� EXTRACTA MATHEMATICAE Volumen 33, Número 2, 2018 instituto de investigación de matemáticas de la universidad de extremadura EXTRACTA MATHEMATICAE Vol. 34, Num. 2 (2019), 201 – 235 doi:10.17398/2605-5686.34.2.201 Available online June 3, 2019 Hypo-q-norms on cartesian products of algebras of bounded linear operators on Hilbert spaces S.S. Dragomir 1,2 1 Mathematics, College of Engineering & Science Victoria University, Melbourne City 8001, Australia 2 DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences School of Computer Science & Applied Mathematics University of the Witwatersrand, Johannesburg 2050, South Africa sever.dragomir@vu.edu.au , http://rgmia.org/dragomir Received March 6, 2019 Presented by Horst Martini Accepted May 14, 2019 Abstract: In this paper we introduce the hypo-q-norms on a Cartesian product of algebras of bounded linear operators on Hilbert spaces. A representation of these norms in terms of inner products, the equivalence with the q-norms on a Cartesian product and some reverse inequalities obtained via the scalar reverses of Cauchy-Buniakowski-Schwarz inequality are also given. Several bounds for the norms δp, ϑp and the real norms ηr,p and θr,p are provided as well. Key words: Hilbert spaces, bounded linear operators, operator norm and numerical radius, n-tuple of operators, operator inequalities. AMS Subject Class. (2010): 46C05, 26D15. 1. Introduction In [13], the author has introduced the following norm on the Cartesian product B(n)(H) := B(H) × ··· × B(H), where B(H) denotes the Banach algebra of all bounded linear operators defined on the complex Hilbert space H: ‖(T1, . . . ,Tn)‖n,e := sup (λ1,...,λn)∈Bn ‖λ1T1 + · · · + λnTn‖, (1.1) where (T1, . . . ,Tn) ∈ B(n)(H) and Bn := { (λ1, . . . ,λn) ∈ Cn : ∑n i=1 |λi| 2 ≤ 1 } is the Euclidean closed ball in Cn. It is clear that ‖·‖n,e is a norm on B(n)(H) and for any (T1, . . . ,Tn) ∈ B(n)(H) we have ‖(T1, . . . ,Tn)‖n,e = ‖(T∗1 , . . . ,T ∗ n)‖n,e , (1.2) ISSN: 0213-8743 (print), 2605-5686 (online) https://doi.org/10.17398/2605-5686.34.2.201 mailto:sever.dragomir@vu.edu.au http://rgmia.org/dragomir https://www.eweb.unex.es/eweb/extracta/ https://creativecommons.org/licenses/by-nc/3.0/ 202 s.s. dragomir where T∗i is the adjoint operator of Ti, i ∈{1, . . . ,n}. It has been shown in [13] that the following inequality holds true: 1 √ n ∥∥∥∥∥ n∑ j=1 TjT ∗ j ∥∥∥∥∥ 1 2 ≤‖(T1, . . . ,Tn)‖n,e ≤ ∥∥∥∥∥ n∑ j=1 TjT ∗ j ∥∥∥∥∥ 1 2 (1.3) for any n-tuple (T1, . . . ,Tn) ∈ B(n)(H) and the constants 1√n and 1 are best possible. In the same paper [13] the author has introduced the Euclidean operator radius of an n-tuple of operators (T1, . . . ,Tn) by wn,e (T1, . . . ,Tn) := sup ‖x‖=1 ( n∑ j=1 |〈Tjx,x〉|2 )1 2 (1.4) and proved that wn,e (·) is a norm on B(n)(H) and satisfies the double inequal- ity: 1 2 ‖(T1, . . . ,Tn)‖n,e ≤ wn,e (T1, . . . ,Tn) ≤‖(T1, . . . ,Tn)‖n,e (1.5) for each n-tuple (T1, . . . ,Tn) ∈ B(n)(H). As pointed out in [13], the Euclidean numerical radius also satisfies the double inequality: 1 2 √ n ∥∥∥∥∥ n∑ j=1 TjT ∗ j ∥∥∥∥∥ 1 2 ≤ wn,e (T1, . . . ,Tn) ≤ ∥∥∥∥∥ n∑ j=1 TjT ∗ j ∥∥∥∥∥ 1 2 (1.6) for any (T1, . . . ,Tn) ∈ B(n)(H) and the constants 12√n and 1 are best possible. Now, let (E,‖·‖) be a normed linear space over the complex number field C. On Cn endowed with the canonical linear structure we consider a norm ‖ ·‖n. As an example of such norms we should mention the usual p-norms ‖λ‖n,p :=   max { |λ1|, . . . , |λn| } if p = ∞,(∑n k=1 |λk| p )1 p if p ∈ [1,∞). The Euclidean norm is obtained for p = 2, i.e., ‖λ‖n,2 := ( n∑ k=1 |λk|2 )1 2 . hypo-q-norms on cartesian products 203 It is well known that on En := E×···×E endowed with the canonical linear structure we can define the following p-norms: ‖x‖n,p :=   max { |x1|, . . . , |xn| } if p = ∞,(∑n k=1 |xk| p )1 p if p ∈ [1,∞). where x = (x1, . . . ,xn) ∈ En. Following the paper [5], for a given norm ‖ · ‖n on Cn, we define the functional ‖ ·‖h,n : En → [0,∞) by ‖x‖h,n := sup ‖λ‖n≤1 ∥∥∥∥∥ n∑ j=1 λjxj ∥∥∥∥∥, (1.7) where x = (x1, . . . ,xn) ∈ En and λ = (λ1, . . . ,λn) ∈ Cn. It is easy to see that [5]: (i) ‖x‖h,n ≥ 0 for any x ∈ En, (ii) ‖x + y‖h,n ≤‖x‖h,n + ‖y‖h,n for any x,y ∈ En, (iii) ‖αx‖h,n = |α|‖x‖h,n for each α ∈ C and x ∈ En, and therefore ‖·‖h,n is a semi-norm on En. This will be called the hypo-semi- norm generated by the norm ‖ ·‖n on En. We observe that ‖x‖h,n = 0 if and only if ∑n j=1 λjxj = 0 for any (λ1, . . . ,λn) ∈ B(‖·‖n). If there exists λ01, . . . ,λ 0 n 6= 0 such that (λ01, 0, . . . , 0), (0,λ02, . . . , 0), . . . , (0, 0, . . . ,λ 0 n) ∈ B(‖ · ‖n) then the semi-norm generated by ‖ ·‖n is a norm on En. If p ∈ [1,∞] and we consider the p-norms ‖·‖n,p on Cn, then we can define the following hypo-q-norms on En: ‖x‖h,n,q := sup ‖λ‖n,p≤1 ∥∥∥∥∥ n∑ j=1 λjxj ∥∥∥∥∥, (1.8) with q ∈ [1,∞]. If p = 1, then q = ∞; if p = ∞, then q = 1; if p ∈ (1,∞), then 1 p + 1 q = 1. For p = 2, we have the hypo-Euclidean norm on En, i.e., ‖x‖h,n,e := sup ‖λ‖n,2≤1 ∥∥∥∥∥ n∑ j=1 λjxj ∥∥∥∥∥. (1.9) 204 s.s. dragomir If we consider now E = B(H) endowed with the operator norm ‖·‖, then we can obtain the following hypo-q-norms on B(n)(H) ‖(T1, . . . ,Tn)‖h,n,q := sup ‖λ‖n,p≤1 ∥∥∥∥∥ n∑ j=1 λjTj ∥∥∥∥∥ where p,q ∈ [1,∞], (1.10) with the convention that if p = 1, q = ∞, if p = ∞, q = 1 and if p > 1, then 1 p + 1 q = 1. For p = 2 we obtain the hypo-Euclidian norm ‖(·, . . . , ·)‖n,e defined in (1.2). If we consider now E = B(H) endowed with the operator numerical radius w(·), which is a norm on B(H), then we can obtain the following hypo-q- numerical radius of (T1, . . . ,Tn) ∈ B(n)(H) defined by wh,n,q(T1, . . . ,Tn) := sup ‖λ‖n,p≤1 w ( n∑ j=1 λjTj ) with p,q ∈ [1,∞], (1.11) with the convention that if p = 1, q = ∞, if p = ∞, q = 1 and if p > 1, then 1 p + 1 q = 1. For p = 2 we obtain the hypo-Euclidian norm wh,n,e(T1, . . . ,Tn) := sup ‖λ‖n,2≤1 w ( n∑ j=1 λjTj ) (1.12) and will show further that it coincides with the Euclidean operator radius of an n-tuple of operators (T1, . . . ,Tn) defined in (1.4). Using the fundamental inequality between the operator norm and numer- ical radius w(T) ≤‖T‖≤ 2w(T) for T ∈ B(H) we have w ( n∑ j=1 λjTj ) ≤ ∥∥∥∥∥ n∑ j=1 λjTj ∥∥∥∥∥ ≤ 2w ( n∑ j=1 λjTj ) for any (T1, . . . ,Tn) ∈ B(n)(H) and any λ = (λ1, . . . ,λn) ∈ Cn. By taking the supremum over λ with ‖λ‖n,p ≤ 1 we get wh,n,q(T1, . . . ,Tn) ≤‖(T1, . . . ,Tn)‖h,n,q ≤ 2wh,n,q(T1, . . . ,Tn) (1.13) with the convention that if p = 1, q = ∞, if p = ∞, q = 1 and if p > 1, then 1 p + 1 q = 1. hypo-q-norms on cartesian products 205 For p = q = 2 we recapture the inequality (1.5). In 2012, [8] (see also [9, 10]) the author have introduced the concept of s-q-numerical radius of an n-tuple of operators (T1, . . . ,Tn) for q ≥ 1 as ws,q(T1, . . . ,Tn) := sup ‖x‖=1 ( n∑ j=1 ∣∣〈Tjx,x〉∣∣q )1/q (1.14) and established various inequalities of interest. For more recent results see also [12, 14]. In the same paper [8] we also introduced the concept of s-q-norm of an n-tuple of operators (T1, . . . ,Tn) for q ≥ 1 as ‖(T1, . . . ,Tn)‖s,q := sup ‖x‖=‖y‖=1 ( n∑ j=1 |〈Tjx,y〉|q )1/q . (1.15) In [8], [9] and [10], by utilising Kato’s inequality [11] |〈Tx,y〉|2 ≤ 〈 |T|2αx,x 〉〈 |T∗|2(1−α)y,y 〉 (1.16) for any x,y ∈ H, α ∈ [0, 1], where “absolute value” operator of A is defined by ‖A‖ := √ A∗A, the authors have obtained several inequalities for the s-q- numerical radius and s-q-norm. In this paper we investigate the connections between these norms and establish some fundamental inequalities of interest in multivariate operator theory. 2. Representation results We start with the following lemma: Lemma 1. Let β = (β1, . . . ,βn) ∈ Cn. (i) If p,q > 1 and 1 p + 1 q = 1, then sup ‖α‖n,p≤1 ∣∣∣∣∣ n∑ j=1 αjβj ∣∣∣∣∣ = ‖β‖n,q . (2.1) In particular, sup ‖α‖n,2≤1 ∣∣∣∣∣ n∑ j=1 αjβj ∣∣∣∣∣ = ‖β‖n,2. (2.2) 206 s.s. dragomir (ii) We have sup ‖α‖n,∞≤1 ∣∣∣∣∣ n∑ j=1 αjβj ∣∣∣∣∣ = ‖β‖n,1 and sup‖α‖n,1≤1 ∣∣∣∣∣ n∑ j=1 αjβj ∣∣∣∣∣ = ‖β‖n,∞. (2.3) Proof. (i) Using Hölder’s discrete inequality for p,q > 1 and 1 p + 1 q = 1 we have ∣∣∣∣∣ n∑ j=1 αjβj ∣∣∣∣∣ ≤ ( n∑ j=1 |αj|p )1/p( n∑ j=1 |βj|q )1/q , which implies that sup ‖α‖n,p≤1 ∣∣∣∣∣ n∑ j=1 αjβj ∣∣∣∣∣ ≤‖β‖n,q (2.4) where α = (α1, . . . ,αn) and β = (β1, . . . ,βn) are n-tuples of complex numbers. For (β1, . . . ,βn) 6= 0, consider α = (α1, . . . ,αn) with αj := βj|βj|q−2(∑n k=1 |βk|q )1/p for those j for which βj 6= 0 and αj = 0, for the rest. We observe that∣∣∣∣∣ n∑ j=1 αjβj ∣∣∣∣∣ = ∣∣∣∣∣ n∑ j=1 βj |βj|q−2(∑n k=1 |βk| q )1/pβj ∣∣∣∣∣ = ∑n j=1 |βj| q(∑n k=1 |βk| q )1/p = ( n∑ j=1 |βj|q )1/q = ‖β‖n,q and ‖α‖pn,p = n∑ j=1 |αj|p = n∑ j=1 ∣∣∣βj |βj|q−2 ∣∣∣p(∑n k=1 |βk|q ) = n∑ j=1 ( |βj|q−1 )p (∑n k=1 |βk| q ) = n∑ j=1 |βj|qp−p(∑n k=1 |βk| q ) = n∑ j=1 |βj|q(∑n k=1 |βk| q ) = 1. Therefore, by (2.4) we have the representation (2.1). hypo-q-norms on cartesian products 207 (ii) Using the properties of the modulus, we have∣∣∣∣∣ n∑ j=1 αjβj ∣∣∣∣∣ ≤ maxj∈{1,...,n} |αj| n∑ j=1 |βj| , which implies that sup ‖α‖n,∞≤1 ∣∣∣∣∣ n∑ j=1 αjβj ∣∣∣∣∣ ≤‖β‖n,1, (2.5) where α = (α1, . . . ,αn) and β = (β1, . . . ,βn). For (β1, . . . ,βn) 6= 0, consider α = (α1, . . . ,αn) with αj := βj |βj| for those j for which βj 6= 0 and αj = 0, for the rest. We have ∣∣∣∣∣ n∑ j=1 αjβj ∣∣∣∣∣ = ∣∣∣∣∣ n∑ j=1 βj |βj| βj ∣∣∣∣∣ = n∑ j=1 |βj| = ‖β‖n,1 and ‖α‖n,∞ = max j∈{1,...,n} |αj| = max j∈{1,...,n} ∣∣∣∣ βj|βj| ∣∣∣∣ = 1 and by (2.5) we get the first representation in (2.3). Moreover, we have∣∣∣∣∣ n∑ j=1 αjβj ∣∣∣∣∣ ≤ n∑ j=1 |αj| max j∈{1,...,n} |βj| , which implies that sup ‖α‖n,1≤1 ∣∣∣∣∣ n∑ j=1 αjβj ∣∣∣∣∣ ≤‖β‖n,∞, (2.6) where α = (α1, . . . ,αn) and β = (β1, . . . ,βn). For (β1, . . . ,βn) 6= 0, let j0 ∈{1, . . . ,n} such that ‖β‖∞ = max j∈{1,...,n} |βj| = |βj0| . Consider α = (α1, . . . ,αn) with αj0 = βj0 |βj0| and αj = 0 for j 6= j0. For this choice we get n∑ j=1 |αj| = ∣∣βj0∣∣ |βj0| = 1 and ∣∣∣∣∣ n∑ j=1 αjβj ∣∣∣∣∣ = ∣∣∣∣ βj0|βj0|βj0 ∣∣∣∣ = |βj0| = ‖β‖n,∞ , 208 s.s. dragomir therefore by (2.6) we obtain the second representation in (4). Theorem 2. Let (T1, . . . ,Tn) ∈ B(n)(H) and x,y ∈ H, then for p,q > 1 and 1 p + 1 q = 1 we have sup ‖α‖n,p≤1 ∣∣∣∣∣ 〈( n∑ j=1 αjTj ) x,y 〉∣∣∣∣∣ = ( n∑ j=1 |〈Tjx,y〉|q )1/q (2.7) and in particular sup ‖α‖n,2≤1 ∣∣∣∣∣ 〈( n∑ j=1 αjTj ) x,y 〉∣∣∣∣∣ = ( n∑ j=1 |〈Tjx,y〉|2 )1/2 . (2.8) We also have sup ‖α‖n,∞≤1 ∣∣∣∣∣ 〈( n∑ j=1 αjTj ) x,y 〉∣∣∣∣∣ = n∑ j=1 |〈Tjx,y〉| (2.9) and sup ‖α‖n,1≤1 ∣∣∣∣∣ 〈( n∑ j=1 αjTj ) x,y 〉∣∣∣∣∣ = maxj∈{1,...,n}{|〈Tjx,y〉|} . (2.10) Proof. If we take β = (〈T1x,y〉 , . . . ,〈Tnx,y〉) ∈ Cn in (2.1), then we get( n∑ j=1 |〈Tjx,y〉|q )1/q = ‖β‖n,q = sup ‖α‖p≤1 ∣∣∣∣∣ n∑ j=1 αjβj ∣∣∣∣∣ = sup ‖α‖n,p≤1 ∣∣∣∣∣ n∑ j=1 αj 〈Tjx,y〉 ∣∣∣∣∣ = sup‖α‖n,p≤1 ∣∣∣∣∣ 〈 n∑ j=1 αjTjx,y 〉∣∣∣∣∣, which proves (2.7). The equalities (2.9) and (2.10) follow by (2.3). Corollary 3. Let (T1, . . . ,Tn) ∈ B(n)(H) and x ∈ H, then for p,q > 1 and 1 p + 1 q = 1 we have sup ‖α‖n,p≤1 ∣∣∣∣∣ 〈( n∑ j=1 αjTj ) x,x 〉∣∣∣∣∣ = ( n∑ j=1 |〈Tjx,x〉|q )1/q (2.11) hypo-q-norms on cartesian products 209 and, in particular sup ‖α‖n,2≤1 ∣∣∣∣∣ 〈( n∑ j=1 αjTj ) x,x 〉∣∣∣∣∣ = ( n∑ j=1 |〈Tjx,x〉|2 )1/2 . (2.12) We also have sup ‖α‖n,∞≤1 ∣∣∣∣∣ 〈( n∑ j=1 αjTj ) x,x 〉∣∣∣∣∣ = n∑ j=1 |〈Tjx,x〉| (2.13) and sup ‖α‖n,1≤1 ∣∣∣∣∣ 〈( n∑ j=1 αjTj ) x,x 〉∣∣∣∣∣ = maxj∈{1,...,n}{|〈Tjx,x〉|} . (2.14) Corollary 4. Let (T1, . . . ,Tn) ∈ B(n)(H) and x ∈ H, then for p,q > 1 and 1 p + 1 q = 1 we have sup ‖α‖n,p≤1 ∥∥∥∥∥ n∑ j=1 αjTjx ∥∥∥∥∥ = sup‖y‖=1 ( n∑ j=1 |〈Tjx,y〉|q )1/q (2.15) and in particular sup ‖α‖n,2≤1 ∥∥∥∥∥ n∑ j=1 αjTjx ∥∥∥∥∥ = sup‖y‖=1 ( n∑ j=1 |〈Tjx,y〉|2 )1/2 . (2.16) We also have sup ‖α‖n,∞≤1 ∥∥∥∥∥ n∑ j=1 αjTjx ∥∥∥∥∥ = sup‖y‖=1 n∑ j=1 |〈Tjx,y〉| (2.17) and sup ‖α‖n,1≤1 ∥∥∥∥∥ n∑ j=1 αjTjx ∥∥∥∥∥ = maxj∈{1,...,n}{‖Tjx‖}. (2.18) Proof. By the properties of inner product, we have for any u ∈ H, u 6= 0 that ‖u‖ = sup ‖y‖=1 |〈u,y〉|. 210 s.s. dragomir Let x ∈ H, then by taking the supremum over ‖y‖ = 1 in (2.7) we get for p,q > 1 with 1 p + 1 q = 1 that sup ‖y‖=1 ( n∑ j=1 |〈Tjx,y〉|q )1/q = sup ‖y‖=1   sup ‖α‖n,p≤1 ∣∣∣∣∣ 〈( n∑ j=1 αjTj ) x,y 〉∣∣∣∣∣   = sup ‖α‖n,p≤1   sup ‖y‖=1 ∣∣∣∣∣ 〈( n∑ j=1 αjTj ) x,y 〉∣∣∣∣∣   = sup ‖α‖n,p≤1 ∥∥∥∥∥ ( n∑ j=1 αjTj ) x ∥∥∥∥∥, which proves the equality (2.15). The other equalities can be proved in a similar way by using Theorem 2, however the details are omitted. We can state and prove our main result. Theorem 5. Let (T1, . . . ,Tn) ∈ B(n)(H). (i) For q ≥ 1 we have the representation for the hypo-q-norm ‖(T1, . . . ,Tn)‖h,n,q = sup ‖x‖=‖y‖=1 ( n∑ j=1 |〈Tjx,y〉|q )1/q = ‖(T1, . . . ,Tn)‖s,q (2.19) and in particular ‖(T1, . . . ,Tn)‖n,e = sup ‖x‖=‖y‖=1 ( n∑ j=1 |〈Tjx,y〉|2 )1/2 . (2.20) We also have ‖(T1, . . . ,Tn)‖h,n,∞ = max j∈{1,...,n} { ‖Tj‖ } . (2.21) hypo-q-norms on cartesian products 211 (ii) For q ≥ 1 we have the representation for the hypo--numerical radius wh,n,q(T1, . . . ,Tn) = sup ‖x‖=1 ( n∑ j=1 |〈Tjx,x〉|q )1/q = ws,q(T1, . . . ,Tn) (2.22) and in particular wn,e (T1, . . . ,Tn) := sup ‖x‖=1 ( n∑ j=1 |〈Tjx,x〉|2 )1/2 . (2.23) We also have wh,n,∞ (T1, . . . ,Tn) = max j∈{1,...,n} { w(Tj) } . (2.24) Proof. (i) By using the equality (2.15) we have for (T1, . . . ,Tn) ∈ B(n)(H) that sup ‖x‖=‖y‖=1 ( n∑ j=1 |〈Tjx,y〉|q )1/q = sup ‖x‖=1   sup ‖y‖=1 ( n∑ j=1 |〈Tjx,y〉|q )1/q = sup ‖x‖=1   sup ‖α‖n,p≤1 ∥∥∥∥∥ n∑ j=1 αjTjx ∥∥∥∥∥   = sup ‖α‖n,p≤1   sup ‖x‖=1 ∥∥∥∥∥ n∑ j=1 αjTjx ∥∥∥∥∥   = sup ‖α‖n,p≤1 ∥∥∥∥∥ n∑ j=1 αjTj ∥∥∥∥∥ = ‖(T1, . . . ,Tn)‖h,n,q, which proves (2.19). The rest is obvious. 212 s.s. dragomir (ii) By using the equality (2.11) we have for (T1, . . . ,Tn) ∈ B(n)(H) that sup ‖x‖=1 ( n∑ j=1 |〈Tjx,x〉|q )1/q = sup ‖x‖=1   sup ‖α‖n,p≤1 ∣∣∣∣∣ 〈( n∑ j=1 αjTj ) x,x 〉∣∣∣∣∣   = sup ‖α‖n,p≤1   sup ‖x‖=1 ∣∣∣∣∣ 〈( n∑ j=1 αjTj ) x,x 〉∣∣∣∣∣   = sup ‖α‖n,p≤1 w ( n∑ j=1 αjTj ) = wh,n,q(T1, . . . ,Tn), which proves (2.22). The rest is obvious. Remark 6. The case q = 2 was obtained in a different manner in [5] by utilising the rotation-invariant normalised positive Borel measure on the unit sphere. We can consider on B(n)(H) the following usual operator and numerical radius q-norms, for q ≥ 1 ‖(T1, . . . ,Tn)‖n,q := ( n∑ j=1 ‖Tj‖q )1/q , wn,q(T1, . . . ,Tn) := ( n∑ j=1 wq(Tj) )1/q , where (T1, . . . ,Tn) ∈ B(n)(H). For q = ∞ we put ‖(T1, . . . ,Tn)‖n,∞ := max j∈{1,...,n} { ‖Tj‖ } , wn,∞(T1, . . . ,Tn) := max j∈{1,...,n} { w(Tj) } . Corollary 7. With the assumptions of Theorem 5 we have for q ≥ 1 that 1 n1/q ‖(T1, . . . ,Tn)‖n,q ≤‖(T1, . . . ,Tn)‖h,n,q ≤‖(T1, . . . ,Tn)‖n,q (2.25) hypo-q-norms on cartesian products 213 and 1 n1/q wn,q(T1, . . . ,Tn) ≤ wh,n,q(T1, . . . ,Tn) ≤ wn,q(T1, . . . ,Tn) (2.26) for any (T1, . . . ,Tn) ∈ B(n)(H). In particular, we have [5] 1 √ n ‖(T1, . . . ,Tn)‖n,2 ≤‖(T1, . . . ,Tn)‖h,n,e ≤‖(T1, . . . ,Tn)‖n,2 (2.27) and 1 √ n wn,2(T1, . . . ,Tn) ≤ wh,n,e(T1, . . . ,Tn) ≤ wn,2(T1, . . . ,Tn) (2.28) for any (T1, . . . ,Tn) ∈ B(n)(H). Proof. Let (T1, . . . ,Tn) ∈ B(n)(H) and x,y ∈ H with ‖x‖ = ‖y‖ = 1. Then by Schwarz’s inequality we have( n∑ j=1 |〈Tjx,y〉|q )1/q ≤ ( n∑ j=1 ‖Tjx‖q ‖y‖q )1/q = ( n∑ j=1 ‖Tjx‖q )1/q . By the operator norm inequality we also have( n∑ j=1 ‖Tjx‖q )1/q ≤ ( n∑ j=1 ‖Tj‖q ‖x‖q )1/q = ‖(T1, . . . ,Tn)‖n,q. Therefore ( n∑ j=1 |〈Tjx,y〉|q )1/q ≤‖(T1, . . . ,Tn)‖n,q and by taking the supremum over ‖x‖ = ‖y‖ = 1 we get the second inequality in (2.25). By the properties of complex numbers, we have max j∈{1,...,n} { |〈Tjx,y〉| } ≤ ( n∑ j=1 |〈Tjx,y〉|q )1/q x,y ∈ H with ‖x‖ = ‖y‖ = 1. 214 s.s. dragomir By taking the supremum over ‖x‖ = ‖y‖ = 1 we get sup ‖x‖=‖y‖=1 ( max j∈{1,...,n} { |〈Tjx,y〉| }) ≤‖(T1, . . . ,Tn)‖h,n,q (2.29) and since sup ‖x‖=‖y‖=1 ( max j∈{1,...,n} { |〈Tjx,y〉| }) = max j∈{1,...,n} { sup ‖x‖=‖y‖=1 |〈Tjx,y〉| } = max j∈{1,...,n} { ‖Tj‖ } = ‖(T1, . . . ,Tnt)‖n,∞, then by (2.29) we get ‖(T1, . . . ,Tn)‖n,∞ ≤‖(T1, . . . ,Tn)‖h,n,q (2.30) for any (T1, . . . ,Tn) ∈ B(n)(H). Since ‖(T1, . . . ,Tn)‖n,q : = ( n∑ j=1 ‖Tj‖q )1/q ≤ ( n‖(T1, . . . ,Tn)‖qn,∞ )1/q = n1/q‖(T1, . . . ,Tn)‖n,∞, (2.31) then by (2.30) and (2.31) we get 1 n1/q ‖(T1, . . . ,Tn)‖n,q ≤‖(T1, . . . ,Tn)‖h,n,q for any (T1, . . . ,Tn) ∈ B(n)(H). The inequality (2.26) follows in a similar way and we omit the details. Corollary 8. With the assumptions of Theorem 5 we have for r ≥ q ≥ 1 that ‖(T1, . . . ,Tn)‖h,n,r ≤‖(T1, . . . ,Tn)‖h,n,q ≤ n r−q rq ‖(T1, . . . ,Tn)‖h,n,r (2.32) and [14] wh,n,r(T1, . . . ,Tn) ≤ wh,n,q(T1, . . . ,Tn) ≤ n r−q rq wh,n,r(T1, . . . ,Tn) (2.33) for any (T1, . . . ,Tn) ∈ B(n)(H). hypo-q-norms on cartesian products 215 Proof. We use the following elementary inequalities for the nonnegative numbers aj, j = 1, . . . ,n and r ≥ q > 0 (see for instance [14])( n∑ j=1 arj )1/r ≤ ( n∑ j=1 a q j )1/q ≤ n r−q rq ( n∑ j=1 arj )1/r . (2.34) Let (T1, . . . ,Tn) ∈ B(n)(H) and x,y ∈ H with ‖x‖ = ‖y‖ = 1. Then by (2.34) we get( n∑ j=1 |〈Tjx,y〉|r )1/r ≤ ( n∑ j=1 |〈Tjx,y〉|q )1/q ≤ n r−q rq ( n∑ j=1 |〈Tjx,y〉|r )1/r . By taking the supremum over ‖x‖ = ‖y‖ = 1 we get (2.32). The inequality (2.33) follows in a similar way and we omit the details. Remark 9. For q ≥ 2 we have by (2.32) and (2.33) ‖(T1, . . . ,Tn)‖h,n,q ≤‖(T1, . . . ,Tn)‖h,n,e ≤ n q−2 2q ‖(T1, . . . ,Tn)‖h,n,q (2.35) and wh,n,q(T1, . . . ,Tn) ≤ wh,n,e(T1, . . . ,Tn) ≤ n q−2 2q wh,n,q(T1, . . . ,Tn) (2.36) and for 1 ≤ q ≤ 2 we have ‖(T1, . . . ,Tn)‖h,n,e ≤‖(T1, . . . ,Tn)‖h,n,q ≤ n 2−q 2q ‖(T1, . . . ,Tn)‖h,n,e (2.37) and wh,n,e(T1, . . . ,Tn) ≤ wh,n,e(T1, . . . ,Tn) ≤ n 2−q 2q wh,n,e(T1, . . . ,Tn) (2.38) for any (T1, . . . ,Tn) ∈ B(n)(H). Also, if we take q = 1 and r ≥ 1 in (2.32) and (2.33), then we get ‖(T1, . . . ,Tn)‖h,n,r ≤‖(T1, . . . ,Tn)‖h,n,1 ≤ n r−1 r ‖(T1, . . . ,Tn)‖h,n,r (2.39) and wh,n,r(T1, . . . ,Tn) ≤ wh,n,1(T1, . . . ,Tn) ≤ n r−1 r wh,n,r(T1, . . . ,Tn) (2.40) for any (T1, . . . ,Tn) ∈ B(n)(H). 216 s.s. dragomir In particular, for r = 2 we get ‖(T1, . . . ,Tn)‖h,n,e ≤‖(T1, . . . ,Tn)‖h,n,1 ≤ √ n‖(T1, . . . ,Tn)‖h,n,e (2.41) and wn,e(T1, . . . ,Tn) ≤ wh,n,1(T1, . . . ,Tn) ≤ √ nwn,e(T1, . . . ,Tn) (2.42) for any (T1, . . . ,Tn) ∈ B(n)(H). We have: Proposition 10. For any (T1, . . . ,Tn) ∈ B(n)(H) and p,q > 1 with 1 p + 1 q = 1, then we have ‖(T1, . . . ,Tn)‖h,n,q ≥ 1 n1/p ∥∥∥∥∥ n∑ j=1 Tj ∥∥∥∥∥ (2.43) and wh,n,q(T1, . . . ,Tn) ≥ 1 n1/p w ( n∑ j=1 Tj ) . (2.44) Proof. Let λj = 1 n1/p for j ∈ {1, . . . ,n}, then ∑n j=1 |λj| p = 1. Therefore by (1.8) we get ‖(T1, . . . ,Tn)‖h,n,q = sup ‖λ‖n,p≤1 ∥∥∥∥∥ n∑ j=1 λjTj ∥∥∥∥∥ ≥ ∥∥∥∥∥ n∑ j=1 1 n1/p Tj ∥∥∥∥∥ = 1n1/p ∥∥∥∥∥ n∑ j=1 Tj ∥∥∥∥∥. The inequality (2.44) follows in a similar way. We can also introduce the following norms for (T1, . . . ,Tn) ∈ B(n)(H), ‖(T1, . . . ,Tn)‖s,n,p := sup ‖x‖=1 ( n∑ j=1 ‖Tjx‖p )1/p where p ≥ 1 and ‖(T1, . . . ,Tn)‖s,n,∞ := sup ‖x‖=1 ( max j∈{1,...,n} ‖Tjx‖ ) = max j∈{1,...,n} {‖Tj‖}. The triangle inequality ‖·‖s,n,q follows by Minkowski inequality, while the other properties of the norm are obvious. hypo-q-norms on cartesian products 217 Proposition 11. Let (T1, . . . ,Tn) ∈ B(n)(H). (i) We have for p ≥ 1, that ‖(T1, . . . ,Tn)‖h,n,p ≤‖(T1, . . . ,Tn)‖s,n,p ≤‖(T1, . . . ,Tn)‖n,p, (2.45) (ii) For p ≥ 2 we also have ‖(T1, . . . ,Tn)‖s,n,p = [ wh,n,p/2 ( |T1|2 , . . . , |Tn|2 )]1/2 , (2.46) where the absolute value |T| is defined by |T| := (T∗T)1/2. Proof. (i) We have for p ≥ 2 and x,y ∈ H with ‖x‖ = ‖y‖ = 1, that |〈Tjx,y〉|p ≤‖Tjx‖p‖y‖p = ‖Tjx‖p ≤‖Tj‖p‖x‖p = ‖Tj‖p for j ∈{1, . . . ,n}. This implies n∑ j=1 |〈Tjx,y〉|p ≤ n∑ j=1 ‖Tjx‖p ≤ n∑ j=1 ‖Tj‖p , namely ( n∑ j=1 |〈Tjx,y〉|p )1/p ≤ ( n∑ j=1 ‖Tjx‖p )1/p ≤ ( n∑ j=1 ‖Tj‖p )1/p , (2.47) for any x,y ∈ H with ‖x‖ = ‖y‖ = 1. Taking the supremum over ‖x‖ = ‖y‖ = 1 in (2.47), we get the desired result (2.45). 