E extracta mathematicae Vol. 33, Núm. 2, 127 – 143 (2018) Exposed Polynomials of P ( 2R2 h(1 2 ) ) Sung Guen Kim ∗ Department of Mathematics, Kyungpook National University Daegu 702 − 701, South Korea sgk317@knu.ac.kr Presented by Ricardo Garćıa Received February 2, 2018 Abstract: We show that every extreme polynomials of P ( 2R2 h( 1 2 ) ) is exposed. Key words: The Krein-Milman Theorem, extreme polynomials, exposed polynomials, the plane with a hexagonal norm. AMS Subject Class. (2000): 46A22. 1. Introduction According to the Krein-Milman Theorem, every nonempty convex set in a Banach space is fully described by the set of its extreme points. Let n ∈ N. We write BE for the closed unit ball of a real Banach space E and the dual space of E is denoted by E∗. We recall that if x ∈ BE is said to be an extreme point of BE if y, z ∈ BE and x = λy + (1 − λ)z for some 0 < λ < 1 implies that x = y = z. x ∈ BE is called an exposed point of BE if there is an f ∈ E∗ so that f(x) = 1 = ∥f∥ and f(y) < 1 for every y ∈ BE \ {x}. It is easy to see that every exposed point of BE is an extreme point. We denote by extBE and expBE the sets of extreme and exposed points of BE, respectively. We denote by L(nE) the Banach space of all continuous n-linear forms on E endowed with the norm ∥T∥ = sup∥xk∥=1 |T(x1, . . . , xn)|. A n-linear form T is symmetric if T(x1, . . . , xn) = T ( xσ(1), . . . , xσ(n) ) for every permutation σ on {1, 2, . . . , n}. We denote by Ls(nE) the Banach space of all continuous symmetric n-linear forms on E. A mapping P : E → R is a continuous n-homogeneous polynomial if there exists a unique T ∈ Ls(nE) such that P(x) = T(x, . . . , x) for every x ∈ E. In this case it is convenient to write T = P̌ . We denote by P(nE) the Banach space of all continuous n-homogeneous polynomials from E into R endowed with the norm ∥P∥ = sup∥x∥=1 |P(x)|. Note that the spaces L(nE), ∗ This research was supported by the Basic Science Research Program through the Na- tional Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2013R1A1A2057788). 127 128 s. g. kim Ls(nE), P(nE) are very different from a geometric point of view. In particular, for integral multilinear forms and integral polynomials one has ([2], [9], [42]) extBLI(nE) = {ϕ1ϕ2 · · · ϕn : ϕi ∈ extBE∗} , extBPI(nE) = {±ϕ n : ϕ ∈ E∗, ∥ϕ∥ = 1}, where LI(nE) and PI(nE) are the spaces of integral n-linear forms and inte- gral n-homogeneous polynomials on E, respectively. For more details about the theory of multilinear mappings and polynomials on a Banach space, we refer to [10]. Let us say about the stories of the classification problems of extBX and expBX if X = P(nE). Choi et al. ([4], [5]) initiated the classification problems and classified extBX if X = P ( 2l2p ) for p = 1, 2, where l2p = R 2 with the lp-norm. B. Grecu [14] classified extBX if X = P ( 2l2p ) for 1 < p < 2 or 2 < p < ∞. Kim [18] classified expBX if X = P ( 2l2p ) for 1 ≤ p ≤ ∞. Kim et al. [34] showed that every extreme 2-homogeneous polynomials on a real separable Hilbert space is also exposed. Kim ([20], [26]) characterized extBX and expBX for X = P ( 2d∗(1, w) 2 ) , where d∗(1, w) 2 = R2 with the octagonal norm ∥(x, y)∥d∗ = max { |x|, |y|, |x|+|y| 1+w : 0 < w < 1 } . He showed [26] that extBP(2d∗(1,w)2) ̸= expBP(2d∗(1,w)2). In [31], Kim classified extBX and using the classification of extBX, Kim computed the polarization and unconditional constants of the space X if X = P ( 2R2 h( 1 2 ) ) , where R2 h(w) denotes the space R2 endowed with the hexagonal norm ∥(x, y)∥h(w) := max{|y|, |x| + (1 − w)|y|}. We refer to ([1]–[9], [11]–[43]) and references therein for some recent work about extremal properties of multilinear mappings and homogeneous polyno- mials on some classical Banach spaces. We will denote by T((x1, y1), (x2, y2)) = ax1x2 +by1y2 +c(x1y2 +x2y1) and P(x, y) = ax2 + by2 + cxy a symmetric bilinear form and a 2-homogeneous polynomial on a real Banach space of dimension 2, respectively. Recently, Kim [31] classified the extreme points of the unit ball of P ( 2R2 h( 1 2 ) ) as follows: extB P ( 2R2 h( 1 2 ) ) ={± y2, ±(x2 + 1 4 y2 ± xy ) , ± ( x2 + 3 4 y2 ) , ± [ x2 + ( c2 4 − 1 ) y2 ± cxy ] , ± [ cx2 + ( c+4 √ 1−c 4 − 1 ) y2 ± ( c + 2 √ 1 − c ) xy ] (0 ≤ c ≤ 1) } . exposed polynomials of P ( 2R2 h( 1 2 ) ) 129 In this paper, we show that that every extreme polynomials of P ( 2R2 h( 1 2 ) ) is exposed. 2. Results Theorem 2.1. ([31]) Let P(x, y) = ax2 + by2 + cxy ∈ P ( 2R2 h( 1 2 ) ) with a ≥ 0, c ≥ 0 and a2 + b2 + c2 ̸= 0. Then: Case 1 : c < a. If a ≤ 4b, then ∥P∥ = max { a, b, ∣∣1 4 a + b ∣∣ + 1 2 c, 4ab−c 2 4a , 4ab−c 2 2c+a+4b , 4ab−c 2 |2c−a−4b| } = max { a, b, ∣∣1 4 a + b ∣∣ + 1 2 c } . If a > 4b, then ∥P∥ = max { a, |b|, ∣∣1 4 a + b ∣∣ + 1 2 c, |c2−4ab| 4a } . Case 2 : c ≥ a. If a ≤ 4b, then ∥P∥ = max { a, b, ∣∣1 4 a + b ∣∣ + 1 2 c, |c2−4ab| 2c+a+4b } . If a > 4b, then ∥P∥ = max { a, |b|, ∣∣1 4 a + b ∣∣ + 1 2 c, c 2−4ab 2c−a−4b } . Theorem 2.2. ([31]) extB P ( 2R2 h( 1 2 ) ) ={± y2, ±(x2 + 1 4 y2 ± xy ) , ± ( x2 + 3 4 y2 ) , ± [ x2 + ( c2 4 − 1 ) y2 ± cxy ] , ± [ cx2 + ( c+4 √ 1−c 4 − 1 ) y2 ± ( c + 2 √ 1 − c ) xy ] (0 ≤ c ≤ 1) } . Theorem 2.3. Let f ∈ P ( 2R2 h( 1 2 ) )∗ with α = f(x2), β = f(y2), γ = f(xy). Then ∥f∥ = sup { |β|, ∣∣α + 1 4 β ∣∣ + |γ|, ∣∣α + 3 4 β ∣∣, ∣∣α + (c2 4 − 1 ) β ∣∣ + c|γ|,∣∣cα + (c+4√1−c 4 − 1 ) β ∣∣ + (c + 2√1 − c)|γ| (0 ≤ c ≤ 1)}. Proof. It follows from Theorem 2.2 and the fact that ∥f∥ = sup { |f(P)| : P ∈ extB P ( 2R2 h( 1 2 ) )}. 