E extracta mathematicae Vol. 33, Núm. 1, 51 – 66 (2018) The Geometry of L(3l2∞) and Optimal Constants in the Bohnenblust-Hille Inequality for Multilinear Forms and Polynomials Sung Guen Kim ∗ Department of Mathematics, Kyungpook National University, Daegu 702 − 701, South Korea, sgk317@knu.ac.kr Presented by Ricardo Garćıa Received December 23, 2016 Abstract: We classify the extreme and exposed 3-linear forms of the unit ball of L(3l2∞). We introduce optimal constants in the Bohnenblust-Hille inequality for symmetric multilinear forms and polynomials and investigate about their relations. Key words: Extreme points, exposed points, the optimal constants in the Bohnenblust-Hille inequality for symmetric multilinear forms and polynomials. AMS Subject Class. (2010): 46A22. 1. Introduction We write BE for the closed unit ball of a real Banach space E and the dual space of E is denoted by E∗. x ∈ BE is called an extreme point of BE if y, z ∈ BE with x = 12(y + z) implies x = y = z. x ∈ BE is called an exposed point of BE if there is a f ∈ E∗ so that f(x) = 1 = ∥f∥ and f(y) < 1 for every y ∈ BE \ {x}. It is easy to see that every exposed point of BE is an extreme point. We denote by extBE and expBE the sets of extreme and exposed points of BE, respectively. Let n ∈ N, n ≥ 2. A mapping P : E → R is a continuous n-homogeneous polynomial if there exists a continuous n-linear form L on the product E × · · · × E such that P(x) = L(x, . . . , x) for every x ∈ E. We denote by L(nE) the Banach space of all continuous n-linear forms on E endowed with the norm ∥L∥ = sup∥xj∥=1, 1≤j≤n |L(x1, . . . , xn)|. Ls( nE) denotes the closed subspace of L(nE) consisting all continuous symmetric n-linear forms on E. P(nE) denotes the Banach space of all continuous n- homogeneous polynomials from E into R endowed with the norm ∥P∥ = ∗This research was supported by the Basic Science Research Program through the Na- tional Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2013R1A1A2057788). 51 52 s. g. kim sup∥x∥=1 |P(x)|. Note that the spaces L(nE), Ls(nE), P(nE) are very different from a geometric point of view. In particular, for integral multilinear forms and integral polynomials one has ([2], [9], [32]) extBLI(nE) = {ϕ1ϕ2 · · · ϕn : ϕi ∈ extBE∗} and extBPI(nE) = {±ϕ n : ϕ ∈ E∗, ∥ϕ∥ = 1}, where LI(nE) and PI(nE) are the spaces of integral n-linear forms and integral n-homogeneous polynomials on E, respectively. For more details about the theory of multilinear mappings and polynomials on a Banach space, we refer to [10]. In 1998, Choi et al. ([4], [5]) characterized the extreme points of the unit ball of P(2l21) and P( 2l22). Kim [15] classified