� EXTRACTA MATHEMATICAE Volumen 33, Número 2, 2018 instituto de investigación de matemáticas de la universidad de extremadura EXTRACTA MATHEMATICAE Vol. 34, Num. 2 (2019), 285 – 301 doi:10.17398/2605-5686.34.2.285 Available online July 2, 2019 Fractional Ostrowski type inequalities for functions whose derivatives are s-preinvex B. Meftah 1,2, M. Merad 2, A. Souahi 3 1 Laboratoire des télécommunications, Faculté des Sciences et de la Technologie University of 8 May 1945 Guelma, P.O. Box 401, 24000 Guelma, Algeria 2 Département des Mathématiques, Faculté des mathématiques, de l’informatique et des sciences de la matière, Université 8 mai 1945 Guelma, Algeria 3 Laboratory of Advanced Materials, University Badji Mokhtar Annaba, Algeria badrimeftah@yahoo.fr , mrad.meriem@gmail.com , arsouahi@yahoo.fr Received January 16, 2019 Presented by Manuel Maestre Accepted May 25, 2019 Abstract: In this paper, we establish a new integral identity, and then we derive some new fractional Ostrowski type inequalities for functions whose derivatives are s-preinvex. Key words: integral inequality, -preinvex functions, Hölder inequality, power mean inequality. AMS Subject Class. (2010): 26D15, 26D20, 26A51. 1. Introduction In 1938, A.M. Ostrowski proved an interesting integral inequality, esti- mating the absolute value of the derivative of a differentiable function by its integral mean as follows Theorem 1. ([21]) Let I ⊆ R be an interval. Let f : I → R, be a differentiable mapping in the interior I◦of I, and a,b ∈ I◦ with a < b. If |f ′(x)| ≤ M for all x ∈ [a,b], then∣∣∣∣f(x) − 1b−a ∫ b a f(t)dt ∣∣∣∣ ≤ M (b−a) [ 1 4 + (x−a+b2 ) 2 (b−a)2 ] . (1.1) The above inequality has attracted many researchers, various generaliza- tions, refinements, extensions and variants have appeared in the literature see for instance [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 24, 25], and references therein. ISSN: 0213-8743 (print), 2605-5686 (online) https://doi.org/10.17398/2605-5686.34.2.285 mailto:badrimeftah@yahoo.fr mailto:mrad.meriem@gmail.com mailto:arsouahi@yahoo.fr https://www.eweb.unex.es/eweb/extracta/ https://creativecommons.org/licenses/by-nc/3.0/ 286 b. meftah, m. merad, a. souahi Set [25], gave the following fractional Ostrwski inequality for differentiable s-convex functions∣∣∣((x−a)α+(b−x)αb−a )f (x) − Γ(α+1)b−a ((Iαx−f) (a) + (Iαx+f) (b))∣∣∣ ≤ M b−a ( 1 + Γ(α+1)Γ(s+1) Γ(α+s+1) )( (x−a)α+1+(b−x)α+1 α+s+1 ) and ∣∣∣((x−a)α+(b−x)αb−a )f (x) − Γ(α+1)b−a ((Iαx−f) (a) + (Iαx+f) (b))∣∣∣ ≤ M (1+pα) 1 p ( 2 s+1 )1 q ( (x−a)α+(b−x)α b−a ) . Kirmaci et al. [4], presented some results connected with inequality (1.1)∣∣∣∣ 1b−a ∫ b a f(x)dx−f ( a+b 2 )∣∣∣∣ ≤ b−a8 (∣∣f ′ (a)∣∣ + ∣∣f ′ (b)∣∣). Zhu et al. [27], established the following fractional midpoint inequality∣∣∣ Γ(α+1)2(b−a)α[ (Jαa+f) (b) + (Jαb−f) (a) ]−f (a+b2 )∣∣∣ ≤ b−a 4(1+α) (∣∣f ′ (a)∣∣ + ∣∣f ′ (b)∣∣)(α + 3 − 1 2α−1 ) . Motivated by the above results, in this paper, we establish a new integral identity, and then we derive some new fractional Ostrowski type inequalities for functions whose derivatives are s-preinvex. 