218 s.s. dragomir (ii) We have ‖(T1, . . . ,Tn)‖s,n,p = sup ‖x‖=1 ( n∑ j=1 ‖Tjx‖p )1/p = sup ‖x‖=1 ( n∑ j=1 ( ‖Tjx‖2 )p/2 )1/p = sup ‖x‖=1 ( n∑ j=1 〈Tjx,Tjx〉p/2 )1/p = sup ‖x‖=1   n∑ j=1 〈 T∗j Tjx,x 〉p/21/p = sup ‖x‖=1 ( n∑ j=1 〈 |Tj|2x,x 〉p/2 )1/p =   sup ‖x‖=1 ( n∑ j=1 〈 |Tj|2x,x 〉p/2 )1/(p/2)1/2 = [ wh,n,p/2 ( |T1|2, . . . , |Tn|2 )]1/2 , which proves the equality (2.46). 3. Some reverse inequalities Recall the following reverse of Cauchy-Buniakowski-Schwarz inequality [2] (see also [3, Theorem 5.14]): Lemma 12. Let a,A ∈ R and z = (z1, . . . ,zn), y = (y1, . . . ,yn) be two sequences of real numbers with the property that: ayj ≤ zj ≤ Ayj for each j ∈{1, . . . ,n}. (3.1) Then for any w = (w1, . . . ,wn) a sequence of positive real numbers, one has the inequality 0 ≤ n∑ j=1 wjz 2 j n∑ j=1 wjy 2 j − ( n∑ j=1 wjzjyj )2 ≤ 1 4 (A−a)2 ( n∑ j=1 wjy 2 j )2 . (3.2) The constant 1 4 is sharp in (3.2). O. Shisha and B. Mond obtained in 1967 (see [15]) the following counter- parts of (CBS )–inequality (see also [3, Theorem 5.20 & 5.21]): hypo-q-norms on cartesian products 219 Lemma 13. Assume that a = (a1, . . . ,an) and b = (b1, . . . ,bn) are such that there exists a,A,b,B with the property that: 0 ≤ a ≤ aj ≤ A and 0 < b ≤ bj ≤ B for any j ∈{1, . . . ,n}, (3.3) then we have the inequality n∑ j=1 a2j n∑ j=1 b2j − ( n∑ j=1 ajbj )2 ≤ (√ A b − √ a B )2 n∑ j=1 ajbj n∑ j=1 b2j. (3.4) and Lemma 14. Assume that a, b are nonnegative sequences and there exists γ, Γ with the property that 0 ≤ γ ≤ aj bj ≤ Γ < ∞ for any j ∈{1, . . . ,n}. (3.5) Then we have the inequality 0 ≤ ( n∑ j=1 a2j n∑ j=1 b2j )1 2 − n∑ j=1 ajbj ≤ (Γ −γ)2 4 (γ + Γ) n∑ j=1 b2j. (3.6) We have: Theorem 15. Let (T1, . . . ,Tn) ∈ B(n)(H). (i) We have 0 ≤‖(T1, . . . ,Tn)‖2h,n,e − 1 n ‖(T1, . . . ,Tn)‖2h,n,1 ≤ 1 4 n‖(T1, . . . ,Tn)‖2n,∞ (3.7) and 0 ≤ w2n,e(T1, . . . ,Tn) − 1 n w2h,n,1(T1, . . . ,Tn) ≤ 1 4 n‖(T1, . . . ,Tn)‖2n,∞. (3.8) 220 s.s. dragomir (ii) We have 0 ≤‖(T1, . . . ,Tn)‖2h,n,e − 1 n ‖(T1, . . . ,Tn)‖2h,n,1 ≤‖(T1, . . . ,Tn)‖n,∞‖(T1, . . . ,Tn)‖h,n,1 (3.9) and 0 ≤ w2n,e(T1, . . . ,Tn) − 1 n w2h,n,1(T1, . . . ,Tn) ≤‖(T1, . . . ,Tn)‖n,∞wh,n,1(T1, . . . ,Tn). (3.10) (iii) We have 0 ≤‖(T1, . . . ,Tn)‖h,n,e − 1 √ n ‖(T1, . . . ,Tn)‖h,n,1 ≤ 1 4 √ n‖(T1, . . . ,Tn)‖n,∞ (3.11) and 0 ≤ wn,e(T1, . . . ,Tn) − 1 √ n wh,n,1(T1, . . . ,Tn) ≤ 1 4 √ n‖(T1, . . . ,Tn)‖n,∞. (3.12) Proof. (i) Let (T1, . . . ,Tn) ∈ B(n)(H) and put R = max j∈{1,...,n} { ‖Tj‖ } = ‖(T1, . . . ,Tn)‖n,∞. If x,y ∈ H, with ‖x‖ = ‖y‖ = 1 then |〈Tjx,y〉| ≤ ‖Tjx‖ ≤ ‖Tj‖ ≤ R for any j ∈{1, . . . ,n}. If we write the inequality (3.2) for zj = |〈Tjx,y〉|, wj = yj = 1, A = R and a = 0, we get 0 ≤ n n∑ j=1 |〈Tjx,y〉|2 − ( n∑ j=1 |〈Tjx,y〉| )2 ≤ 1 4 n2R2 for any x,y ∈ H, with ‖x‖ = ‖y‖ = 1. hypo-q-norms on cartesian products 221 This implies that n∑ j=1 |〈Tjx,y〉|2 ≤ 1 n ( n∑ j=1 |〈Tjx,y〉| )2 + 1 4 nR2 (3.13) for any x,y ∈ H, with ‖x‖ = ‖y‖ = 1 and, in particular n∑ j=1 |〈Tjx,x〉|2 ≤ 1 n ( n∑ j=1 |〈Tjx,x〉| )2 + 1 4 nR2 (3.14) for any x ∈ H, with ‖x‖ = 1. Taking the supremum over ‖x‖ = ‖y‖ = 1 in (3.13) and ‖x‖ = 1 in (3.14), then we get (3.7) and (3.8). (ii) Let (T1, . . . ,Tn) ∈ B(n)(H). If we write the inequality (3.4) for aj = |〈Tjx,y〉|, bj = 1, b = B = 1, a = 0 and A = R, then we get 0 ≤ n n∑ j=1 |〈Tjx,y〉|2 − ( n∑ j=1 |〈Tjx,y〉| )2 ≤ nR n∑ j=1 |〈Tjx,y〉| , for any x,y ∈ H, with ‖x‖ = ‖y‖ = 1. This implies that n∑ j=1 |〈Tjx,y〉|2 ≤ 1 n ( n∑ j=1 |〈Tjx,y〉| )2 + R n∑ j=1 |〈Tjx,y〉| , (3.15) for any x,y ∈ H, with ‖x‖ = ‖y‖ = 1 and, in particular n∑ j=1 |〈Tjx,x〉|2 ≤ 1 n ( n∑ j=1 |〈Tjx,x〉| )2 + R n∑ j=1 |〈Tjx,x〉| , (3.16) for any x ∈ H with ‖x‖ = 1. Taking the supremum over ‖x‖ = ‖y‖ = 1 in (3.15) and ‖x‖ = 1 in (3.16), then we get (3.9) and (3.10). (iii) If we write the inequality (3.6) for aj = |〈Tjx,y〉|, bj = 1, b = B = 1, γ = 0 and Γ = R we have 0 ≤ ( n n∑ j=1 |〈Tjx,y〉|2 )1 2 − n∑ j=1 |〈Tjx,y〉| ≤ 1 4 nR, 222 s.s. dragomir for any x,y ∈ H, with ‖x‖ = ‖y‖ = 1. This implies that( n∑ j=1 |〈Tjx,y〉|2 )1 2 ≤ 1 √ n n∑ j=1 |〈Tjx,y〉| + 1 4 √ nR, (3.17) for any x,y ∈ H, with ‖x‖ = ‖y‖ = 1 and, in particular( n∑ j=1 |〈Tjx,x〉|2 )1 2 ≤ 1 √ n n∑ j=1 |〈Tjx,x〉| + 1 4 √ nR, (3.18) for any x ∈ H with ‖x‖ = 1. Taking the supremum over ‖x‖ = ‖y‖ = 1 in (3.17) and ‖x‖ = 1 in (3.18), then we get (3.11) and (3.12). Before we proceed with establishing some reverse inequalities for the hypo- Euclidean numerical radius, we recall some reverse results of the Cauchy- Bunyakovsky-Schwarz inequality