130 s. g. kim Note that if ∥f∥ = 1, then |α| ≤ 1, |β| ≤ 1, |γ| ≤ 1 2 . We are in a position to show the main result of this paper. Theorem 2.4. expB P ( 2R2 h( 1 2 ) ) = extB P ( 2R2 h( 1 2 ) ). Proof. Let (0 ≤ c ≤ 1) P1(x, y) = y 2 , P +2 (x, y) = x 2 + 1 4 y2 + xy , P −2 (x, y) = x 2 + 1 4 y2 − xy , P3(x, y) = x 2 + 3 4 y2 , P +4,c(x, y) = x 2 + ( c2 4 − 1 ) y2 + cxy , P −4,c(x, y) = x 2 + ( c2 4 − 1 ) y2 − cxy , P +5,c(x, y) = cx 2 + ( c+4 √ 1−c 4 − 1 ) y2 + (c + 2 √ 1 − c)xy , P −5,c(x, y) = cx 2 + ( c+4 √ 1−c 4 − 1 ) y2 − (c + 2 √ 1 − c)xy . Claim 1: P1 = y 2 ∈ expB P ( 2R2 h( 1 2 ) ). Let f ∈ P ( 2R2 h( 1 2 ) )∗ be such that α = 1 5 , β = 1 , γ = 0 . Indeed, f(P1) = 1 , |f(P ±2 )| = 9 20 , |f(P3)| = 19 20 . (*) Note that for all 0 ≤ c ≤ 1, |f(P ±4,c)| = 4 5 − c2 4 ≤ 4 5 , (**) |f(P ±5,c)| = | √ 1 − c + 9c 20 − 1| ≤ 11 20 . (***) exposed polynomials of P ( 2R2 h( 1 2 ) ) 131 Hence, by Theorem 2.3, 1 = ∥f∥. We will show that f exposes P1. Let Q(x, y) = ax2 + by2 + cxy ∈ P ( 2R2 h( 1 2 ) ) such that 1 = ∥Q∥ = f(Q). We will show that Q = P1. Since P ( 2R2 h( 1 2 ) ) is a finite dimensional Banach space with dimension 3, by the Krein-Milman Theorem, B P ( 2R2 h( 1 2 ) ) is the closed convex hull of extB P ( 2R2 h( 1 2 ) ). Then, Q(x, y) = uP1(x, y) + v +P +2 (x, y) + v −P −2 (x, y) + tP3(x, y) + ∞∑ n=1 λ+n P + 4,c+n (x, y) + ∞∑ n=1 λ−n P − 4,c−n (x, y) + ∞∑ m=1 δ+mP + 5,a+m (x, y) + ∞∑ m=1 δ−mP − 5,a−m (x, y) , for some u, v±, t, λ±n , δ ± m, ∈ R (n, m ∈ N) with 0 ≤ c±n , a±m ≤ 1 and |u| + |v+| + |v−| + |t| + ∞∑ n=1 |λ+n | + ∞∑ n=1 |λ−n | + ∞∑ m=1 |δ+m| + ∞∑ m=1 |δ−m| = 1 . We will show that v± = t = λ±n = δ ± m = 0 for every n, m ∈ N. Subclaim: v± = t = 0. Assume that v+ ̸= 0. It follows that 1 = f(Q) = uf(P1) + v +f(P +2 ) + v −f(P −2 ) + tf(P3) + ∞∑ n=1 λ+n f(P + 4,cn ) + ∞∑ n=1 λ−n f(P − 4,cn ) + ∞∑ m=1 δ+mf(P + 5,am ) + ∞∑ m=1 δ−mf(P − 5,am ) ≤ |u| + |v+||f(P +2 )| + |v −||f(P −2 )| + |t||f(P3)| + ∞∑ n=1 |λ+n ||f(P + 4,cn )| + ∞∑ n=1 |λ−n ||f(P − 4,cn )| + ∞∑ m=1 |δ+m||f(P + 5,am )| + ∞∑ m=1 |δ−m||f(P − 5,am )| ≤ |u| + 9 20 |v+| + 9 20 |v−| + 19 20 |t| + 4 5 ∞∑ n=1 |λ+n | + 4 5 ∞∑ n=1 |λ−n | + 11 20 ∞∑ m=1 |δ+m| + 11 20 ∞∑ m=1 |δ−m| (by (*), (**), (***)) 132 s. g. kim < |u| + |v+| + 9 20 |v−| + 19 20 |t| + 4 5 ∞∑ n=1 |λ+n | + 4 5 ∞∑ n=1 |λ−n | + 11 20 ∞∑ m=1 |δ+m| + 11 20 ∞∑ m=1 |δ−m| ≤ |u| + |v+| + |v−| + |t| + ∞∑ n=1 |λ+n | + ∞∑ n=1 |λ−n | + ∞∑ m=1 |δ+m| + ∞∑ m=1 |δ−m| = 1 , which is impossible. Therefore, v+ = 0. Using a similar argument as above, we have v− = t = 0. Subclaim: λ±n = δ ± m = 0 for every n, m ∈ N. Assume that λ+n0 ̸= 0 for some n0 ∈ N. It follows that 1 = f(Q) = uf(P1) + λ + n0 f(P +4,cn0 ) + ∑ n∈N,n ̸=n0 λ+n f(P + 4,c+n ) + ∞∑ n=1 λ−n f(P − 4,c−n ) + ∞∑ m=1 δ+mf(P + 5,a+m ) + ∞∑ m=1 δ−mf(P − 5,a−m ) ≤ |u| + |λ+n0||f(P + 4,c+n0 )| + ∑ n∈N,n ̸=n0 |λ+n ||f(P + 4,c+n )| + ∞∑ n=1 |λ−n ||f(P − 4,c−n )| + ∞∑ m=1 |δ+m||f(P + 5,a+m )| + ∞∑ m=1 |δ−m||f(P − 5,a−m )| < |u| + |λ+n0| + 4 5 ∑ n∈N,n̸=n0 |λ+n | + 4 5 ∞∑ n=1 |λ−n | + 11 20 ∞∑ m=1 |δ+m| + 11 20 ∞∑ m=1 |δ−m| ≤ |u| + ∞∑ n=1 |λ+n | + ∞∑ n=1 |λ−n | + ∞∑ m=1 |δ+m| + ∞∑ m=1 |δ−m| = 1 , which is impossible. Therefore, λ+n = 0 for every n ∈ N. Using a similar argument as above, we have λ−n = δ ± m = 0 for every n, m ∈ N. Therefore, Q(x, y) = uP1(x, y). Hence u = 1, so Q = P1. Therefore, f exposes P1. Claim 2: P5,0 = 2xy ∈ expBP ( 2R2 h( 1 2 ) ). Let f ∈ P ( 2R2 h( 1 2 ) )∗ be such that α = β = 0 , γ = 1 2 . exposed polynomials of P ( 2R2 h( 1 2 ) ) 133 We will show that f exposes P5,0. Indeed, f(P5,0) = 1, f(P1) = 0, f(P ± 2 ) = ±1 2 , f(P3) = 0, − 1 2 ≤ f(P ±4,c) = ± c 2 ≤ 1 2 (0 ≤ c ≤ 1) . Note that, for 0 < c ≤ 1, −1 < f(P ±5,c) = ± c + 2 √ 1 − c 2 < 1 . (†) Hence, by Theorem 2.3, 1 = ∥f∥. Let Q(x, y) = uP1(x, y) + v +P +2 (x, y) + v −P −2 (x, y) + tP3(x, y) + ∞∑ n=1 λ+n P + 4,c+n (x, y) + ∞∑ n=1 λ−n P − 4,c−n (x, y) + ∞∑ m=1 δ+mP + 5,a+m (x, y) + ∞∑ m=1 δ−mP − 5,a−m (x, y) , for some u, v±, t, λ±n , δ ± m, ∈ R (n, m ∈ N) with 0 ≤ c±n , a±m ≤ 1 and |u| + |v+| + |v−| + |t| + ∞∑ n=1 |λ+n | + ∞∑ n=1 |λ−n | + ∞∑ m=1 |δ+m| + ∞∑ m=1 |δ−m| = 1 . We will show that v± = t = λ±n = δ ± m = 0 for every n, m ∈ N. Subclaim: v+ = 0. Assume that v+ ̸= 0. It follows that 1 = f(Q) = v+f(P +2 ) + v −f(P −2 ) + ∞∑ n=1 λ+n f(P + 4,c+n ) + ∞∑ n=1 λ−n f(P − 4,c−n ) + ∞∑ m=1 δ+mf(P + 5,a+m ) + ∞∑ m=1 δ−mf(P − 5,a−m ) < |v+| + 1 2 |v−| + ∞∑ n=1 |λ+n ||f(P + 4,c+n )| + ∞∑ n=1 |λ−n ||f(P − 4,c−n )| + ∞∑ m=1 |δ+m||f(P + 5,a+m )| + ∞∑ m=1 |δ−m||f(P − 5,a−m )| ≤ |v+| + |v−| + ∞∑ n=1 |λ+n | + ∞∑ n=1 |λ−n | + ∞∑ m=1 |δ+m| + ∞∑ m=1 |δ−m| ≤ 1 , 134 s. g. kim which is impossible. Therefore, v+ = 0. Using a similar argument as Claim 1, we have v− = λ±n = 0 for every n ∈ N. Hence, Q(x, y) = uP1(x, y) + tP3(x, y) + ∞∑ m=1 δ+mP + 5,a+m (x, y) + ∞∑ m=1 δ−mP − 5,a−m (x, y) . It follows that 1 = f(Q) = ∞∑ m=1 δ+mf(P + 5,a+m ) + ∞∑ m=1 δ−mf(P − 5,a−m ) ≤ ∞∑ m=1 |δ+m||f(P + 5,a+m )| + ∞∑ m=1 |δ−m||f(P − 5,a−m )| ≤ ∞∑ m=1 |δ+m| + ∞∑ m=1 |δ−m| ≤ 1 , which shows that f(P + 5,a+m ) = f(P − 5,a−m ) = ∞∑ m=1 |δ+m| + ∞∑ m=1 |δ−m| = 1 , u = t = 0 for all m ∈ N . By (†), P ± 5,a±m = P5,0 for every m ∈ N and ∑∞ m=1 δ + m+ ∑∞ m=1 δ − m = 1. Therefore, Q = P5,0. Hence, f exposes P5,0. Claim 3: P +2 = x 2 + 1 4 y2 + xy ∈ expB P ( 2R2 h( 1 2 ) ). Let f ∈ P ( 2R2 h( 1 2 ) )∗ be such that α = 1 2 = β , γ = 3 8 . We will show that f exposes P2. Indeed, f(P + 2 ) = 1, f(P − 2 ) = 1 4 , f(P1) = 1 2 , f(P ±3 ) = 7 8 . By some calculation, we have |f(P ±4,c)| ≤ 1 2 , |f(P ±5,c)| ≤ 57 64 for 0 ≤ c ≤ 1 . Hence, by Theorem 2.3, 1 = ∥f∥. By similar arguments as Claims 1 and 2, f exposes P +2 . Obviously, P − 2 ∈ expBP ( 2R2 h( 1 2 ) ). Claim 4: P +4,0 = x 2 − y2 ∈ expB P ( 2R2 h( 1 2 ) ). exposed polynomials of P ( 2R2 h( 1 2 ) ) 135 Let f ∈ P ( 2R2 h( 1 2 ) )∗ be such that α = 1 2 = −β , γ = 0 . We will show that f exposes P4,0. Indeed, f(P +4,0) = 1 , |f(P1)| = 1 2 , |f(P ±2 )| = 3 8 , |f(P3)| = 1 8 . Note that |f(P ±4,c)| = 1 − c2 8 < 1 for 0 < c ≤ 1 . Note that, for 0 ≤ c ≤ 1, |f(P ±5,c)| = 3c + 4 − 4 √ 1 − c 8 ≤ 7 8 . Hence, by Theorem 2.3, 1 = ∥f∥. By similar arguments as Claims 1 and 2, f exposes P +4,0. Claim 5: P3 = x 2 + 3 4 y2 ∈ expB P ( 2R2 h( 1 2 ) ). Let f ∈ P ( 2R2 h( 1 2 ) )∗ be such that α = 5 8 , β = 1 2 , γ = 0 . We will show that f exposes P3. Indeed, f(P3) = 1 , |f(P1)| = 1 2 , |f(P ±2 )| = 3 4 . Note that |f(P ±4,c)| ≤ 1 4 , |f(P ±5,c)| ≤ 1 3 for 0 ≤ c ≤ 1 . Hence, by Theorem 2.3, 1 = ∥f∥. By similar arguments as Claims 1 and 2, f exposes P3. Claim 6: P +5,1 = x 2 − 3 4 y2 + xy ∈ expB P ( 2R2 h( 1 2 ) ). Let f ∈ P ( 2R2 h( 1 2 ) )∗ be such that α = 11 16 , β = − 1 4 , γ = 1 8 . 136 s. g. kim We will show that f exposes P +5,1. Indeed, f(P +5,1) = 1 , |f(P1)| = 1 4 , |f(P ±2 )| ≤ 3 4 , |f(P3)| = 1 2 . Note that 3 4 ≤ f(P ±4,c) < 1 , − 1 4 ≤ f(P ±5,c) < 1 for 0 ≤ c < 1 . Hence, by Theorem 2.3, 1 = ∥f∥. By similar arguments as Claims 1 and 2, f exposes P +5,1. Obviously, P − 5,1 ∈ expBP ( 2R2 h( 1 2 ) ). Claim 7: P +4,c = x 2 + (c 2 4 − 1)y2 + cxy ∈ expB P ( 2R2 h( 1 2 ) ) for 0 < c < 1. Let f ∈ P ( 2R2 h( 1 2 ) )∗ be such that α = 3 4 − c2 16 , β = − 1 4 , γ = c 8 . Indeed, f(P +4,c) = 1 , 3 4 ≤ f(P −4,c) = 1 − c2 4 < 1 , |f(P1)| = 1 4 , 1 2 ≤ f(P ±2 ) ≤ 3 4 , 1 2 ≤ f(P3) < 9 16 . (*) Note that for every t ∈ [0, 1] with t ̸= c, f(P +4,t) = − 1 16 t2 + c 8 t + ( 1 − c2 16 ) and f(P −4,t) = − 1 16 t2 − c 8 t + ( 1 − c2 16 ) . Hence, we have, for every t ∈ [0, 1] with t ̸= c, 1 < min { 1 − c2 16 , 1 − (1 − c)2 16 } ≤ f(P +4,t) < 1 (**) and −1 < 1 − (1 + c)2 16 ≤ f(P −4,t) ≤ 1 − c2 16 < 1 . exposed polynomials of P ( 2R2 h( 1 2 ) ) 137 Note that, for every t ∈ [0, 1], f(P +5,t) = ( −c2 + 2c + 11 16 ) t + ( c − 1 4 )√ 1 − t + 1 4 and f(P −5,t) = ( −c2 − 2c + 11 16 ) t + ( c + 1 4 )√ 1 − t + 1 4 . Hence, we have that, for every t ∈ [0, 1], −1 < c 4 ≤ f(P +5,t) ≤ −c2 + 2c + 15 16 < 1 (***) and −1 < c + 2 4 ≤ f(P −5,t) ≤ −c2 − 2c + 15 16 < 1 . Hence, by Theorem 2.3, 1 = ∥f∥. We will show that f exposes P +4,c. Let Q(x, y) = ax2 + by2 + cxy ∈ P ( 2R2 h( 1 2 ) ) such that 1 = ∥Q∥ = f(Q). We will show that Q = P +4,c. By the Krein-Milman Theorem, Q(x, y) = uP1(x, y) + v +P +2 (x, y) + v −P −2 (x, y) + tP3(x, y) + ∞∑ n=1 λ+n P + 4,c+n (x, y) + ∞∑ n=1 λ−n P − 4,c−n (x, y) + ∞∑ m=1 δ+mP + 5,a+m (x, y) + ∞∑ m=1 δ−mP − 5,a−m (x, y) , for some u, v±, t, λ±n , δ ± m, ∈ R (n, m ∈ N) with 0 ≤ c±n , a±m ≤ 1 and |u| + |v+| + |v−| + |t| + ∞∑ n=1 |λ+n | + ∞∑ n=1 |λ−n | + ∞∑ m=1 |δ+m| + ∞∑ m=1 |δ−m| = 1 . We will show that u = v± = t = λ−n = δ ± m = 0 for every n, m ∈ N. Assume 138 s. g. kim that δ+m0 ̸= 0 for some m0 ∈ N. It follows that 1 = f(Q) = uf(P1) + v +f(P +2 ) + v −f(P −2 ) + tf(P3) + ∞∑ n=1 λ+n f(P + 4,c+n ) + ∞∑ n=1 λ−n f(P − 4,c−n ) + ∞∑ m=1 δ+mf(P + 5,a+m ) + ∞∑ m=1 δ−mf(P − 5,a−m ) < 1 4 |u| + 3 4 |v+| + 3 4 |v−| + 9 16 |t| + ∞∑ n=1 |λ+n | + ∞∑ n=1 |λ−n | + |δ + m0 | + ∑ m̸=m0 |δ+m| + ∞∑ m=1 |δ−m| (by (*), (**), (***)) ≤ 1 , which is impossible. Therefore, δ+m = 0 for every m ∈ N. Using a similar argument as above, we have u = v± = t = λ−n = 0. Therefore, Q(x, y) = ∞∑ n=1 λ+n P + 4,c+n (x, y) . We will show that if c+n0 ̸= c for some n0 ∈ N, then λ + n0 = 0. Assume that λ+n0 ̸= 0. It follows that 1 = f(Q) = λ+n0f(P + 4,c+n0 ) + ∑ n̸=n0 λ+n f(P + 4,c+n ) < |λ+n0| + ∑ n ̸=n0 |λ+n | = 1 , which is impossible. Therefore, λ+n = 0 for every n ∈ N. Therefore, Q(x, y) = ( ∑ c+n =c λ+n ) P +4,c(x, y) = P + 4,c(x, y) . Therefore, f exposes P +4,c. Obviously, P − 4,c ∈ expBP ( 2R2 h( 1 2 ) ) for 0 < c ≤ 1. Claim 8: P +5,c = cx 2 + ( c+4 √ 1−c 4 −1 ) y2 +(c+2 √ 1 − c)xy ∈ expB P ( 2R2 h( 1 2 ) ) for 0 < c < 1. exposed polynomials of P ( 2R2 h( 1 2 ) ) 139 Let f ∈ P ( 2R2 h( 1 2 ) )∗ be such that α = 1 2 ( 1 − c + 4 √ 1 − c 4 ) , β = − c 2 , γ = c + 2 √ 1 − c 4 . Note that 0 ≤ α < 3 8 , − 1 2 < β ≤ 0 , 1 4 < γ ≤ 1 2 . We will show that f exposes P +5,c. Indeed, f(P +5,c) = 1 , |f(P1)| < 1 2 , 0 < f(P +2 ) < 1 2 , − 1 < f(P −2 ) < − 1 8 , − 1 8 ≤ f(P3) < 0 . (*) Note that for every t ∈ [0, 1], f(P +4,t) = − c 8 t2 + ( c + 2 √ 1 − c 4 ) t + 1 2 + 3c 8 − √ 1 − c 2 and f(P −4,t) = − c 8 t2 − ( c + 2 √ 1 − c 4 ) t + 1 2 + 3c 8 − √ 1 − c 2 . Hence, we have for every t ∈ [0, 1], − 1 < 1 2 + 3c 8 − √ 1 − c 2 ≤ f(P +4,t) ≤ c + 1 2 < 1 , (**) − 1 < 1 2 − √ 1 − c ≤ f(P −4,t) ≤ 1 2 + 3c 8 − √ 1 − c 2 < 1 . Note that for every t ∈ [0, 1] with t ̸= c, f(P +5,t) = 1 2 t + √ 1 − c √ 1 − t + c 2 and f(P −5,t) = ( 1 − c − √ 1 − c 2 ) t − (c + √ 1 − c) √ 1 − t + c 2 . Hence, we have for every t ∈ [0, 1] with t ̸= c, − 1 < min { c 2 + √ 1 − c, c + 1 2 } ≤ f(P +5,t) < 1 , (***) − 1 < − ( c 2 + √ 1 − c ) ≤ f(P −5,t) ≤ 1 2 − √ 1 − c < 1 . 140 s. g. kim Hence, by Theorem 2.3, 1 = ∥f∥. Let Q(x, y) = ax2 + by2 + cxy in P ( 2R2 h( 1 2 ) ) such that 1 = ∥Q∥ = f(Q). By the Krein-Milman Theorem, Q(x, y) = uP1(x, y) + v +P +2 (x, y) + v −P −2 (x, y) + tP3(x, y) + ∞∑ n=1 λ+n P + 4,c+n (x, y) + ∞∑ n=1 λ−n P − 4,c−n (x, y) + ∞∑ m=1 δ+mP + 5,a+m (x, y) + ∞∑ m=1 δ−mP − 5,a−m (x, y) , for some u, v±, t, λ±n , δ ± m, ∈ R (n, m ∈ N) with 0 ≤ c±n , a±m ≤ 1 and |u| + |v+| + |v−| + |t| + ∞∑ n=1 |λ+n | + ∞∑ n=1 |λ−n | + ∞∑ m=1 |δ+m| + ∞∑ m=1 |δ−m| = 1 . We will show that u = v± = t = λ±n = δ − m = 0 for every n, m ∈ N. Assume that λn0 ̸= 0 for some n0 ∈ N. It follows that 1 = f(Q) = uf(P1) + v +f(P +2 ) + v −f(P −2 ) + tf(P3) + ∞∑ n=1 λ+n f(P + 4,c+n ) + ∞∑ n=1 λ−n f(P − 4,c−n ) + ∞∑ m=1 δ+mf(P + 5,a+m ) + ∞∑ m=1 δ−mf(P − 5,a−m ) < 1 2 |u| + 1 2 |v+| + 1 2 |v−| + 1 2 |t| + |λ+n0| + ∑ n̸=n0 |λ+n | + ∞∑ m=1 |δ+m| + ∞∑ m=1 |δ−m| ≤ 1 (by (*), (**), (***)) , which is impossible. Therefore, λ+n = 0 for every n ∈ N. Using a similar argument as above, we have u = v± = t = λ−n = δ − m = 0 for every n, m ∈ N. Therefore, Q(x, y) = ∞∑ m=1 δ+mP + 5,a+m (x, y) . We will show that