E extracta mathematicae Vol. 33, Núm. 2, 167 – 189 (2018) Some New Reverses and Refinements of Inequalities for Relative Operator Entropy S.S. Dragomir 1,2 1 Mathematics, College of Engineering & Science, Victoria University PO Box 14428, Melbourne City, MC 8001, Australia sever.dragomir@vu.edu.au , http://rgmia.org/dragomir 2 School of Computer Science & Applied Mathematics, University of the Witwatersrand Private Bag 3, Johannesburg 2050, South Africa Presented by Mostafa Mbekhta Received February 21, 2018 Abstract: In this paper we obtain new inequalities for relative operator entropy S(A|B) in the case of operators satisfying the condition mA ≤ B ≤ MA, with 0 < m < M. Key words: Inequalities for Logarithm, Relative operator entropy, Operator entropy. AMS Subject Class. (2000): 47A63, 47A30. 1. Introduction Kamei and Fujii [6, 7] defined the relative operator entropy S(A|B), for positive invertible operators A and B, by S(A|B) := A 1 2 ( ln ( A− 1 2 BA− 1 2 )) A 1 2 , (1.1) which is a relative version of the operator entropy considered by Nakamura- Umegaki [12]. In general, we can define for positive operators A, B S(A|B) := s − lim ε→0+ S ( A + ε1H|B ) if it exists, here 1H is the identity operator. For the entropy function η(t) = −t ln t, the operator entropy has the following expression: η(A) = −A ln A = S(A|1H) ≥ 0 for positive contraction A. This shows that the relative operator entropy (1.1) is a relative version of the operator entropy. 167 168 s.s. dragomir Following [8, pp. 149-155], we recall some important properties of relative operator entropy for A and B positive invertible operators: (i) We have the equalities S(A|B) = −A1/2 ( ln A1/2B−1A1/2 ) A1/2 = B1/2η ( B−1/2AB−1/2 ) B1/2. (1.2) (ii) We have the inequalities S(A|B) ≤ A ( ln ∥B∥ − ln A ) and S(A|B) ≤ B − A . (1.3) (iii) For any C, D positive invertible operators we have that S ( A + B|C + D ) ≥ S(A|C) + S(B|D). (iv) If B ≤ C then S(A|B) ≤ S(A|C). (v) If Bn ↓ B then S(A|Bn) ↓ S(A|B). (vi) For α > 0 we have S(αA|αB) = αS(A|B). (vii) For every operator T we have T ∗S(A|B)T ≤ S ( T ∗AT|T ∗BT ) . The relative operator entropy is jointly concave, namely, for any positive invertible operators A, B, C, D we have S ( tA + (1 − t)B | tC + (1 − t)D ) ≥ tS(A|C) + (1 − t)S(B|D) for any t ∈ [0, 1]. For other results on the relative operator entropy see [1, 4, 9, 10, 11, 13]. Observe that, if we replace in (1.2) B with A, then we get S(B|A) = A1/2η ( A−1/2BA−1/2 ) A1/2 = A1/2 ( − A−1/2BA−1/2 ln ( A−1/2BA−1/2 )) A1/2, some new reverses and refinements of inequalities 169 therefore we have A1/2 ( A−1/2BA−1/2 ln ( A−1/2BA−1/2 )) A1/2 = −S(B|A) (1.4) for positive invertible operators A and B. It is well know that, in general S(A|B) is not