for complex numbers as follows: If γ, Γ ∈ C and αj ∈ C, j ∈{1, . . . ,n} with the property that 0 ≤ Re [(Γ −αj) (αj −γ)] (3.19) = (Re Γ − Re αj) (Re αj − Re γ) + (Im Γ − Im αj) (Im αj − Im γ) or, equivalently, ∣∣∣∣αj − γ + Γ2 ∣∣∣∣ ≤ 12 |Γ −γ| (3.20) for each j ∈{1, . . . ,n}, then (see for instance [4, p. 9]) n n∑ j=1 |αj|2 − ∣∣∣∣∣ n∑ j=1 αj ∣∣∣∣∣ 2 ≤ 1 4 n2 |Γ −γ|2 . (3.21) In addition, if Re ( Γγ̄ ) > 0, then (see for example [4, p. 26]): n n∑ j=1 |αj|2 ≤ 1 4 { Re [( Γ + γ )∑n j=1 αj ]}2 Re (Γγ) ≤ 1 4 |Γ + γ|2 Re (Γγ) ∣∣∣∣∣ n∑ j=1 αj ∣∣∣∣∣ 2 . (3.22) hypo-q-norms on cartesian products 223 Also, if Γ 6= −γ, then (see for instance [4, p. 32]): ( n n∑ j=1 |αj|2 )1 2 − ∣∣∣∣∣ n∑ j=1 αj ∣∣∣∣∣ ≤ 14n|Γ −γ| 2 |Γ + γ| . (3.23) Finally, from [7] we can also state that n n∑ j=1 |αj|2 − ∣∣∣∣∣ n∑ j=1 αj ∣∣∣∣∣ 2 ≤ n [ |Γ + γ|− 2 √ Re (Γγ) ]∣∣∣∣∣ n∑ j=1 αj ∣∣∣∣∣, (3.24) provided Re (Γγ) > 0. We notice that a simple sufficient condition for (3.19) to hold is that Re Γ ≥ Re αj ≥ Re γ and Im Γ ≥ Im αj ≥ Im γ (3.25) for each j ∈{1, . . . ,n}. Theorem 16. Let (T1, . . . ,Tn) ∈ B(n)(H) and γ, Γ ∈ C with Γ 6= γ. Assume that w ( Tj − γ + Γ 2 I ) ≤ 1 2 |Γ −γ| for any j ∈{1, . . . ,n}. (3.26) (i) We have w2h,n,e(T1, . . . ,Tn) ≤ 1 n w2 ( n∑ j=1 Tj ) + 1 4 n|Γ −γ|2. (3.27) (ii) If Re (Γγ) > 0, then wh,n,e(T1, . . . ,Tn) ≤ 1 2 √ n |Γ + γ|√ (Γγ) w ( n∑ j=1 Tj ) (3.28) and w2h,n,e(T1, . . . ,Tn) (3.29) ≤  1 n w ( n∑ j=1 Tj ) + [ |Γ + γ|− 2 √ (Γγ) ] ·w ( n∑ j=1 Tj ) . 224 s.s. dragomir (iii) If Γ 6= −γ, then wh,n,e(T1, . . . ,Tn) ≤ 1 √ n  w ( n∑ j=1 Tj ) + 1 4 |Γ −γ|2 |Γ + γ|   . (3.30) Proof. Let x ∈ H with ‖x‖ = 1 and (T1, . . . ,Tn) ∈ B(n)(H) with the property (3.26). By taking αj = 〈Tjx,x〉 we have∣∣∣∣αj − γ + Γ2 ∣∣∣∣ = ∣∣∣∣〈Tjx,x〉− γ + Γ2 〈x,x〉 ∣∣∣∣ = ∣∣∣∣ 〈( Tj − γ + Γ 2 I ) x,x 〉∣∣∣∣ ≤ sup ‖x‖=1 ∣∣∣∣ 〈( Tj − γ + Γ 2 I ) x,x 〉∣∣∣∣ = w ( Tj − γ + Γ 2 ) ≤ 1 2 |Γ −γ| for any j ∈{1, . . . ,n}. (i) By using the inequality (3.21), we have n∑ j=1 |〈Tjx,x〉|2 ≤ 1 n ∣∣∣∣∣ n∑ j=1 〈Tjx,x〉 ∣∣∣∣∣ 2 + 1 4 n|Γ −γ|2 = 1 n ∣∣∣∣∣ 〈 n∑ j=1 Tjx,x 〉∣∣∣∣∣ 2 + 1 4 n |Γ −γ|2 (3.31) for any x ∈ H with ‖x‖ = 1. By taking the supremum over ‖x‖ = 1 in (3.31) we get sup ‖x‖=1 ( n∑ j=1 |〈Tjx,x〉|2 ) ≤ 1 n sup ‖x‖=1 ∣∣∣∣∣ 〈 n∑ j=1 Tjx,x 〉∣∣∣∣∣ 2 + 1 4 n|Γ −γ|2 = 1 n w2 ( n∑ j=1 Tj ) + 1 4 n|Γ −γ|2, which proves (3.27). hypo-q-norms on cartesian products 225 (ii) If Re (Γγ) > 0, then by (3.22) we have for αj = 〈Tjx,x〉, j ∈{1, . . . ,n} that n∑ j=1 |〈Tjx,x〉|2 ≤ 1 4n |Γ + γ|2 Re(Γγ) ∣∣∣∣∣ n∑ j=1 〈Tjx,x〉 ∣∣∣∣∣ 2 = 1 4n |Γ + γ|2 Re (Γγ) ∣∣∣∣∣ 〈 n∑ j=1 Tjx,x 〉∣∣∣∣∣ 2 (3.32) for any x ∈ H with ‖x‖ = 1. On taking the supremum over ‖x‖ = 1 in (3.32) we get (3.32). Also, by (3.24) we get n∑ j=1 |〈Tjx,x〉|2 ≤ 1 n ∣∣∣∣∣ n∑ j=1 〈Tjx,x〉 ∣∣∣∣∣ 2 + [ |Γ + γ|− 2 √ Re (Γγ) ]∣∣∣∣∣ n∑ j=1 〈Tjx,x〉 ∣∣∣∣∣, for any x ∈ H with ‖x‖ = 1. By taking the supremum over ‖x‖ = 1 in this inequality, we have sup ‖x‖=1 n∑ j=1 |〈Tjx,x〉|2 ≤ sup ‖x‖=1  1 n ∣∣∣∣∣ n∑ j=1 〈Tjx,x〉 ∣∣∣∣∣ 2 + [ |Γ + γ|− 2 √ (Γγ) ]∣∣∣∣∣ n∑ j=1 〈Tjx,x〉 ∣∣∣∣∣   ≤ 1 n sup ‖x‖=1 ∣∣∣∣∣ 〈 n∑ j=1 Tjx,x 〉∣∣∣∣∣ 2 + [ |Γ + γ|− 2 √ (Γγ) ] sup ‖x‖=1 ∣∣∣∣∣ 〈 n∑ j=1 Tjx,x 〉∣∣∣∣∣ = 1 n w2 ( n∑ j=1 Tj ) + [ |Γ + γ|− 2 √ (Γγ) ] w ( n∑ j=1 Tj ) , which proves (3.29). 226 s.s. dragomir (iii) By the inequality (3.23) we have( n∑ j=1 |〈Tjx,x〉|2 )1 2 ≤ 1 √ n  ∣∣∣∣∣ n∑ j=1 〈Tjx,x〉 ∣∣∣∣∣ + 14 |Γ −γ| 2 |Γ + γ|   = 1 √ n  ∣∣∣∣∣ 〈 n∑ j=1 Tjx,x 〉∣∣∣∣∣ + 14 |Γ −γ| 2 |Γ + γ|   for any x ∈ H with ‖x‖ = 1. By taking the supremum over ‖x‖= 1 in this inequality, we get (3.30). Remark 17. By the use of the elementary inequality w (T) ≤ ‖T‖ that holds for any T ∈ B(H), a sufficient condition for (3.26) to hold is that∥∥∥∥Tj − γ + Γ2 ∥∥∥∥ ≤ 12 |Γ −γ| for any j ∈{1, . . . ,n}. (3.33) 4. Inequalities for δp and ϑp norms For T ∈ B(H) and p ≥ 1 we can consider the functionals δp(T) := sup ‖x‖=‖y‖=1 ( |〈Tx,y〉|p + |〈T∗x,y〉|p )1/p = ‖(T,T∗)‖h,2,p (4.1) and ϑp(T) := sup ‖x‖=1 ( ‖Tx‖p + ‖T∗x‖p )1/p = ‖(T,T∗)‖s,2,p . (4.2) It is easy to see that both δp and ϑp are norms on B(H). The case p = 2 for the norm δ := δ2 was considered and studied in [5]. Observe that, for any T ∈ B(H) and p ≥ 1, we have wh,2,p((T,T ∗)) = sup ‖x‖=1 ( |〈Tx,x〉|p + |〈T∗x,x〉|p )1/p = sup ‖x‖=1 ( |〈Tx,x〉|p + |〈Tx,x〉|p )1/p = 21/p sup ‖x‖=1 |〈Tx,x〉| = 21/pw(T). (4.3) Using the inequality (1.13) we have 21/pw(T) ≤ δp(T) ≤ 21+1/pw(T) (4.4) hypo-q-norms on cartesian products 227 for any T ∈ B(H) and p ≥ 1. For p = 2, we get √ 2w(T) ≤ δ(T) ≤ √ 8w(T) (4.5) while for p = 1 we get 2w(T) ≤ δ1(T) ≤ 4w(T) (4.6) for any T ∈ B(H). We have for any T ∈ B(H) and p ≥ 1 that ‖(T,T∗)‖2,p = ( ‖T‖p + ‖T∗‖p )1/p = 21/p‖T‖ and by (2.25) we get ‖T‖≤ δp(T) ≤ 21/p‖T‖ (4.7) for any T ∈ B(H) and p ≥ 1. For p = 2, we get ‖T‖≤ δ(T) ≤ √ 2‖T‖ (4.8) while for p = 1 we get ‖T‖≤ δ1 (T) ≤ 2‖T‖ (4.9) for any T ∈ B(H). From (2.32) we get for r ≥ q ≥ 1 that δr(T) ≤ δq(T) ≤ 2 r−q rq δr(T) (4.10) for any T ∈ B(H). For any T ∈ B(H) and p,q > 1 with 1 p + 1 q = 1, then by (2.43) we have δq(T) ≥ 1 21/p ‖T + T∗‖. (4.11) In particular, for p = q = 2 we get δ(T) ≥ √ 2 2 ‖T + T∗‖, (4.12) for any T ∈ B(H). By using the inequality (2.45) we get δp(T) ≤ ϑp(T) ≤ 21/p‖T‖ (4.13) 228 s.s. dragomir for any T ∈ B(H) and p ≥ 1. For p = 1 we get δ1(T) ≤ ϑ1(T) ≤ 2‖T‖ (4.14) for any T ∈ B(H). For p ≥ 2, by employing the equality (2.46) we get ϑp(T) = [ wh,2,p/2 ( |T|2 , |T∗|2 )]1/2 = [ 22/pw ( |T |2 )]1/2 = 21/p‖T‖ (4.15) for any T ∈ B(H). On utilising (3.7), (3.9) and (3.11) we get 0 ≤ δ2(T) − 1 2 δ21(T) ≤ 1 2 ‖T‖2, (4.16) 0 ≤ δ2(T) − 1 2 δ21(T) ≤‖T‖δ1(T) (4.17) and 0 ≤ δ(T) − 1 √ 2 δ1(T) ≤ √ 2 4 ‖T‖ (4.18) for any T ∈ B(H). Observe, by (4.3) we have that wh,2,e((T,T ∗)) = √ 2w(T), for any T ∈ B(H). Assume that T ∈ B(H) and γ, Γ ∈ C with Γ 6= γ such that w ( T − γ + Γ 2 I ) , w ( T∗ − γ + Γ 2 I ) ≤ 1 2 |Γ −γ|, (4.19) then by (3.27) we get w2(T) ≤‖Re (T)‖2 + 1 4 |Γ −γ|2, (4.20) where Re (T) := T+T ∗ 2 . If Re (Γγ) > 0, then by (3.28) and (3.29) w(T) ≤ 1 2 |Γ + γ|√ Re (Γγ) ‖Re (T)‖ (4.21) hypo-q-norms on cartesian products 229 and w2(T) ≤ [ ‖Re (T)‖ + [ |Γ + γ|− 2 √ (Γγ) ]] ‖Re (T)‖. (4.22) If Γ 6= −γ, then by (3.30) we get w(T) ≤‖Re (T)‖ + 1 8 |Γ −γ|2 |Γ + γ| . (4.23) Due to the fact that w(A) = w(A∗) for any A ∈ B(H), the condition (4.19) can be simplified as follows. If m,M are real numbers with M > m and if w ( T − m + M 2 I ) ≤ 1 2 (M −m), then w2(T) ≤‖Re (T)‖2 + 1 4 (M −m)2. (4.24) If m > 0, then w(T) ≤ 1 2 m + M √ mM ‖Re (T)‖ (4.25) and w2(T) ≤ [ ‖Re (T)‖ + (√ M − √ m )2] ‖Re (T)‖. (4.26) If M 6= −m, then w(T) ≤‖Re (T)‖ + 1 8 (M −m)2 m + M . (4.27) For other numerical radius and norm inequalities, the interested reader may also consult [1] and [6] and compare these results. The details are not provided here. 5. Inequalities for real norms If X is a complex linear space, then the functional ‖·‖ is a real norm, if the homogeneity property in the definition of the norms is satisfied only for real numbers, namely we have ‖αx‖ = |α|‖x‖ for any α ∈ R and x ∈ X. 230 s.s. dragomir For instance if we consider the complex linear space of complex numbers C then the functionals |z|p := ( |Re (z)|p + |Im (z)|p )1/p , p ≥ 1, |z|∞ := max{|Re (z)|, |Im (z)|}, p = ∞, are real norms on C. For T ∈ B(H) we consider the Cartesian decomposition T = Re (T) + i Im (T) where the selfadjoint operators Re (T) and Im (T) are uniquely defined by Re (T) = T + T∗ 2 and Im (T) = T −T∗ 2i . We can introduce the following functionals ‖T‖r,p := ( ‖Re (T)‖p + ‖Im (T)‖p )1/p , p ≥ 1, and ‖T‖r,∞ := max { ‖Re (T)‖,‖Im (T)‖ } , p = ∞, where ‖·‖ is the usual operator norm on B(H). The definition can be extended for any other norms on B(H) or its subspaces. Using the properties of the norm ‖·‖ and the Minkowski’s inequality ( |a + b|p + |c + d|p )1/p ≤ ( |a|p + |c|p )1/p + ( |b|p + |d|p )1/p for p ≥ 1 and a,b,c,d ∈ C, we observe that ‖ · ‖r,p, p ∈ [1,∞] is a real norm on B(H). For p ≥ 1 and T ∈ B we can introduce the following functionals ηr,p(T) : = sup ‖x‖=‖y‖=1 ( |Re〈Tx,y〉|p + |Im〈Tx,y〉|p )1/p = sup ‖x‖=‖y‖=1 ( |〈Re Tx,y〉|p + |〈Im Tx,y〉|p )1/p = ‖(Re T, Im T)‖h,2,p , hypo-q-norms on cartesian products 231 θr,p(T) : = sup ‖x‖=1 ( |Re〈Tx,x〉|p + |Im〈Tx,x〉|p )1/p = sup ‖x‖=1 ( |〈Re Tx,x〉|p + |〈Im Tx,x〉|p )1/p = wh,2,p(Re T, Im T) and κr,p(T) := sup ‖x‖=1 ( ‖Re Tx‖p + ‖Im Tx‖p )1/p = ‖(Re T, Im T)‖s,2,p . The case p = 2 is of interest since for T ∈ B(H) we have ηr,2(T) : = sup ‖x‖=‖y‖=1 ( |Re〈Tx,y〉|2 + |Im〈Tx,y〉|2 )1/2 = sup ‖x‖=‖y‖=1 |〈Tx,y〉| = ‖T‖ , θr,2(T) : = sup ‖x‖=1 ( |Re〈Tx,x〉|2 + |Im〈Tx,x〉|2 )1/2 = sup ‖x‖=1 |〈Tx,x〉| = w(T) and κr,2(T) := sup ‖x‖=1 ( ‖Re Tx‖2 + ‖Im Tx‖2 )1/2 = sup ‖x‖=1 (〈 (Re T)2x,x 〉 + 〈 (Im T)2x,x 〉)1/2 = sup ‖x‖=1 (〈[ (Re T) 2 + (Im T) 2 ] x,x 〉)1/2 = ∥∥∥(Re T)2 + (Im T)2∥∥∥1/2 = ∥∥∥∥∥|T| 2 + |T∗|2 2 ∥∥∥∥∥ 1/2 . 232 s.s. dragomir For p = ∞ we have ηr,∞(T) : = sup ‖x‖=‖y‖=1 ( max { |Re〈Tx,y〉| , |Im〈Tx,y〉| }) = max { sup ‖x‖=‖y‖=1 |〈Re Tx,y〉| , sup ‖x‖=‖y‖=1 |〈Im Tx,y〉| } = max { ‖Re T‖,‖Im T‖ } , and in a similar way θr,∞(T) = κr,∞(T) = max { ‖Re T‖,‖Im T‖ } = ‖T‖r,∞ . The functionals ηr,p, θr,p and κr,p with p ∈ [1,∞] are real norms on B(H). We have ηr,p (T) = sup ‖x‖=‖y‖=1 ( |Re〈Tx,y〉|p + |Im〈Tx,y〉|p )1/p ≤ ( sup ‖x‖=‖y‖=1 |Re〈Tx,y〉|p + sup ‖x‖=‖y‖=1 |Im〈Tx,y〉|p )1/p = (‖Re (T)‖p + ‖Im (T)‖p)1/p = ‖T‖r,p and ‖T‖r,∞ = sup ‖x‖=‖y‖=1 ( max{|Re〈Tx,y〉|, |Im〈Tx,y〉|} ) ≤ sup ‖x‖=‖y‖=1 ( |Re〈Tx,y〉|p + |Im〈Tx,y〉|p )1/p = ηr,p(T) for any p ≥ 1 and T ∈ B(H). In a similar way we have ‖T‖r,∞ ≤ θr,p(T) ≤‖T‖r,p and ‖T‖r,∞ ≤ κr,p(T) ≤‖T‖r,p for any p ≥ 1 and T ∈ B(H). hypo-q-norms on cartesian products 233 If we write the inequality (1.13) for n = 2, T1 = Re T and