the exposed 2-homogeneous poly- nomials on P(2l2p) (1 ≤ p ≤ ∞). Kim ([17], [19], [23]) classified the extreme, exposed, smooth points of the unit ball of P(2d∗(1, w)2), where d∗(1, w)2 = R2 with the octagonal norm of weight w. In 2009, Kim [16] initiated extremal problems for bilinear forms on a clas- sical finite dimensional real Banach space and classified the extreme, exposed, smooth points of the unit ball of Ls(2l2∞). Kim ([18], [20]–[22]) classified the extreme, exposed, smooth points of the unit balls of Ls(2d∗(1, w)2) and L(2d∗(1, w)2). We refer to ([1]–[9], [11]–[32] and references therein) for some recent work about extremal properties of multilinear mappings and homogeneous polyno- mials on some classical Banach spaces. Let K = R or C. The Bohnenblust-Hille inequality for n-linear forms ([3] and references therein) tells us that there exists a sequence of positive scalars (C(n : K))∞n=1 in [1, ∞] such that( ∞∑ j1,...,jn=1 ∣∣T(ej1, . . . , ejn)∣∣ 2nn+1 )n+1 2n ≤ C(n : K)∥T∥ for all continuous n-linear forms T : c0 × · · · × c0 → K. The optimal constant in the Bohnenblust-Hille inequality for n-linear forms C(n : K) is defined by C(n : K) := sup {( ∞∑ j1,...,jn=1 |T(ej1, . . . , ejn)| 2n n+1 )n+1 2n : T ∈ L(nc0 : K), ∥T∥ = 1 } . the geometry of L(3l2∞) 53 We introduce the optimal constant in the Bohnenblust-Hille inequality for symmetric n-linear forms Cs(n : K) is defined by Cs(n : K) := sup {( ∞∑ j1,...,jn=1 |T(ej1, . . . , ejn)| 2n n+1 )n+1 2n : T ∈ Ls(nc0 : K), ∥T∥ = 1 } . It is obvious that Cs(n : K) ≤ C(n : K). We also introduce the optimal constant in the Bohnenblust-Hille inequality for n-homogeneous polynomials Cp(n : K) is defined by Cp(n : K) := sup {( ∞∑ j=1 |P(ej)| 2n n+1 )n+1 2n : P ∈ P(nc0 : K), ∥P∥ = 1 } . Recently, Diniz et al. [12] showed that C(2 : R) = √ 2. In this paper, we classify the extreme and exposed 3-linear forms of the unit ball of L(3l2∞). We introduce optimal constants in the Bohnenblust-Hille inequality for symmetric multilinear forms and polynomials and investigate about their relations. 2. The extreme points of the unit ball of L(3l2∞) Let T ∈ L(3l2∞) be given by T ( (x1, x2), (y1, y2), (z1, z2) ) = ax1y1z1 + bx2y2z2 + c1x2y1z1 + c2x1y2z1 + c3x1y1z2 + d1x1y2z2 + d2x2y1z2 + d3x2y2z1 for some a, b, cj, dj ∈ R and for j = 1, 2, 3. For simplicity, we will denote T = (a, b, c1, c2, c3, d1, d2, d3). Theorem 2.1. Let T = (a, b, c1, c2, c3, d1, d2, d3) ∈ L(3l2∞). Then ∥T∥ = max { |a + c1 + c2 + d3| + |b + c3 + d1 + d2|, |a − c2 − c3 + d1| + |b + c1 − d2 − d3|, |a − b + c3 − d3| + |c1 − c2 − d1 + d2|, |a + b − c1 − d1| + |c2 − c3 + d2 − d3| } . 