equal to S(B|A). In [15], A. Uhlmann has shown that the relative operator entropy S(A|B) can be represented as the strong limit S(A|B) = s − lim t→0 A♯tB − A t , (1.5) where A♯νB := A 1/2 ( A−1/2BA−1/2 )ν A1/2, ν ∈ [0, 1] , is the weighted geometric mean of positive invertible operators A and B. For ν = 1 2 we denote A♯B. This definition of the weighted geometric mean can be extended for any real number ν with ν ̸= 0. For t > 0 and the positive invertible operators A, B we define the Tsallis relative operator entropy (see also [3]) by Tt(A|B) := A♯tB − A t . The following result providing upper and lower bounds for relative operator entropy in terms of Tt(·|·) has been obtained in [6] for 0 < t ≤ 1. However, it hods for any t > 0. Theorem 1. Let A, B be two positive invertible operators, then for any t > 0 we have Tt(A|B)(A♯tB)−1A ≤ S(A|B) ≤ Tt(A|B). (1.6) In particular, we have for t = 1 that( 1H − AB−1 ) A ≤ S(A|B) ≤ B − A , [6] (1.7) and for t = 2 that 1 2 ( 1H − ( AB−1 )2) A ≤ S(A|B) ≤ 1 2 ( BA−1B − A ) . (1.8) 170 s.s. dragomir The case t = 1 2 is of interest as well. Since in this case we have T1/2(A|B) := 2(A♯B − A) and T1/2(A|B)(A♯1/2B) −1A = 2 ( 1H − A(A♯B)−1 ) A , hence by (1.6) we get 2 ( 1H − A(A♯B)−1 ) A ≤ S(A|B) ≤ 2(A♯B − A) ≤ B − A . (1.9) Motivated by the above results, in this paper we obtain new inequalities for the relative operator entropy in the case of operators satisfying the condition mA ≤ B ≤ MA, with 0 < m < M. 2. Inequalities for log-function We have: Theorem 2. For any a, b > 0 we have the inequalities 1 2b min{a, b} (b − a)2 ≥ ln b − ln a − b − a b ≥ 1 2b max{a, b} (b − a)2 (2.1) and 1 2a min{a, b} (b − a)2 ≥ b − a a − ln b + ln a ≥ 1 2a max{a, b} (b − a)2. (2.2) Proof. We have∫ b a b − t t dt = b ∫ b a 1 t dt − ∫ b a dt = b(ln b − ln a) − (b − a) giving that ln b − ln a − b − a b = 1 b ∫ b a b − t t dt (2.3) for any a, b > 0. Let b > a > 0, then 1 a ∫ b a (b − t) dt ≥ ∫ b a b − t t dt ≥ 1 b ∫ b a (b − t) dt some new reverses and refinements of inequalities 171 giving that 1 2a (b − a)2 ≥ ∫ b a b − t t dt ≥ 1 2b (b − a)2. (2.4) Let a > b > 0, then 1 b ∫ a b (t − b) dt ≥ ∫ b a b − t t dt = ∫ a b t − b t dt ≥ 1 a ∫ a b (t − b) dt giving that 1 2b (b − a)2 ≥ ∫ b a b − t t dt ≥ 1 2a (b − a)2. (2.5) Therefore, by (2.4) and (2.5) we get 1 2 min{a, b} (b − a)2 ≥ ∫ b a b − t t dt ≥ 1 2 max{a, b} (b − a)2, for any a, b > 0. By utilising the equality (2.3) we get the desired result (2.1). Corollary 1. For any y > 0 we have 1 2y min{1, y} (y − 1)2 ≥ ln y − y − 1 y ≥ 1 2y max{1, y} (y − 1)2, (2.6) 1 2 min{1, y} (y − 1)2 ≥ y − 1 − ln y ≥ 1 2 max{1, y} (y − 1)2. (2.7) Remark 1. Since for any a, b > 0 we have max{a, b} min{a, b} = ab, then (2.1) and (2.2) can also be written