2. Preliminaries In this sections we recall some definitions and lemmas Definition 1. ([23]) A function f : I → R is said to be convex, if f (tx + (1 − t) y) ≤ tf (x) + (1 − t) f(y) holds for all x,y ∈ I and all t ∈ [0, 1]. Definition 2. ([1]) A nonnegative function f : I ⊂ [0,∞) → R is said to be s-convex in the second sense for some fixed s ∈ (0, 1], if f(tx + (1 − t)y) ≤ tsf(x) + (1 − t)sf(y) holds for all x,y ∈ I and t ∈ [0, 1]. fractional ostrowski type inequalities 287 Definition 3. ([18]) A set K ⊆ Rn is said to be an invex with respect to the bifunction η : K ×K → Rn, if for all x,y ∈ K, we have x + tη (y,x) ∈ K. In what follows we assume that K ⊆ R be an invex set with respect to the bifunction η : K ×K → R. Definition 4. ([26]) A function f : K → R is said to be preinvex with respect to η, if f (x + tη (y,x)) ≤ (1 − t) f (x) + tf(y) holds for all x,y ∈ K and all t ∈ [0, 1]. Definition 5. ([5]) A nonnegative function f : K ⊂ [0,∞) → R is said to be s-preinvex in the second sense with respect to η for some fixed s ∈ (0, 1], if f (x + tη (y,x)) ≤ (1 − t)sf(x) + tsf(y) holds for all x,y ∈ K and t ∈ [0, 1]. Definition 6. ([2, 3, 17]) Let f ∈ L1[a,b]. The Riemann-Liouville frac- tional integrals Iα a+ f and Iα b− f of order α > 0 with a ≥ 0 are defined by Iαa+f(x) = 1 Γ (α) ∫ x a (x− t)α−1 f(t)dt, x > a, Iαb−f(x) = 1 Γ (α) ∫ b x (t−x)α−1 f(t)dt, b > x, respectively, where Γ(α) = ∫∞ 0 e−ttα−1dt, is the Gamma function and I0 a+ f(x) = I0 b− f(x) = f(x). We also recall that the beta function for any complex numbers and non- positive integers ρ,τ such that Re(ρ) > 0 and Re(τ) > 0 is defined by B (ρ,τ) = ∫ 1 0 θρ−1 (1 −θ)τ−1 dθ = Γ (ρ) Γ (τ) Γ (ρ + τ) . The incomplete beta function is given by Bt (ρ,τ) = ∫ t 0 θρ−1 (1 −θ)τ−1 dθ , 0 < t < 1 . Lemma 1. ([22]) For any 0 ≤ a < b in R and fixed p ≥ 1, we have (b−a)p ≤ bp −ap. 288 b. meftah, m. merad, a. souahi 3. Main results In what follows, in order to simplify and lighten the writing, we note in all the proofs η(b,a) by c. Lemma 2. Let f : [a,a + η(b,a)] → R be a differentiable mapping on (a,a + η(b,a)) with η(b,a) > 0, and assume that f ′ ∈ L ( [a,a + η(b,a)] ) . Then the following equality holds f (x) − Γ(α+1) 2ηα(b,a) (( Iαa+f ) (a + η (b,a)) + ( Iα (a+η(b,a))− f ) (a) ) = η(b,a) 2 (∫ 1 0 kf ′ (a + tη (b,a)) dt + ∫ 1 0 (tα − (1 − t)α) f ′ (a + tη (b,a)) dt ) , (3.1) where k =   1 if 0 ≤ t < x−a η(b,a) , −1 if x−a