if a+m0 ̸= c for some m0 ∈ N, then δ + m0 = 0. Assume that exposed polynomials of P ( 2R2 h( 1 2 ) ) 141 δ+m0 ̸= 0. It follows that 1 = f(Q) = δ+m0f(P + 5,a+m0 ) + ∑ m ̸=m0 δ+mf(P + 5,am ) < |δ+m0| + ∑ m ̸=m0 |δ+m| = 1 which is impossible. Therefore, δ+m0 = 0. Therefore, Q(x, y) = ( ∑ am=a δ+m ) P +5,c(x, y) = P + 5,c(x, y) . Therefore, f exposes P +5,c. Obviously, P − 5,c ∈ expBP ( 2R2 h( 1 2 ) ) for 0 < c < 1. Therefore, we complete the proof. References [1] R.M. Aron, M. Klimek, Supremum norms for quadratic polynomials, Arch. Math. (Basel) 76 (2001), 73 – 80. [2] C. Boyd, R. Ryan, Geometric theory of spaces of integral polynomials and symmetric tensor products, J. Funct. Anal. 179 (2001), 18 – 42. [3] W. Cavalcante, D. Pellegrino, Geometry of the closed unit ball of the space of bilinear forms on l2∞; arXiv:1603.01535v2. [4] Y.S. Choi, H. Ki, S.G. Kim, Extreme polynomials and multilinear forms on l1, J. Math. Anal. Appl. 228 (1998), 467 – 482. [5] Y.S. Choi, S.G. Kim, The unit ball of P(2l22), Arch. Math. (Basel) 71 (1998), 472 – 480. [6] Y.S. Choi, S.G. Kim, Extreme polynomials on c0, Indian J. Pure Appl. Math. 29 (1998), 983 – 989. [7] Y.S. Choi, S.G. Kim, Smooth points of the unit ball of the space P(2l1), Results Math. 36 (1999), 26 – 33. [8] Y.S. Choi, S.G. Kim, Exposed points of the unit balls of the spaces P(2l2p) (p = 1, 2, ∞), Indian J. Pure Appl. Math. 35 (2004), 37 – 41. [9] V. Dimant, D. Galicer, R. Garćıa, Geometry of integral polynomials, M-ideals and unique norm preserving extensions, J. Funct. Anal. 262 (2012), 1987 – 2012. [10] S. Dineen, “ Complex Analysis on Infinite-Dimensional Spaces ”, Springer- Verlag, London, 1999. 142 s. g. kim [11] J.L. Gámez-Merino, G.A. Muñoz-Fernández, V.M. Sánchez, J.B. Seoane-Sepúlveda, Inequalities for polynomials on the unit square via the Krein-Milman Theorem, J. Convex Anal. 20 (1) (2013), 125 – 142. [12] B.C. Grecu, Geometry of three-homogeneous polynomials on real Hilbert spaces, J. Math. Anal. Appl. 246 (2000), 217 – 229. [13] B.C. Grecu, Smooth 2-homogeneous polynomials on Hilbert spaces, Arch. Math. (Basel) 76 (6) (2001), 445 – 454. [14] B.C. Grecu, Geometry of 2-homogeneous polynomials on lp spaces, 1 < p < ∞, J. Math. Anal. Appl. 273 (2002), 262 – 282. [15] B.C. Grecu, Extreme 2-homogeneous polynomials on Hilbert spaces, Quaest. Math. 25 (4) (2002), 421 – 435. [16] B.C. Grecu, Geometry of homogeneous polynomials on two- dimensional real Hilbert spaces J. Math. Anal. Appl. 293 (2004), 578 – 588. [17] B.C. Grecu, G.A. Muñóz-Fernández, J.B. Seoane-Sepúlveda, The unit ball of the complex P(3H), Math. Z. 263 (2009), 775 – 785. [18] S.G. Kim, Exposed 2-homogeneous polynomials on P(2l2p) (1 ≤ p ≤ ∞), Math. Proc. R. Ir. Acad. 107 (2007), 123 – 129. [19] S.G. Kim, The unit ball of Ls(2l2∞), Extracta Math. 24 (2009), 17 – 29. [20] S.G. Kim, The unit ball of