as 1 2a max{a, b} ( b − a b )2 ≥ ln b − ln a − b − a b ≥ 1 2a min{a, b} ( b − a b )2 (2.8) and 1 2b max{a, b} ( b − a a )2 ≥ b − a a − ln b + ln a ≥ 1 2b min{a, b} ( b − a a )2 (2.9) 172 s.s. dragomir for any a, b > 0. The inequalities can also be written as 1 2 max{1, y} ( y − 1 y )2 ≥ ln y − y − 1 y ≥ 1 2 min{1, y} ( y − 1 y )2 (2.10) and 1 2y max{1, y}(y − 1)2 ≥ y − 1 − ln y ≥ 1 2y min{1, y}(y − 1)2, (2.11) for any y > 0. In the recent paper [2] we obtained the following inequalities that provide upper and lower bounds for the quantity ln b − ln a − b−a b : 1 2 (b − a)2 min2{a, b} ≥ b − a a − ln b + ln a ≥ 1 2 (b − a)2 max2{a, b} , (2.12) where a, b > 0 and (b − a)2 ab ≥ b − a a − ln b + ln a (2.13) for any a, b > 0. It is natural to ask, which of the upper bounds for the quantity b − a a − ln b + ln a as provided by (2.2), (2.12) and (2.13) is better? It has been shown in [2] that neither of the upper bounds in (2.12) and (2.13) is always best. Consider now the difference D1(a, b) := 1 2a min{a, b} (b − a)2 − 1 2 (b − a)2 min2{a, b} = 1 2 (b − a)2 a min2{a, b} (min{a, b} − a) ≤ 0 , which shows that upper bound in (2.2) is always better than the upper bound in (2.12). some new reverses and refinements of inequalities 173 Consider the difference D2(a, b) := 1 2a min{a, b} (b − a)2 − (b − a)2 ab = 1 2ab min{a, b} (b − a)2 ( b − 2 min{a, b} ) , which can take both positive and negative values for a, b > 0, showing that neither of the bounds (2.2) and (2.13) is always best. Now, consider the difference d(a, b) := 1 2a max{a, b} (b − a)2 − 1 2 (b − a)2 max2{a, b} = 1 2a max2{a, b} (b − a)2(max{a, b} − a) ≥ 0 , which shows that lower bound in (2.2) is always better than the lower bound in (2.12). Corollary 2. If y ∈ [k, K] ⊂ (0, ∞), then we have the local inequalities 1 2 min{1, k} (y − 1)2 y ≥ ln y − y − 1 y ≥ 1 2 max{1, K} (y − 1)2 y , (2.14) 1 2 min{1, k} (y − 1)2 ≥ y − 1 − ln y ≥ 1 2 max{1, K} (y − 1)2, (2.15) 1 2 max{1, K} ( y − 1 y )2 ≥ ln y − y − 1 y ≥ 1 2 min{1, k} ( y − 1 y )2 , (2.16) 1 2 max{1, K} (y − 1)2 y ≥ y − 1 − ln y ≥ 1 2 min{1, k} (y − 1)2 y . (2.17) Proof. If y ∈ [k, K] ⊂ (0, ∞), then by analyzing all possible locations of the interval [k, K] and 1 we have min{1, k} ≤ min{1, y} ≤ min{1, K} , max{1, k} ≤ max{1, y} ≤ max{1, K} . 174 s.s. dragomir By using the inequalities (2.6) and (2.7) we have 1 2y min{1, k} (y − 1)2 ≥ 1 2y min{1, y} (y − 1)2 ≥ ln y − y − 1 y ≥ 1 2y max{1, y} (y − 1)2 ≥ 1 2y max{1, K} (y − 1)2 and 1 2 min{1, k} (y − 1)2 ≥ 1 2 min{1, y} (y − 1)2 ≥ y − 1 − ln y ≥ 1 2 max{1, y} (y − 1)2 ≥ 1 2 max{1, K} (y − 1)2 for any y ∈ [k, K], that prove (2.14) and (2.15). The inequalities (2.16) and (2.17) follows by (2.16) and (2.17). If we consider the function f(y) = (y−1)2 