η(b,a) ≤ t < 1 . (3.2) Proof. Let c = η (b,a). And let I = ∫ 1 0 kf ′(a + tc)dt + ∫ 1 0 (tα − (1 − t)α)f ′(a + tc)dt = I1 + I2 , (3.3) where I1 = ∫ 1 0 kf ′(a + tc)dt, (3.4) I2 = ∫ 1 0 (tα − (1 − t)α)f ′(a + tc)dt, (3.5) and k is defined by (3.2). Clearly, I1 = ∫ 1 0 kf ′(a + tc)dt = ∫ x−a c 0 f ′(a + tc)dt− ∫ 1 x−a c f ′(a + tc)dt = 2 c f(x) − 1 c [f(a) + f(a + c)]. (3.6) fractional ostrowski type inequalities 289 Now, by integration by parts, I2 gives I2 = 1 c f (a + c) + 1 c f (a) − α c (∫ 1 0 tα−1f (a + tc) dt + ∫ 1 0 (1 − t)α−1 f (a + tc) dt ) = 1 c f (a + c) + 1 c f (a) (3.7) − α cα+1 (∫ a+c a (u−a)α−1 f (u) du + ∫ a+c a (c + a−u)α−1 f (u) du ) = 1 c f (a + c) + 1 c f (a) − Γ(α+1) cα+1 ( (Iαa+f) (a + c) + ( Iα (a+c)− f ) (a) ) . Substituting (3.6) and (3.7) in (3.3). Multiplying the resulting equality by c 2 , and then replacing c by η(a,b), we get the desired result. Theorem 2. Let f : [a,a + η(b,a)] → R be a positive function on [a,b] with η(b,a) > 0 and f ∈ L[a,b]. If |f ′| is s-preinvex function with s ∈ (0, 1], then the following fractional inequality holds∣∣∣∣f (x) − Γ(α+1)2ηα(b,a) ((Iαa+f) (a + η (b,a)) + (Iα(a+η(b,a))−f) (a)) ∣∣∣∣ ≤ η(b,a) 2 (∣∣f ′(a)∣∣ + ∣∣f ′ (b)∣∣) (3.8) × ( 1 s+1 + 1−( 12 ) α+s α+s+1 + B1 2 (s + 1,α + 1) −B1 2 (α + 1,s + 1) ) . where B1 2 (·, ·) is the incomplete beta function. Proof. Let c = η(a,b). From Lemma 2, and properties of modulus, we have∣∣∣∣f (x) − Γ(α+1)2cα ((Iαa+f) (a + c) + (Iα(a+c)−f) (a)) ∣∣∣∣ ≤ c 2 [∫ x−a c 0 ∣∣f ′ (a + tc)∣∣dt + ∫ 1 x−a c ∣∣f ′ (a + tc)∣∣dt + ∫ 1 2 0 ((1 − t)α − tα) ∣∣f ′ (a + tc)∣∣dt +∫ 1 1 2 (tα − (1 − t)α) ∣∣f ′ (a + tc)∣∣dt ] . 290 b. meftah, m. merad, a. souahi Using the s-preinvexity of |f ′|, the above inequality gives∣∣∣∣f(x) − Γ(α+1)2cα ((Iαa+f) (a + c) + (Iα(a+c)−f) (a)) ∣∣∣∣ ≤ c 2 (∫ x−a c 0 ( (1 − t)s|f ′(a)| + ts|f ′(b)| ) dt + ∫ 1 x−a c ( (1 − t)s|f ′(a)| + ts|f ′(b)| ) dt + ∫ 1 2 0 ( (1 − t)α − tα )( (1 − t)s|f ′(a)| + ts|f ′(b)| ) dt + ∫ 1 1 2 ( (1 − t)α − tα )( (1 − t)s|f ′(a)| + ts|f ′(b)| ) dt ) = c 2 [(( 1−(1−x−ac ) s+1 ) |f′(a)|+( x−ac ) s+1 |f′(b)| s+1 ) + ( (1−x−ac ) s+1 |f′(a)|+ ( 1−( x−ac ) s+1 ) |f′(b)| s+1 ) + ∣∣f ′(a)∣∣ (∫ 1 2 0 ((1 − t)α+s − tα(1 − t)s)dt + ∫ 1 1 2 ( tα(1 − t)s − (1 − t)α+s ) dt ) + ∣∣f ′ (b)∣∣ (∫ 1 2 0 (ts (1 − t)α − tα+s)dt + ∫ 1 1 2 (tα+s − ts(1 − t)α)dt )] = c 2 (∣∣f ′(a)∣∣ + ∣∣f ′ (b)∣∣) × ( 1 s+1 + ∫ 1 2 0 ((1 − t)α+s − tα(1 − t)s) dt + ∫ 1 2 0 (ts (1 − t)α − tα+s)dt ) = c 2 (∣∣f ′(a)∣∣ + ∣∣f ′ (b)∣∣) × ( 1 s+1 + 1−( 12 ) α+s α+s+1 + B1 2 (s + 1,α + 1) −B1 2 (α + 1,s + 1) ) . Replacing c by η (b,a) in the above inequality, we get the desired result. The proof is completed. fractional ostrowski type inequalities 291 Corollary 1. In Theorem 2 if we choose x = 2a+η(b,a) 2 , we obtain the