T2 = Im T then we get θr,p(T) ≤ ηr,p(T) ≤ 2θr,p(T) (5.1) for any p ≥ 1 and T ∈ B(H). Using the inequalities (2.25) and (2.26) for n = 2, T1 = Re T and T2 = Im T then we get 1 21/p ‖T‖r,p ≤ ηr,p(T) ≤‖T‖r,p (5.2) and 1 21/p ‖T‖r,p ≤ θr,p(T) ≤‖T‖r,p (5.3) for any p ≥ 1 and T ∈ B(H). If we use the inequalities (2.32) and (2.33) for n = 2, T1 = Re T and T2 = Im T then we get for t ≥ p ≥ 1 that ηr,t(T) ≤ ηr,p(T) ≤ 2 t−p tp ηr,t(T) (5.4) and θr,t(T) ≤ θr,p(T) ≤ 2 t−p tp θr,t(T) (5.5) for any T ∈ B(H). For p = 1 we have the functionals ηr,1(T) = sup ‖x‖=‖y‖=1 ( |〈Re Tx,y〉| + |〈Im Tx,y〉| ) = ‖(Re T, Im T)‖h,2,1 , θr,1(T) : = sup ‖x‖=1 ( |〈Re Tx,x〉| + |〈Im Tx,x〉| ) = wh,2,1(Re T, Im T) and κr,1(T) : = sup ‖x‖=1 ( ‖Re Tx‖ + ‖Im Tx‖ ) = ‖(Re T, Im T)‖s,2,1 . By utilising the inequalities (3.7), (3.9) and (3.11) for n = 2, T1 = Re T and T2 = Im T, then 0 ≤‖T‖2 − 1 2 η2r,1(T) ≤ 1 2 ( max{‖Re T‖,‖Im T‖} )2 , (5.6) 0 ≤‖T‖2 − 1 2 η2r,1(T) ≤ max { ‖Re T‖,‖Im T‖ } ηr,1(T) (5.7) 234 s.s. dragomir and 0 ≤‖T‖− √ 2 2 ηr,1(T) ≤ √ 2 4 max{‖Re T‖,‖Im T‖} (5.8) for any T ∈ B(H). Also, by utilising the inequalities (3.8), (3.10) and (3.12) for n = 2, T1 = Re T and T2 = Im T, then 0 ≤ w2(T) − 1 2 θ2r,1(T) ≤ 1 2 ( max{‖Re T‖ ,‖Im T‖} )2 , (5.9) 0 ≤ w2(T) − 1 2 θ2r,1(T) ≤ max { ‖Re T‖,‖Im T‖ } θr,1(T) (5.10) and 0 ≤ w(T) − √ 2 2 θr,1(T) ≤ √ 2 4 max { ‖Re T‖,‖Im T‖ } (5.11) for any T ∈ B(H). If m,M are real numbers with M > m and if∥∥∥∥ Re T − m + M2 I ∥∥∥∥, ∥∥∥∥ Im T − m + M2 I ∥∥∥∥ ≤ 12 (M −m), (5.12) then by (3.27) we get w2(T) ≤ 1 2 ‖Re T + Im T‖2 + 1 2 (M −m)2 . (5.13) If m > 0, then (3.28) and (3.29) we have w(T) ≤ 1 2 √ 2 m + M √ mM ‖Re T + Im T‖ (5.14) and w2(T) ≤ [ 1 2 ‖Re T + Im T‖ + (√ M − √ m )2 ] ‖Re T + Im T‖. (5.15) If M 6= −m, then by (3.30) we get w(T) ≤ 1 √ 2 ( ‖Re T + Im T‖ + 1 4 (M −m)2 M + m ) . (5.16) Finally, we observe that a simple sufficient condition for (5.12) to hold, is that mI ≤ Re T, Im T ≤ MI in the operator order of B(H). hypo-q-norms on cartesian products 235 Acknowledgements The author would like to thank the anonymous referee for valuable suggestions that have been implemented in the final version of the paper. References [1] M. Bakherad, K. Shebrawi, Upper bounds for numerical radius inequali- ties involving off-diagonal operator matrices, Ann. Funct. Anal. 9 (3) (2018), 297 – 309. [2] S.S. Dragomir, A counterpart of Schwarz’s inequality in inner product spaces, East Asian Math. J. 20 (1) (2004), 1 – 10, preprint RGMIA Res. Rep. Coll. 6 (2003), http://rgmia.org/papers/v6e/CSIIPS.pdf. [3] S.S. Dragomir, A survey on Cauchy-Bunyakovsky-Schwarz type discrete in- equalities, J. Inequal. Pure Appl. Math. 4 (3) (2003), Article 63, 142 pp., https://www.emis.de/journals/JIPAM/article301.html?sid=301. [4] S.S. Dragomir, “ Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces ”, Nova Science Publishers Inc., NY, 2005. [5] S.S. Dragomir, The hypo-Euclidean norm of an n-tuple of vectors in inner product spaces and applications, J. Ineq. Pure & Appl. Math. 8 (2) (2007), Article 52, 22 pp., https://www.emis.de/journals/JIPAM/article854.html?sid=854. [6] S.S. Dragomir, Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces, Linear Algebra Appl. 419 (1) (2006), 256 – 264. [7] S.S. Dragomir, Reverses of the Schwarz inequality generalising the Klamkin- McLeneghan result, Bull. Austral. Math. Soc. 73 (1) (2006), 69 – 78. [8] S. S. Dragomir, Some inequalities of Kato type for sequences of operators in Hilbert spaces, Publ. Res. Inst. Math. Sci. 48 (4) (2012), 937 – 955. [9] S. S. Dragomir, Y. J. Cho, Y.-H. Kim, Applications of Kato’s inequality for n-tuples of operators in Hilbert spaces, (I), J. Inequal. Appl. 2013:21 (2013), 16pp. [10] S. S. Dragomir, Y. J. Cho, Y.-H. Kim, Applications of Kato’s inequality for n-tuples of operators in Hilbert spaces, (II), J. Inequal. Appl. 2013:464 (2013), 20 pp. [11] T. Kato, Notes on some inequalities for linear operators, Math. Ann. 125 (1952), 208 – 212. [12] M.S. Moslehian, M. Sattari, K. Shebrawi, Extensions of Euclidean operator radius inequalitie, Math. Scand. 120 (1) (2017), 129 – 144. [13] G. Popescu, “ Unitary Invariants in Multivariable Operator Theory”, Mem. Amer. Math. Soc. no. 941, 2009. [14] A. Sheikhhosseini, M.S. Moslehian, K. Shebrawi, Inequalities for generalized Euclidean operator radius via Young’s inequality. J. Math. Anal. Appl. 445 (2) (2017), 1516 – 1529. [15] O. Shisha, B. Mond, Bounds on differences of means, in “ Inequalities ”, Academic Press Inc., New York, 1967, 293 – 308. http://rgmia.org/papers/v6e/CSIIPS.pdf https://www.emis.de/journals/JIPAM/article301.html?sid=301 https://www.emis.de/journals/JIPAM/article854.html?sid=854 Introduction Representation results Some reverse inequalities Inequalities for p and p norms Inequalities for real norms