structure of charac- ter polylogarithms with applications to character Mordell-Tornheim- Witten sums. Math. Comp. 85 (2016), no. 297, 295–324. [3] Choi, Junesang Log-sine and log-cosine integrals. Honam Math. J. 35 (2013), no. 2, 137–146. [4] Devoto, A. Duke, D. W. Table of integrals and formulae for Feynman diagram calculations. Riv. Nuovo Cimento (3) 7 (1984), no. 6, 1–39. [5] Euler, L. Meditationes circa singulare serierum genus, Novi Comm. Acad. Sci. Petropol. 20 (1776), 140-186; reprinted in Opera Omnia, Ser. I, Vol. 15, B. G.Teubner, Berlin, 1927, pp. 217-267. 34 a. sofo [6] Flajolet, P. Salvy, B. Euler sums and contour integral representations. Experiment. Math. 7 (1998), no. 1, 15–35. [7] Freitas, P. Integrals of polylogarithmic functions, recurrence relations, and associated Euler sums. Math. Comp. 74 (2005), no. 251, 1425– 1440. [8] Hoffman, M. E., Multiple harmonic series, Pacific J. Math. 152 (1992), 275-290. [9] Kölbig, K. S. Nielsen’s generalized polylogarithms. SIAM J. Math. Anal. 17 (1986), no. 5, 1232–1258. [10] Lewin, R. Polylogarithms and Associated Functions. North Holland, New York, 1981. [11] Markett, C. Triple sums and the Riemann zeta function. J. Number The- ory 48 (1994), no. 2, 113–132. [12] Sitaramachandra Rao, R. A formula of S. Ramanujan. J. Number Theory 25 (1987), no. 1, 1–19. [13] Sofo, A. Polylogarithmic connections with Euler sums. Sarajevo J. Math. 12(24) (2016), no. 1, 17–32. [14] Sofo, A. Integrals of logarithmic and hypergeometric functions. Commun. Math. 24 (2016), no. 1, 7–22. [15] Sofo, A. and Cvijović, D. Extensions of Euler Harmonic Sums, Appl. Anal. Discrete Math. 6 (2012), 317–328. [16] Sofo, A. Integrals of inverse trigonometric and polylogarithmic functions. Submitted, 2019. [17] Sofo, A.; Srivastava, H. M. A family of shifted harmonic sums. Ramanu- jan J. 37 (2015), no. 1, 89–108. [18] Sofo, A. New classes of harmonic number identities. J. Integer Seq. 15 (2012), no. 7, Article 12.7.4, 12 pp. [19] Sofo, A. Families of Integrals of Polylogarithmic Functions, Special Func- tions and Applications. Editors Choi, J. and Shilin, I. Mathematics (2019), 7, 143; doi:10.3390/math7020143, Published by MDPI AG, Basel, Switzerland. [20] Xu, Ce. Yan, Yuhuan. Shi, Zhijuan. Euler sums and integrals of polylog- arithm functions. J. Number Theory 165 (2016), 84–108. [21] Zagier, D. Values of zeta functions and their applications, in First Eu- ropean Congress of Mathematicians, Vol II (Paris, 1992), Birkhauser, Boston, 1994, pp. 497-512. Introduction Integral identities and Euler sums