y , y > 0, then we observe that f ′(y) = y2 − 1 y2 and f ′′(y) = 2 y3 , which shows that f is strictly decreasing on (0, 1), strictly increasing on [1, ∞) and strictly convex for y > 0. We also have f(1 y ) = f(y) for y > 0. By the properties of f we then have that max y∈[k,K] (y − 1)2 y =   (k−1)2 k if K < 1 , max { (k−1)2 k , (K−1)2 K } if k ≤ 1 ≤ K , (K−1)2 K if 1 < k , (2.18) =: U(k, K) some new reverses and refinements of inequalities 175 and min y∈[k,K] (y − 1)2 y =   (1−K)2 K if K < 1 , 0 if k ≤ 1 ≤ K , (k−1)2 k if 1 < k , (2.19) =: u(k, K) . We can provide now some global bounds as follows. From (2.14) we then get for any y ∈ [k, K] that 1 2 min{1, k} U(k, K) ≥ ln y − y − 1 y ≥ 1 2 max{1, K} u(k, K), (2.20) while from (2.17) we get for any y ∈ [k, K] that 1 2 max{1, K}U(k, K) ≥ y − 1 − ln y ≥ 1 2 min{1, k}u(k, K). (2.21) Consider Z(k, K) : = max y∈[k,K] (y − 1)2 (2.22) =   (1 − k)2 if K < 1 , max{(1 − k)2, (K − 1)2} if k ≤ 1 ≤ K , (K − 1)2 if 1 < k , and z(k, K) := min y∈[k,K] (y − 1)2 =   (1 − K)2 if K < 1 , 0 if k ≤ 1 ≤ K , (k − 1)2 if 1 < k . (2.23) By making use of (2.15) we get 1 2 min{1, k} Z(k, K) ≥ y − 1 − ln y ≥ 1 2 max{1, K} z(k, K), (2.24) for any y ∈ [k, K]. 176 s.s. dragomir Consider the function g(y) = ( y−1 y )2 , y > 0, then we observe that g′(y) = 2(y − 1) y2 and g′′(y) = 2(3 − 2y) y4 , which shows that g is strictly decreasing on (0, 1), strictly increasing on [1, ∞) strictly convex for y ∈ (0, 3/2) and strictly concave on (3/2, ∞). Consider W(k, K) : = max y∈[k,K] ( y − 1 y )2 (2.25) =   ( 1−k k )2 if K < 1 , max {( 1−k k )2 , ( K−1 K )2} if k ≤ 1 ≤ K ,( K−1 K )2 if 1 < k , and w(k, K) := min y∈[k,K] ( y − 1 y )2 =   ( 1−K K )2 if K < 1 , 0 if k ≤ 1 ≤ K ,( k−1 k )2 if 1 < k . (2.26) Then by (2.16) we get 1 2 max{1, K}W(k, K) ≥ ln y − y − 1 y ≥ 1 2 min{1, k}w(k, K) (2.27) for any y ∈ [k, K]. 3. Operator inequalities We have the following: Lemma 1. Let x ∈ [k, K] and t > 0, then we have 1 2 min{1, kt} ( xt − 1 t − 1 − x−t t ) ≥ ln x − 1 − x−t t (3.1) ≥ 1 2 max{1, Kt} ( xt − 1 t − 1 − x−t t ) ≥ 0 some new reverses and refinements of inequalities 177 and 1 2 max { 1, Kt } t ( 1 − x−t t )2 ≥ ln x − 1 − x−t t (3.2) ≥ 1 2 min { 1, kt } t ( 1 − x−t t )2 ≥ 0 . Proof. Let y = xt ∈ [ kt, Kt ] . By using the inequality (2.14) we have 1 2 min{1, kt} (xt + x−t − 2) ≥ t ln x − xt − 1 xt ≥ 1 2 max{1, Kt} ( xt + x−t − 2 ) ≥ 0 that is equivalent to (3.1). From the inequality (2.16) we have for y = xt 1 2 max { 1, Kt }( 1 − 2x−t + x−2t ) ≥ t ln x − xt − 1 xt ≥ 1 2 min { 1, kt }( 1 − 2x−t + x−2t ) ≥ 0 that is equivalent to (3.2). We have: Theorem 3. Let A, B be two positive invertible operators and the constants M > m > 0 with the property that mA ≤ B ≤ MA . (3.3) Then for any t > 