following fractional midpoint inequality∣∣∣∣f (2a+η(b,a)2 )− Γ(α+1)2ηα(b,a) ((Iαa+f) (a + η (b,a)) + (Iα(a+η(b,a))−f) (a)) ∣∣∣∣ ≤ η(b,a) 2 ( ∣∣f ′(a)∣∣ + ∣∣f ′ (b)∣∣) × ( 1 s+1 + 1−( 12 ) α+s α+s+1 + B1 2 (s + 1,α + 1) −B1 2 (α + 1,s + 1) ) . Moreover if we take η(b,a) = b−a, we obtain∣∣∣∣f (a+b2 )− Γ(α+1)2(b−a)α ((Iαa+f) (b) + (Iαb−f) (a)) ∣∣∣∣ ≤ b−a 2 ( ∣∣f ′(a)∣∣ + ∣∣f ′ (b)∣∣) × ( 1 s+1 + 1−( 12 ) α+s α+s+1 + B1 2 (s + 1,α + 1) −B1 2 (α + 1,s + 1) ) . Corollary 2. In Theorem 2 if we put s = 1, we obtain∣∣∣∣f (x) − Γ(α+1)2ηα(b,a) ((Iαa+f) (a + η (b,a)) + (Iα(a+η(b,a))−f) (a)) ∣∣∣∣ ≤ η(b,a) 4(α+1) ( ∣∣f ′(a)∣∣ + ∣∣f ′ (b)∣∣) (α + 3 −(1 2 )α−1) . Moreover if we choose x = 2a+η(b,a) 2 , we obtain the following fractional midpoint inequality∣∣∣∣f (2a+η(b,a)2 )− Γ(α+1)2ηα(b,a) ((Iαa+f) (a + η (b,a)) + (Iα(a+η(b,a))−f) (a)) ∣∣∣∣ ≤ η(b,a) 4(α+1) ( ∣∣f ′(a)∣∣ + ∣∣f ′ (b)∣∣) 1 2(α+1) ( α + 3 − ( 1 2 )α−1) . Remark 1. Theorem 2 will be reduced to Theorem 2.3 from [27], if we choose η(b,a) = b−a, x = a+b 2 and s = 1. Theorem 3. Let f : [a,b] ⊂ [0,∞) → R be a positive function on [a,b] with a < b and f ∈ L[a,b]. If |f ′|q is s-preinvex function, where s ∈ (0, 1] and 292 b. meftah, m. merad, a. souahi q ≥ 1, then the following fractional inequality holds∣∣∣∣f(x) − Γ(α+1)2ηα(b,a) ((Iαa+f) (a + η (b,a)) + (Iα(a+η(b,a))−f) (a)) ∣∣∣∣ ≤ η(b,a) 2  ( ( 1− ( 1− x−a η(b,a) )s+1) |f′(a)|q+ ( x−a η(b,a) )s+1 |f′(b)|qd s+1 )1 q + (( 1− x−a η(b,a) )s+1 |f′(a)|q+ ( 1− ( x−a η(b,a) )s+1) |f′(b)|qd s+1 )1 q + ( 2α−1 (α+1)2α )1−1 q (( µ1α,s ∣∣f ′(a)∣∣q + µ2α,s ∣∣f ′(b)∣∣q)1q + ( µ2α,s ∣∣f ′(a)∣∣q + µ1α,s ∣∣f ′(b)∣∣q)1q )   , (3.9) where µ1α,s = 1−( 12 ) α+s+1 α+s+1 −B1 2 (α + 1,s + 1) (3.10) and µ2α,s = B1 2 (s + 1,α + 1) − ( 1 2 ) α+s+1 α+s+1 . (3.11) Proof. Let c = η (b,a). From Lemma 2, properties of modulus, and power mean inequality, we have∣∣∣∣f(x) − Γ(α+1)2cα ((Iαa+f) (a + c) + (Iα(a+c)−f) (a)) ∣∣∣∣ ≤ c 2  (∫ x−ac 0 ∣∣f ′ (a + tc)∣∣q dt )1 q + (∫ 1 x−a c ∣∣f ′ (a + tc)∣∣q dt )1 q + (∫ 1 2 0 ((1 − t)α − tα) dt )1−1 q (∫ 1 2 0 ((1 − t)α − tα) ∣∣f ′(a + tc)∣∣q dt )1 q + (∫ 1 1 2 (tα − (1 − t)α) dt )1−1 q (∫ 1 1 2 (tα − (1 − t)α) ∣∣f ′ (a + tc)∣∣q dt )1 q   . fractional ostrowski type inequalities 293 Since |f ′|q is s-preinvex function, we deduce∣∣∣∣f(x) − Γ(α+1)2cα ((Iαa+f) (a + c) + (Iα(a+c)−f) (a)) ∣∣∣∣ ≤ c 2  (∫ x−ac 0 (1 − t)s ∣∣f ′(a)∣∣q + ts ∣∣f ′ (b)∣∣q dt )1 q + (∫ 1 x−a c (1 − t)s ∣∣f ′(a)∣∣q + ts ∣∣f ′ (b)∣∣q dt )1 q + ( 1−( 12 ) α α+1 )1−1 q   (∫ 1 2 0 ((1 − t)α − tα) ((1 − t)s ∣∣f ′(a)∣∣q + ts ∣∣f ′ (b)∣∣q)dt )1 q + (∫ 1 2 0 ((1 − t)α − tα) (ts ∣∣f ′(a)∣∣q + (1 − t)s ∣∣f ′(b)∣∣q)dt )1 q     = c 2  ((1−(1−x−ac )s+1)|f′(a)|q+( x−ac )s+1|f′(b)|q s+1 )1 q + ( (1−x−ac ) s+1 |f′(a)|q+ ( 1−( x−ac ) s+1 ) |f′(b)|q s+1 )1 q + ( 