54 s. g. kim Proof. Note that extBl2∞ = {(1, 1), (1, −1), (−1, 1), (−1, −1)}. By the Krein- Milman Theorem, Bl2∞ = co(extBl2∞). By the continuity and trilinearity of T , ∥T∥ = max { |T((1, 1), (1, 1), (1, 1))|, |T((1, −1), (1, 1), (1, 1))| |T((1, 1), (1, −1), (1, 1))|, |T((1, 1), (1, 1), (1, −1))|, |T((1, −1), (1, −1), (1, 1))|, |T((1, −1), (1, 1), (1, −1))|, |T((1, 1), (1, −1), (1, −1))|, |T((1, −1), (1, −1), (1, −1))| } = max { |a + c1 + c2 + d3| + |b + c3 + d1 + d2|, |a − c2 − c3 + d1| + |b + c1 − d2 − d3|, |a − b + c3 − d3| + |c1 − c2 − d1 + d2|, |a + b − c1 − d1| + |c2 − c3 + d2 − d3| } . Note that if ∥T∥ = 1, then |a| ≤ 1, |b| ≤ 1, |cj| ≤ 1, |dj| ≤ 1, for j = 1, 2, 3. Theorem 2.2. extBL(3l2∞) = { (a, b, c1, c2, c3, d1, d2, d3) : a = 1 8 (ϵ1 + ϵ2 + ϵ3 + ϵ4 + ϵ5 + ϵ6 + ϵ7 + ϵ8), b = 1 8 (ϵ1 − ϵ2 − ϵ3 − ϵ4 + ϵ5 + ϵ6 + ϵ7 − ϵ8), c1 = 1 8 (ϵ1 − ϵ2 + ϵ3 + ϵ4 − ϵ5 − ϵ6 + ϵ7 − ϵ8), c2 = 1 8 (ϵ1 + ϵ2 − ϵ3 + ϵ4 − ϵ5 + ϵ6 − ϵ7 − ϵ8), c3 = 1 8 (ϵ1 + ϵ2 + ϵ3 − ϵ4 + ϵ5 − ϵ6 − ϵ7 − ϵ8), d1 = 1 8 (ϵ1 + ϵ2 − ϵ3 − ϵ4 − ϵ5 − ϵ6 + ϵ7 + ϵ8), d2 = 1 8 (ϵ1 − ϵ2 + ϵ3 − ϵ4 − ϵ5 + ϵ6 − ϵ7 + ϵ8), d3 = 1 8 (ϵ1 − ϵ2 − ϵ3 + ϵ4 + ϵ5 − ϵ6 − ϵ7 + ϵ8), ϵj = ±1, for j = 1, 2, . . . , 8 } . the geometry of L(3l2∞) 55 Proof. Let T = (a, b, c1, c2, c3, d1, d2, d3) ∈ L(3l2∞) with ∥T∥ = 1. Note that T ( (1, 1), (1, 1), (1, 1) ) = a + b + c1 + c2 + c3 + d1 + d2 + d3, T ( (1, −1), (1, 1), (1, 1) ) = a − b − c1 + c2 + c3 + d1 − d2 − d3, T ( (1, 1), (1, −1), (1, 1) ) = a − b + c1 − c2 + c3 − d1 + d2 − d3, T ( (1, 1), (1, 1), (1, −1) ) = a − b + c1 + c2 − c3 − d1 − d2 + d3, T ( (1, −1), (1, −1), (1, 1) ) = a + b − c1 − c2 + c3 − d1 − d2 + d3, T ( (1, −1), (1, 1), (1, −1) ) = a + b − c1 + c2 − c3 − d1 + d2 − d3, T ( (1, 1), (1, −1), (1, −1) ) = a + b + c1 − c2 − c3 + d1 − d2 − d3, T ( (1, −1), (1, −1), (1, −1) ) = a − b − c1 − c2 − c3 + d1 + d2 + d3. Let A = (aij)1≤i,j≤8 be the 8 × 8 matrix such that ai1 = 1 (i = 1, . . . , 8), ai2 = 1 (i = 1, 5, 6, 7), ak2 = −1 (k = 2, 3, 4, 8), ai3 = 1 (i = 1, 3, 4, 7), ak3 = −1 (k = 2, 5, 6, 8), ai4 = 1 (i = 1, 2, 4, 6), ak4 = −1 (k = 3, 5, 7, 8), ai5 = 1 (i = 1, 2, 3, 5), ak5 = −1 (k = 4, 6, 7, 8), ai6 = 1 (i = 1, 2, 7, 8), ak6 = −1 (k = 3, 4, 5, 6), ai7 = 1 (i = 1, 3, 6, 8), ak7 = −1 (k = 2, 4, 5, 7), ai8 = 1 (i = 1, 4, 5, 8), ak8 = −1 (k = 2, 3, 6, 7). By calculation, det(A) = −212, so A is invertible. Note that AT = ( T ( (1, 1), (1, 1), (1, 1) ) , T ( (1, −1), (1, 1), (1, 1) ) , T ( (1, 1), (1, −1), (1, 1) ) , T ( (1, 1), (1, 1), (1, −1) ) , T ( (1, −1), (1, −1), (1, 1) ) , T ( (1, −1), (1, 1), (1, −1) ) , T ( (1, 1), (1, −1), (1, −1) ) , T ( (1, −1), (1, −1), (1, −1) ))t and ∥AT∥∞ = ∥T∥. Note also that T = A−1 ( T ( (1, 1), (1, 1), (1, 1) ) , T ( (1, −1), (1, 1), (1, 1) ) , T ( (1, 1), (1, −1), (1, 1) ) , T ( (1, 1), (1, 1), (1, −1) ) , T ( (1, −1), (1, −1), (1, 1) ) , T ( (1, −1), (1, 1), (1, −1) ) , T ( (1, 1), (1, −1), (1, −1) ) , T ( (1, −1), (1, −1), (1, −1) ))t . 