0 we have 1 2 min{1, mt} Tt(A|B) ( A−1 − (A♯tB)−1 ) A ≥ S(A|B) − Tt(A|B)(A♯tB)−1A (3.4) ≥ 1 2 max{1, Mt} Tt(A|B) ( A−1 − (A♯tB)−1 ) A ≥ 0 178 s.s. dragomir and 1 2 max { 1, Mt } t ( Tt(A|B)(A♯tB)−1 )2 A ≥ S(A|B) − Tt(A|B)(A♯tB)−1A (3.5) ≥ 1 2 min { 1, mt } t ( Tt(A|B)(A♯tB)−1 )2 A ≥ 0 . Proof. Since mA ≤ B ≤ MA and A is invertible, then by multiplying both sides with A−1/2 we get m1H ≤ A−1/2BA−1/2 ≤ M. Denote X = A−1/2BA−1/2 and by using the functional calculus for X that has its spectrum contained in the interval [m, M] and the inequality (3.1), we get 1 2 min{1, mt} (( A−1/2BA−1/2 )t − 1H t − 1H − ( A−1/2BA−1/2 )−t t ) ≥ ln ( A−1/2BA−1/2 ) − 1H − ( A−1/2BA−1/2 )−t t (3.6) ≥ 1 2 max{1, Mt} (( A−1/2BA−1/2 )t − 1H t − 1H − ( A−1/2BA−1/2 )−t t ) ≥ 0 for any t > 0. Now, if we multiply both sides of (3.6) by A1/2, then we get 1 2 min{1, mt} A1/2 (( A−1/2BA−1/2 )t − 1H t − 1H − ( A−1/2BA−1/2 )−t t ) A1/2 ≥ A1/2 ( ln ( A−1/2BA−1/2 )) A1/2 − A1/2 1H − ( A−1/2BA−1/2 )−t t A1/2 ≥ 1 2 max{1, Mt} A1/2 (( A−1/2BA−1/2 )t − 1H t (3.7) − 1H − ( A−1/2BA−1/2 ) −t t ) A1/2 ≥ 0 for any t > 0. Observe that A1/2 ln ( A−1/2BA−1/2 ) A1/2 = S(A|B) , some new reverses and refinements of inequalities 179 A1/2 ( A−1/2BA−1/2 )t − 1 t A1/2 = A♯tB − A t = Tt(A|B) , A1/2 1H − ( A−1/2BA−1/2 )−t t A1/2 (3.8) = A1/2 ( A−1/2BA−1/2 )t( A−1/2BA−1/2 )−t − (A−1/2BA−1/2)−t t A1/2 = A1/2 ( A−1/2BA−1/2 )t − 1H t ( A−1/2BA−1/2 )−t A1/2 = A1/2 ( A−1/2BA−1/2 )t − 1H t A1/2A−1/2 ( A−1/2BA−1/2 )−t A−1/2A = Tt(A|B)(A♯tB)−1A and then by (3.7) we get 1 2 min{1, mt} Tt(A|B) ( 1H − (A♯tB)−1A ) ≥ S(A|B) − Tt(A|B)(A♯tB)−1A ≥ 1 2 max{1, Mt} Tt(A|B) ( 1H − (A♯tB)−1A ) ≥ 0 that is equivalent to (3.4). From the inequality (3.2) we also have 1 2 max{1, Mt}t ( 1H − ( A−1/2BA−1/2 )−t t )2 (3.9) ≥ ln ( A−1/2BA−1/2 ) − 1H − ( A−1/2BA−1/2 )−t t ≥ 1 2 min{1, mt}t ( 1H − ( A−1/2BA−1/2 )−t t )2 ≥ 0 . 180 s.s. dragomir Now, if we multiply both sides of (3.9) by A1/2, then we get 1 2 max{1, Mt}tA1/2 ( 1H − ( A−1/2BA−1/2 )−t t )2 A1/2 (3.10) ≥ A1/2 ( ln ( A−1/2BA−1/2 )) A1/2 − A1/2 1H − ( A−1/2BA−1/2 )−t t A1/2 ≥ 1 2 min{1, mt}tA1/2 ( 1H − ( A−1/2BA−1/2 )−t t )2 A1/2 ≥ 0 . From (3.8) we have, by multiplying both sides by A−1/2, that 1H − ( A−1/2BA−1/2 )−t t = A−1/2Tt(A|B)(A♯tB)−1A1/2. Then A1/2 ( 1H − ( A−1/2BA−1/2 )−t t )2 A1/2 = A1/2 ( A−1/2Tt(A|B)(A♯tB)−1A1/2 )2 A1/2 = A1/2A−1/2Tt(A|B)(A♯tB)−1A1/2A−1/2Tt(A|B)(A♯tB)−1A1/2A1/2 = Tt(A|B)(A♯tB)−1Tt(A|B)(A♯tB)−1A = (Tt(A|B)(A♯tB)−1)2A , which together with (3.10) produces the desired result (3.5). There are some particular inequalities of interest as follows. For t = 1 we get from (3.4) and (3.5) that 1 2 min{1, m} (B − A) ( A−1 − B−1 ) A ≥ S(A|B) − ( 1H − AB−1 ) A (3.11) ≥ 1 2 max{1, M} (B − A) ( A−1 − B−1 ) A ≥ 0 some new reverses and refinements of inequalities 181 and 1 2 max{1, M} ( 1H − AB−1 )2 A ≥ S(A|B) − ( 1H − AB−1 ) A (3.12) ≥ 1 2 min{1, m} ( 1H − AB−1 )2 A ≥ 0 . For t = 1/2 we get from (3.4) and (3.5) that 1 min{1, √ m} (A♯B − A) ( A−1 − (A♯B)−1 ) A ≥ S(A|B) − 2 ( 1H − A(A♯B)−1 ) A (3.13) ≥ 1 max{1, √ M} (A♯B − A) ( A−1 − (A♯B)−1 ) A ≥ 0 and max{1, √ M} ( 1H − A(A♯B)−1 )2 A ≥ S(A|B) − 2 ( 1H − A(A♯B)−1 ) A (3.14) ≥ min{1, √ m} ( 1H − A(A♯B)−1 )2 A ≥ 0 . For t = 2 we get from (3.4) and (3.5) that 1 4 min{1, m2} ( BA−1B − A )( A−1 − B−1AB−1 ) A ≥ S(A|B) − 1 2 ( 1H − ( AB−1 )2) A (3.15) ≥ 1 4 max{1, M2} ( BA−1B − A )( A−1 − B−1AB−1 ) A ≥ 0 and 1 4 max{1, M2} ( 1H − ( AB−1 )2)2 A ≥ S(A|B) − 1 2 ( 1H − ( AB−1 )2) A (3.16) ≥ 1 4 min{1, m2} ( 1H − ( AB−1 )2)2 A ≥ 0 . We have the following: 182 s.s. dragomir Lemma 2. Let x ∈ [m, M] and t > 0, then we have 1 2 min{1, mt} t ( xt − 1 t )2 ≥ xt − 1 t − ln x ≥ 1 2 max{1, Mt} t ( xt − 1 t )2 (3.17) and 1 2 max{1, Mt} ( xt − 1 t − 1 − x−t t ) ≥ xt − 1 t − ln x (3.18) ≥ 1 2 min{1, mt} ( xt − 1 t − 1 − x−t t ) . Proof. Let y = xt ∈ [mt, Mt]. By using the inequality (2.15) we have (3.17) and by (2.17) we have (3.18). We also have: Theorem 4. Let A, B be two positive invertible operators and the con- stants M > m > 0 with the property (3.3). Then for any t > 0 we have 1 2 min{1, mt} t Tt(A|B)A−1Tt(A|B) ≥ Tt(A|B) − S(A|B) (3.19) ≥ 1 2 max{1, Mt} t Tt(A|B)A−1Tt(A|B) ≥ 0 and 1 2 max{1, Mt}Tt(A|B) ( 1H − (A♯tB)−1A ) ≥ Tt(A|B) − S(A|B) (3.20) ≥ 1 2 min{1, mt} Tt(A|B) ( 1H − (A♯tB)−1A ) ≥ 0 . Proof. If we use the inequality (3.17) for the selfadjoint operator X = A−1/2BA−1/2 that has its spectrum contained in the interval [m, M], then we some new reverses and refinements of inequalities 183 get 1 2 min{1, mt} t (( A−1/2BA−1/2 )t − 1 t )2 ≥ ( A−1/2BA−1/2 )t − 1 t − ln ( A−1/2BA−1/2 ) ≥ 1 2 max{1, Mt} t (( A−1/2BA−1/2 )t − 1 t )2 ≥ 0 for any t > 0. If we multiply both sides of this inequality by A1/2 we get 1 2 min{1, mt} tA1/2 (( A−1/2BA−1/2 )t − 1 t )2 A1/2 (3.21) ≥ A1/2 ( A−1/2BA−1/2 )t − 1 t A1/2 − A1/2 ( ln ( A−1/2BA−1/2 )) A1/2 ≥ 1 2 max{1, Mt} tA1/2 (( A−1/2BA−1/2 )t − 1 t )2 A1/2 ≥ 0 for any t > 0. Since A1/2 ( A−1/2BA−1/2 )t − 1 t A1/2 = Tt(A|B) , then ( A−1/2BA−1/2 )t − 1 t = A−1/2Tt(A|B)A−1/2 and A1/2 (( A−1/2BA−1/2 )t − 1 t )2 A1/2 = A1/2A−1/2Tt(A|B)A−1/2A−1/2Tt(A|B)A−1/2A1/2 = Tt(A|B)A−1Tt(A|B) for any t > 0. 