1−( 12 ) α α+1 )1−1 q ({( 1−( 12 ) α+s+1 α+s+1 −B1 2 (α + 1,s + 1) )∣∣f ′(a)∣∣q + ( B1 2 (s + 1,α + 1) − ( 1 2 ) α+s+1 α+s+1 )∣∣f ′ (b)∣∣q}1q + {( B1 2 (s + 1,α + 1) − ( 1 2 ) α+s+1 α+s+1 )∣∣f ′(a)∣∣q + ( 1−( 12 ) α+s+1 α+s+1 −B1 2 (α + 1,s + 1) )∣∣f ′ (b)∣∣q}1q ) 294 b. meftah, m. merad, a. souahi = c 2 [(( 1−(1−x−ac ) s+1 ) |f′(a)|q+( x−ac ) s+1 |f′(b)|q s+1 )1 q + ( −(1−x−ac ) s+1 |f′(a)|q+ ( 1−( x−ac ) s+1 ) |f′(b)|q s+1 )1 q + ( 2α−1 (α+1)2α )1−1 q {( µ1α,s ∣∣f ′(a)∣∣q + µ2α,s ∣∣f ′ (b)∣∣q )1q + ( µ2α,s ∣∣f ′(a)∣∣q + µ1α,s ∣∣f ′ (b)∣∣q )1q} ] , where µ1α,s and µ 2 α,s are defined as in (3.10) and (3.11) respectively. By re- placing c by η (b,a) in the above inequality, we get the desired result. The prove is completed. Corollary 3. In Theorem 3 if we choose x = 2a+η(b,a) 2 , we obtain the following fractional midpoint inequality ∣∣∣∣f (2a+η(b,a)2 )− Γ(α+1)2ηα(b,a) ((Iαa+f) (a + η(b,a)) + (Iα(a+η(b,a))−f) (a)) ∣∣∣∣ ≤ η(b,a) 2  ((1−( 12 )s+1)|f′(a)|q+( 12 )s+1|f′(b)|qd s+1 )1 q + ( (( 12 )) s+1 |f′(a)|q+ ( 1−( 12 ) s+1 ) |f′(b)|qd s+1 )1 q + ( 2α−1 (α+1)2α )1−1 q {( µ1α,s ∣∣f ′(a)∣∣q + µ2α,s ∣∣f ′ (b)∣∣q )1q + ( µ2α,s ∣∣f ′(a)∣∣q + µ1α,s ∣∣f ′ (b)∣∣q )1q}   . Moreover if we take η (b,a) = b−a, we obtain fractional ostrowski type inequalities 295 ∣∣∣∣f (a+b2 )− Γ(α+1)2(b−a)α ((Iαa+f) (b) + (Iαb−f) (a)) ∣∣∣∣ ≤ b−a 2  ((1−( 12 )s+1)|f′(a)|q+( 12 )s+1|f′(b)|qd s+1 )1 q + ( (( 12 )) s+1 |f′(a)|q+ ( 1−( 12 ) s+1 ) |f′(b)|qd s+1 )1 q + ( 2α−1 (α+1)2α )1−1 q {( µ1α,s ∣∣f ′(a)∣∣q + µ2α,s ∣∣f ′ (b)∣∣q )1q + ( µ2α,s ∣∣f ′(a)∣∣q + µ1α,s ∣∣f ′ (b)∣∣q )1q}   . Corollary 4. In Theorem 3 if we put s = 1, we obtain∣∣∣∣f (x) − Γ(α+1)2ηα(b,a) ((Iαa+f) (a + η (b,a)) + (Iα(a+η(b,a))−f) (a)) ∣∣∣∣ ≤ η(b,a) 2  ( ( 1− ( 1− x−a η(b,a) )2) |f′(a)|q+ ( x−a η(b,a) )2 |f′(b)|qd 2 )1 q + (( 1− x−a η(b,a) )2 |f′(a)|q+ ( 1− ( x−a η(b,a) )2) |f′(b)|qd 2 )1 q + ( 2α−1 (α+1)2α )1−1 q {( µ1α,s ∣∣f ′(a)∣∣q + µ2α,s ∣∣f ′ (b)∣∣q )1q + ( µ2α,s ∣∣f ′(a)∣∣q + µ1α,s ∣∣f ′ (b)∣∣q )1q}   , where µ1α,1 = 1 α+2 − 1 α+1 ( 1 2 )α+1 (3.12) and µ2α,1 = 1 (α+1)(α+2) − 1 α+1 ( 1 2 )α+1 . (3.13) 296 b. meftah, m. merad, a. souahi Moreover if we choose x = 2a+η(b,a) 2 , we obtain the following fractional midpoint inequality∣∣∣∣f (2a+η(b,a)2 )− Γ(α+1)2ηα(b,a) ((Iαa+f) (a + η (b,a)) + (Iα(a+η(b,a))−f) (a)) ∣∣∣∣ ≤ η(b,a) 2 [( 3|f′(a)|q+|f′(b)|qd 8 )1 q + ( |f′(a)|q+3|f′(b)|qd 8 )1 q + ( 2α−1 (α+1)2α )1−1 q {( µ1α,1 ∣∣f ′(a)∣∣q + µ2α,1 ∣∣f ′ (b)∣∣q )1q + ( µ2α,1 ∣∣f ′(a)∣∣q + µ1α,1 ∣∣f ′ (b)∣∣q )1q} ] . Additionally if we take η (b,a) = b−a, we obtain∣∣∣∣f (a+b2 )− Γ(α+1)2(b−a)α ((Iαa+f) (b) + (Iαb−f) (a)) ∣∣∣∣ ≤ b−a 2 [( 3|f′(a)|q+|f′(b)|qd 8 )1 q + ( |f′(a)|q+3|f′(b)|qd 8 )1 q + ( 2α−1 (α+1)2α )1−1 q {( µ1α,1 ∣∣f ′(a)∣∣q + µ2α,1 ∣∣f ′ (b)∣∣q )1q + ( µ2α,1 ∣∣f ′(a)∣∣q + µ1α,1 ∣∣f ′ (b)∣∣q )1q} ] , where µ1α,1 and µ 2 α,1 are defined as in (3.12) and (3.13) respectively. Theorem 4. Let f : [a,b] ⊂ [0,∞) → R be a positive function on [a,b] with a < b and f ∈ L[a,b]. If |f ′|q is s-preinvex function, where s ∈ (0, 1], and q > 1 with 1 p + 1 q = 1, then the following fractional inequality holds∣∣∣∣f (x) − Γ(α+1)2ηα(b,a) ((Iαa+f) (a + η (b,a)) + (Iα(a+η(b,a))−f) (a)) ∣∣∣∣ ≤ η(b,a) 2(s+1) 1 q [(( 1 − ( 1 − x−a η(b,a) )s+1)∣∣f ′(a)∣∣q + ( x−a η(b,a) )s+1 ∣∣f ′(b)∣∣q)1q + (( 1 − x−a η(b,a) )s+1 ∣∣f ′(a)∣∣q + (1 −( x−a η(b,a) )s+1)∣∣f ′(b)∣∣q)1q fractional ostrowski type inequalities 297 + ( 1−( 12 ) αp αp+1 )1 p × (( (2s+1−1)|f′(a)|q+|f′(b)|q 2s+1 )1 q + ( |f′(a)|q+(2s+1−1)|f′(b)|q 2s+1 )1 q )] . Proof. Let c = η (b,a). From Lemma 2, properties of modulus, Hölder’s inequality, and Lemma 1, we have∣∣∣∣f(x) − Γ(α+1)2cα ((Iαa+f) (a + c) + (Iα(a+c)−f) (a)) ∣∣∣∣ ≤ c 2  (∫ x−ac 0 ∣∣f ′ (a + tc)∣∣q dt )1 q + (∫ 1 x−a c ∣∣f ′(a + tc)∣∣q dt )1 q + (∫ 1 2 0 ((1 − t)α − tα)p dt )1 p (∫ 1 2 0 ∣∣f ′ (a + tc)∣∣q dt )1 q + (∫ 1 1 2 (tα − (1 − t)α)p dt )1 p (∫ 1 1 2 |f ′(a + tc)|qdt )1 q   ≤ c 2  (∫ x−ac 0 ∣∣f ′ (a + tc)∣∣q dt )1 q + (∫ 1 x−a c |f ′(a + tc)|qdt )1 q + (∫ 1 2 0 ((1 − t)αp − tαp) dt )1 p (∫ 1 2 0 |f ′(a + tc)|qdt )1 q + (∫ 1 1 2 (tαp − (1 − t)αp) dt )1 p (∫ 1 1 2 |f ′(a + tc)|qdt )1 q   = c 2  (∫ x−ac 0 |f ′(a + tc)|qdt )1 q + (∫ 1 x−a c |f ′(a + tc)|qdt )1 q + ( 1−( 12 ) αp αp+1 )1 p ×  (∫ 12 0 |f ′(a + tc)|qdt )1 q + (∫ 1 1 2 |f ′(a + tc)|qdt )1 q     . 298 b. meftah, m. merad, a. souahi Since |f ′|q is s-preinvex function, we have ∣∣∣∣f(x) − Γ(α+1)2cα ((Iαa+f) (a + c) + (Iα(a+ct)−f) (a)) ∣∣∣∣ ≤ c 2  (∫ x−ac 0 ((1 − t)s ∣∣f ′(a)∣∣q + ts|f ′(b)|q)dt )1 q + (∫ 1 x−a c ((1 − t)s|f ′(a)|q + ts|f ′(b)|q)dt )1 q + ( 1−( 12 ) αp αp+1 )1 p   (∫ 1 2 0 ((1 − t)s ∣∣f ′(a)∣∣q + ts ∣∣f ′(b)∣∣q)dt )1 q + (∫ 1 1 2 ((1 − t)s ∣∣f ′(a)∣∣q + ts ∣∣f ′(b)∣∣q)dt )1 q     = c 2(s+1) 1 q [(( 1 − ( 1 − x−a c )s+1)∣∣f ′(a)∣∣q + (x−a c )s+1 ∣∣f ′(b)∣∣q )1 q + (( 1 − x−a c )s+1 ∣∣f ′(a)∣∣q + (1 −(x−a c )s+1)∣∣f ′ (b)∣∣q )1 q + ( 1−( 12 ) αp αp+1 )1 p × (( (2s+1−1)|f′(a)|q+|f′(b)|q 2s+1 )1 q + ( |f′(a)|q+(2s+1−1)|f′(b)|q 2s+1 )1 q )] . Replacing c by η(b,a) in the above inequality, we get the desired result. Corollary 5. In Theorem 4 if we choose x = 2a+η(b,a) 2 , we obtain the following fractional midpoint inequality ∣∣∣∣f (2a+η(b,a)2 )− Γ(α+1)2ηα(b,a) ((Iαa+f) (a + η (b,a)) + (Iα(a+η(b,a))−f) (a)) ∣∣∣∣ fractional ostrowski type inequalities 299 ≤ η(b,a) 2(s+1) 1 q ( 1 + ( 1−( 12 ) αp αp+1 )1 p ) × (( (2s+1−1)|f′(a)|q+|f′(b)|q 2s+1 )1 q + ( |f′(a)|q+(2s+1−1)|f′(b)|q 2s+1 )1 q ) . Moreover if we take η (b,a) = b−a, we obtain∣∣∣∣f (a+b2 )− Γ(α+1)2(b−a)α ((Iαa+f) (b) + (Iαb−f) (a)) ∣∣∣∣ ≤ b−a 2(s+1) 