P(2D∗(1, W)2), Math. Proc. R. Ir. Acad. 111A (2) (2011), 79 – 94. [21] S.G. Kim, The unit ball of Ls(2d∗(1, w)2), Kyungpook Math. J. 53 (2013), 295 – 306. [22] S.G. Kim, Smooth polynomials of P(2d∗(1, w)2), Math. Proc. R. Ir. Acad. 113A (1) (2013), 45 – 58. [23] S.G. Kim, Extreme bilinear forms of L(2d∗(1, w)2), Kyungpook Math. J. 53 (2013), 625 – 638. [24] S.G. Kim, Exposed symmetric bilinear forms of Ls(2d∗(1, w)2), Kyungpook Math. J. 54 (2014), 341 – 347. [25] S.G. Kim, Polarization and unconditional constants of P(2d∗(1, w)2), Com- mun. Korean Math. Soc. 29 (2014), 421 – 428. [26] S.G. Kim, Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space, Mediterr. J. Math. 13 (2016), 2827 – 2839. [27] S.G. Kim, The unit ball of Ls(2l3∞), Comment. Math. 57 (2017), 1 – 7. [28] S.G. Kim, The unit ball of L(2R2 h(w) ), Bull. Korean Math. Soc. 54 (2017), 417 – 428. [29] S.G. Kim, Extremal problems for Ls(2R2h(w)), Kyungpook Math. J. 57 (2017), 223 – 232. [30] S.G. Kim, The geometry of Ls(3l2∞), Commun. Korean Math. Soc. 32 (2017), 991 – 997. [31] S.G. Kim, Extreme 2-homogeneous polynomials on the plane with a hexago- nal norm and applications to the polarization and unconditional constants, Studia Sci. Math. Hungar. 54 (2017), 362 – 393. exposed polynomials of P ( 2R2 h( 1 2 ) ) 143 [32] S.G. Kim, Extreme bilinear form on Rn with the supremum norm, to appear in Period. Math. Hungar. [33] S.G. Kim, The geometry of L(3l2∞) and optimal constants in the Bohnenblust- Hille inequality for multilinear forms and polynomials, Extracta Math. 33 (1) (2018), 51 – 66. [34] S.G. Kim, S.H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc. 131 (2003), 449 – 453. [35] A.G. Konheim, T.J. Rivlin, Extreme points of the unit ball in a space of real polynomials, Amer. Math. Monthly 73 (1966), 505 – 507. [36] L. Milev, N. Naidenov, Strictly definite extreme points of the unit ball in a polynomial space, C. R. Acad. Bulgare Sci. 61 (2008), 1393 – 1400. [37] L. Milev, N. Naidenov, Semidefinite extreme points of the unit ball in a polynomial space, J. Math. Anal. Appl. 405 (2013), 631 – 641. [38] G.A. Muñóz-Fernández, D. Pellegrino, J.B. Seoane-Sepúlveda, A. Weber, Supremum norms for 2-homogeneous polynomials on circle sectors, J. Convex Anal. 21 (3) (2014), 745 – 764. [39] G.A. Muñoz-Fernández, S. Revesz, J.B. Seoane-Sepúlveda, Ge- ometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand. 105 (2009), 147 – 160. [40] G.A. Muñóz-Fernández, J.B. Seoane-Sepúlveda, Geometry of Ba- nach spaces of trinomials, J. Math. Anal. Appl. 340 (2008), 1069 – 1087. [41] S. Neuwirth, The maximum modulus of a trigonometric trinomial, J. Anal. Math. 104 (2008), 371 – 396. [42] W.M. Ruess, C.P. Stegall, Extreme points in duals of operator spaces, Math. Ann. 261 (1982), 535 – 546. [43] R.A. Ryan, B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl. 221 (1998), 698 – 711.