184 s.s. dragomir By making use of (3.21) we then get (3.19). By using inequality (3.18) we have 1 2 max{1, Mt} (( A−1/2BA−1/2 )t − 1 t − 1 − ( A−1/2BA−1/2 )−t t ) ≥ ( A−1/2BA−1/2 )t − 1 t − ln ( A−1/2BA−1/2 ) ≥ 1 2 min{1, mt} (( A−1/2BA−1/2 )t − 1 t − 1 − ( A−1/2BA−1/2 )−t t ) ≥ 0 , for any t > 0. If we multiply both sides of this inequality by A1/2 we get 1 2 max{1, Mt}A1/2 (( A−1/2BA−1/2 )t − 1 t − 1 − ( A−1/2BA−1/2 )−t t ) A1/2 ≥ A1/2 ( A−1/2BA−1/2 )t − 1 t A1/2 − A1/2 ( ln ( A−1/2BA−1/2 )) A1/2 ≥ 1 2 min{1, mt}A1/2 (( A−1/2BA−1/2 )t − 1 t − 1 − ( A−1/2BA−1/2 )−t t ) A1/2 ≥ 0 for any t > 0, and the inequality (3.20) is obtained. For t = 1 we get from (3.19) and (3.20) that 1 2 min{1, m} (B − A)A−1(B − A) ≥ B − A − S(A|B) (3.22) ≥ 1 2 max{1, M} (B − A)A−1(B − A) ≥ 0 and 1 2 max{1, M}(B − A) ( 1H − B−1A ) ≥ B − A − S(A|B) (3.23) ≥ 1 2 min{1, m}(B − A) ( 1H − B−1A ) ≥ 0 . some new reverses and refinements of inequalities 185 For t = 1/2 we get from (3.19) and (3.20) that 1 min{1, √ m} (A♯B − A)A−1(A♯B − A) ≥ 2(A♯B − A) − S(A|B) (3.24) ≥ 1 max{1, √ M} (A♯B − A)A−1(A♯B − A) ≥ 0 and max { 1, √ M } (A♯B − A) ( 1H − (A♯B)−1A ) ≥ 2(A♯B − A) − S(A|B) (3.25) ≥ min { 1, √ m } (A♯B − A) ( 1H − (A♯B)−1A ) ≥ 0 . For t = 2 we get from (3.19) and (3.20) that 1 4 min{1, m2} ( BA−1B − A ) A−1 ( BA−1B − A ) ≥ 1 2 ( BA−1B − A ) − S(A|B) (3.26) ≥ 1 4 max{1, M2} ( BA−1B − A ) A−1 ( BA−1B − A ) ≥ 0 and 1 4 max { 1, M2 }( BA−1B − A )( 1H − ( B−1A )2) ≥ 1 2 ( BA−1B − A ) − S(A|B) (3.27) ≥ 1 4 min { 1, m2 }( BA−1B − A )( 1H − ( B−1A )2) ≥ 0 . 4. Some global bounds For [m, M] ⊂ (0, ∞) and t > 0 and by the use of (2.18) we define Ut(m, M) : = U ( mt, Mt ) (4.1) =   (mt−1)2 mt if M < 1 , max { (mt−1)2 mt , (Mt−1)2 Mt } if m ≤ 1 ≤ M , (Mt−1)2 Mt if 1 < m , 186 s.s. dragomir and by (2.19) ut(m, M) := u ( mt, Mt ) =   (1−Mt)2 Mt if M < 1 , 0 if m ≤ 1 ≤ M , (mt−1)2 mt if 1 < m . (4.2) By (2.20) and (2.21) we have for y = xt ∈ [ mt, Mt ] and t > 0 that 1 2t min{1, mt} Ut(m, M) ≥ ln x − 1 − x−t t ≥ 1 2t max{1, Mt} ut(m, M) (4.3) and 1 2t max { 1, Mt } Ut(m, M) ≥ xt − 1 t − ln x ≥ 1 2t min{1, mt}ut(m, M) , (4.4) where x ∈ [m, M] and t > 0. Using (2.22) and (2.23) we define Zt(m, M) : = Z(m t, Mt) (4.5) =   ( 1 − mt )2 if M < 1 , max {( 1 − mt )2 , ( Mt − 1 )2} if m ≤ 1 ≤ M ,( Mt − 1 )2 if 1 < m , and zt(m, M) := z ( mt, Mt ) =   ( 1 − Mt)2 if M < 1 , 0 if m ≤ 1 ≤ M ,( mt − 1 )2 if 1 < m . (4.6) By (2.24) we have for y = xt ∈ [ mt, Mt ] and t > 0 that 1 2t min{1, mt} Zt(m, M) ≥ xt − 1 t − ln x ≥ 1 2t max{1, Mt} zt(m, M) , (4.7) some new reverses and refinements of inequalities 187 where x ∈ [m, M] and t > 0. Utilising (2.25) and (2.26) we can define Wt(m, M) : = W ( mt, Mt ) (4.8) =   ( 1−mt mt )2 if M < 1 , max {( 1−mt mt )2 , ( Mt−1 Mt )2} if m ≤ 1 ≤ M ,( Mt−1 Mt )2 if 1 < m , and wt(m, M) := W(m t, Mt) =   ( 1−Mt Mt )2 if M < 1 , 0 if m ≤ 1 ≤ M ,( mt−1 mt )2 if 1 < m . (4.9) By (2.24) we have for y = xt ∈ [ mt, Mt ] and t > 0 that 1 2t max { 1, Mt } Wt(m, M) ≥ ln x − 1 − x−t t ≥ 1 2t min { 1, mt } wt(m, M) , (4.10) where x ∈ [m, M] and t > 0. Theorem 5. Let A, B