1 q ( 1 + ( 1−( 12 ) αp αp+1 )1 p ) × (( (2s+1−1)|f′(a)1q+|f′(b)|q 2s+1 )1 q + ( |f′(a)|q+(2s+1−1)|f′(b)|q 2s+1 )1 q ) . Corollary 6. In Theorem 4 if we put s = 1, we obtain∣∣∣∣f (x) − Γ(α+1)2ηα(b,a) ((Iαa+f) (a + η (b,a)) + (Iα(a+η(b,a))−f) (a)) ∣∣∣∣ ≤ η(b,a) 2 1+ 1q [(( 1 − ( 1 − x−a η(b,a) )2)∣∣f ′(a)∣∣q + ( x−a η(b,a) )2 ∣∣f ′(b)∣∣q)1q + (( 1 − x−a η(b,a) )2 ∣∣f ′(a)∣∣q + (1 −( x−a η(b,a) )2)∣∣f ′(b)∣∣q)1q + ( 1−( 12 ) αp αp+1 )1 p (( 3|f′(a)|q+|f′(b)|q 4 )1 q + ( |f′(a)|q+3|f′(b)|q 4 )1 q )] . Moreover if we choose x = 2a+η(b,a) 2 , we obtain the following fractional midpoint inequality∣∣∣∣f (2a+η(b,a)2 )− Γ(α+1)2ηα(b,a) ((Iαa+f) (a + η(b,a)) + (Iα(a+η(b,a))−f) (a)) ∣∣∣∣ ≤ η(b,a) 2 1+ 1q ( 1 + ( 1−( 12 ) αp αp+1 )1 p )(( 3|f′(a)|q+|f′(b)|q 4 )1 q + ( |f′(a)|q+3|f′(b)|q 4 )1 q ) . 300 b. meftah, m. merad, a. souahi Additionally if we take η (b,a) = b−a, we obtain∣∣∣∣f (a+b2 )− Γ(α+1)2(b−a)α ((Iαa+f) (b) + (Iαb−f) (a)) ∣∣∣∣ ≤ b−a 2 1+ 1q ( 1 + ( 1−( 12 ) αp αp+1 )1 p )(( 3|f′(a)|q+|f′(b)|q 4 )1 q + ( |f′(a)|q+3|f′(b)|q 4 )1 q ) . References [1] W.W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter kon- vexer Funktionen in topologischen linearen Räumen (german), Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13 – 20. [2] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, in “ Fractals and Fractional Calculus in Con- tinuum Mechanics ” (Papers from the CISM Course on Scaling Laws and Fractality in Continuum Mechanics held in Udine, September 23û27, 1996; edited by A. Carpinteri and F. Mainardi.), CISM Courses and Lect. 378, Springer-Verlag, Vienna, 1997, 223 – 276. [3] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, “ Theory and Appli- cations of Fractional Differential Equations ”, North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006. [4] U.S. Kirmaci, M.E. Özdemir, Some inequalities for mappings whose derivatives are bounded and applications to special means of real numbers, Appl. Math. Lett. 17 (6) (2004), 641 – 645. [5] J.-Y. Li, On Hadamard-type inequalities for s-preinvex functions, J. Chongqing Norm. Univ. Nat. Sci. Ed. 27 (4) (2010), p. 003. [6] W. Liu, Ostrowski type fractional integral inequalities for MT-convex func- tions, Miskolc Math. Notes 16 (1) (2015), 249 – 256. [7] W. Liu, Some Ostrowski type inequalities via Riemann-Liouville fractional integrals for h-convex functions, J. Comput. Anal. Appl. 16 (5) (2014), 998 – 1004. [8] B. Meftah, Hermite-Hadamard’s inequalities for functions whose first deriva- tives are (s,m)-preinvex in the second sense, JNT 10 (2016), 54 – 65. [9] B. Meftah, Ostrowski inequalities for functions whose first derivatives are logarithmically preinvex, Chin. J. Math. (N.Y.) 2016, Art. ID 5292603, 10 pp. [10] B. Meftah, Some new Ostrwoski’s inequalities for functions whose nth deriva- tives are r-Convex, Int. J. Anal. 2016, Art. ID 6749213, 7 pp. [11] B. Meftah, New Ostrowski’s inequalities, Rev. Colombiana Mat. 51 (1) (2017), 57 – 69. fractional ostrowski type inequalities 301 [12] B. Meftah, Ostrowski inequality for functions whose first derivatives are s- preinvex in the second sense, Khayyam J. Math. 3 (1) (2017), 61 – 80. [13] B. Meftah, Fractional Ostrowski type inequalities for functions whose first derivatives are ϕ-preinvex, J. Adv. Math. Stud. 10 (3) (2017), 335 – 347. [14] B. Meftah, Some new Ostrowski’s inequalities for n-times differentiable map- pings which are quasi-convex, Facta Univ. Ser. Math. Inform. 32 (3) (2017), 319 – 327. [15] B. Meftah, Fractional Ostrowski type inequalities for functions whose first derivatives are s-preinvex in the second sense, International Journal of Anal- ysis and Applications 15 (2) (2017), 146 – 154. [16] B. Meftah, Some new Ostrowski’s inequalities for functions whose nth deriva- tives are logarithmically convex, Ann. Math. Sil. 32 (1) (2018), 275 – 284. [17] K.S. Miller, B. Ross, “ An Introduction to the Fractional Calculus and Fractional Differential Equations ”,John Wiley & Sons, Inc., New York, 1993. [18] S.R. Mohan, S.K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl. 189 (3) (1995), 901 – 908. [19] M.A. Noor, K.I. Noor, M.U. Awan, Fractional Ostrowski inequalities for s-Godunova-Levin functions, International Journal of Analysis and Ap- plications , 5 (2) (2014), 167 – 173. [20] M.A. Noor, K.I. Noor, M.U. Awan, Fractional Ostrowski inequalities for (s,m)-Godunova-Levin functions, Facta Univ. Ser. Math. Inform. 30 (4) (2015), 489–499. [21] A. Ostrowski, Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert (german), Comment. Math. Helv. 10 (1) (1937), 226 – 227. [22] J. Park, Hermite-Hadamard-like type inequalities for s-convex function and s-Godunova-Levin functions of two kinds, Int. Math. Forum 9 (2015), 3431 – 3447. [23] J.E. Pečarić, F. Proschan, Y.L. Tong, “ Convex Functions, Partial Orderings, and Statistical Applications ”, Mathematics in Science and Engi- neering 187, Academic Press, Inc., Boston, MA, 1992. [24] M.Z. Sarikaya, H. Filiz, Note on the Ostrowski type inequalities for frac- tional integrals, Vietnam J. Math. 42 (2) (2014), 187 – 190. [25] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl. 63 (7) (2012), 1147 – 1154. [26] T. Weir, B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl. 136 (1) (1988), 29 – 38. [27] C. Zhu, M. Fečkan, J. Wang, Fractional integral inequalities for differ- entiable convex mappings and applications to special means and a midpoint formula, J. Appl. Math. Stat. Inf. 8 (2) (2012), 21 – 28. Introduction Preliminaries Main results