be two positive invertible operators and the con- stants M > m > 0 with the property (3.3). Then for any t > 0 we have 1 2t min{1, mt} Ut(m, M)A ≥ S(A|B) − Tt(A|B)(A♯tB)−1A ≥ 1 2t max{1, Mt} ut(m, M)A , 1 2t max { 1, Mt } Wt(m, M)A ≥ S(A|B) − Tt(A|B)(A♯tB)−1A ≥ 1 2t min { 1, mt } wt(m, M)A , 1 2t min{1, mt} Zt(m, M)A ≥ Tt(A|B) − S(A|B) ≥ 1 2t max{1, Mt} zt(m, M)A 188 s.s. dragomir and 1 2t max { 1, Mt } Ut(m, M)A ≥ Tt(A|B) − S(A|B) ≥ 1 2t min { 1, mt } ut(m, M)A . The proof follows by the inequalities (4.4), (4.5), (4.7) and (4.10) in a similar way as the one from the proof of Theorem 3 and we omit the details. For t = 1, t = 1/2 and t = 2 one can obtain some particular inequalities of interest, however the details are not provided here. References [1] S.S. Dragomir, Some inequalities for relative operator entropy; preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 145. [http://rgmia.org/papers/v18/v18a145.pdf]. [2] S.S. Dragomir, Reverses and refinements of several inequalities for relative operator entropy; preprint RGMIA Res. Rep. Coll. 19 (2015). [http://rgmia.org/papers/v19/]. [3] S. Furuichi, K. Yanagi, K. Kuriyama, Fundamental properties of Tsal- lis relative entropy, J. Math. Phys. 45 (2004) 4868 – 4877. [4] S. Furuichi, Precise estimates of bounds on relative operator entropies, Math. Inequal. Appl. 18 (2015), 869 – 877. [5] S. Furuichi, N. Minculete, Alternative reverse inequalities for Young’s inequality, J. Math. Inequal. 5 (2011), Number 4, 595 – 600. [6] J.I. Fujii, E. Kamei, Uhlmann’s interpolational method for operator means, Math. Japon. 34 (4) (1989), 541 – 547. [7] J.I. Fujii, E. Kamei, Relative operator entropy in noncommutative infor- mation theory, Math. Japon. 34 (3) (1989), 341 – 348. [8] T. Furuta, J. Mićić Hot, J. Pečarić, Y. Seo, “ Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space ”, Monographs in Inequalities 1, ELEMENT, Zagreb, 2005. [9] I.H. Kim, Operator extension of strong subadditivity of entropy, J. Math. Phys. 53 (2012), 122204, 3 pp. [10] P. Kluza, M. Niezgoda, Inequalities for relative operator entropies, Elec- tron. J. Linear Algebra 27 (2014), 851 – 864. [11] M.S. Moslehian, F. Mirzapour, A. Morassaei, Operator entropy inequalities, Colloq. Math. 130 (2013), 159 – 168. [12] M. Nakamura, H. Umegaki, A note on the entropy for operator algebras, Proc. Japan Acad. 37 (1961) 149 – 154. some new reverses and refinements of inequalities 189 [13] I. Nikoufar, On operator inequalities of some relative operator entropies, Adv. Math. 259 (2014), 376 – 383. [14] W. Specht, Zur Theorie der elementaren Mittel, Math. Z. 74 (1960), 91 – 98. [15] A. Uhlmann, Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory, Comm. Math. Phys. 54 (1) (1977), 21 – 32.