56 s. g. kim We claim that T ∈ extBL(3l2∞) if and only if 1 = ∣∣T((1, 1), (1, 1), (1, 1))∣∣ = ∣∣T((1, −1), (1, 1), (1, 1))∣∣ = ∣∣T((1, 1), (1, −1), (1, 1))∣∣ = ∣∣T((1, 1), (1, 1), (1, −1))∣∣ = ∣∣T((1, −1), (1, −1), (1, 1))∣∣ = ∣∣T((1, −1), (1, 1), (1, −1))∣∣ = ∣∣T((1, 1), (1, −1), (1, −1))∣∣ = ∣∣T((1, −1), (1, −1), (1, −1))∣∣. (⇒): Otherwise. Then we have 8 cases as follows: Case 1 : ∣∣T((1, 1), (1, 1), (1, 1))∣∣ < 1 or Case 2 : ∣∣T((1, −1), (1, 1), (1, 1))∣∣ < 1 or Case 3 : ∣∣T((1, 1), (1, −1), (1, 1))∣∣ < 1 or Case 4 : ∣∣T((1, 1), (1, 1), (1, −1))∣∣ < 1 or Case 5 : ∣∣T((1, −1), (1, −1), (1, 1))∣∣ < 1 or Case 6 : ∣∣T((1, −1), (1, 1), (1, −1))∣∣ < 1 or Case 7 : ∣∣T((1, 1), (1, −1), (1, −1))∣∣ < 1 or Case 8 : ∣∣T((1, −1), (1, −1), (1, −1))∣∣ < 1. Case 1: ∣∣T((1, 1), (1, 1), (1, 1))∣∣ < 1. Let ϵ1 := T ( (1, 1), (1, 1), (1, 1) ) , ϵ2 := T ( (1, −1), (1, 1), (1, 1) ) , ϵ3 := T ( (1, 1), (1, −1), (1, 1) ) , ϵ4 := T ( (1, 1), (1, 1), (1, −1) ) , ϵ5 := T ( (1, −1), (1, −1), (1, 1) ) , ϵ6 := T ( (1, −1), (1, 1), (1, −1) ) , ϵ7 := T ( (1, 1), (1, −1), (1, −1) ) , ϵ8 := T ( (1, −1), (1, −1), (1, −1) ) . Then, AT = (ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6, ϵ7, ϵ8) t. Let n0 ∈ N such that |ϵ1| + 1n0 < 1. Let T1, T2 ∈ L( 3l2∞) be the solutions of AT1 = ( ϵ1+ 1 n0 , ϵ2, ϵ3, ϵ4, ϵ5, ϵ6, ϵ7, ϵ8 )t , AT2 = ( ϵ1− 1 n0 , ϵ2, ϵ3, ϵ4, ϵ5, ϵ6, ϵ7, ϵ8 )t . the geometry of L(3l2∞) 57 Note that Tj ̸= T, ∥Tj∥ = ∥ATj∥∞ = 1 for j = 1, 2. It follows that A (1 2 (T1 + T2) ) = (ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6, ϵ7, ϵ8) t = AT, which shows that 1 2 (T1 + T2) = A −1(ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6, ϵ7, ϵ8) t = T, so T is not extreme. By the similar argument in the Case 1, if any of Cases 2–8 holds, then we may reach to a contradiction. (⇐): Let ϵj ∈ R be given for j = 1, 2, . . . , 8. Consider the following system of 8 simultaneous linear equations: AT = (ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6, ϵ7, ϵ8) t, ie, a + b + c1 + c2 + c3 + d1 + d2 + d3 = ϵ1, a − b − c1 + c2 + c3 + d1 − d2 − d3 = ϵ2, a − b + c1 − c2 + c3 − d1 + d2 − d3 = ϵ3, a − b + c1 + c2 − c3 − d1 − d2 + d3 = ϵ4, a + b − c1 − c2 + c3 − d1 − d2 + d3 = ϵ5, a + b − c1 + c2 − c3 − d1 + d2 − d3 = ϵ6, a + b + c1 − c2 − c3 + d1 − d2 − d3 = ϵ7, a − b − c1 − c2 − c3 + d1 + d2 + d3 = ϵ8. (∗) We get the unique solution of (∗) as follows: T = A−1(ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6, ϵ7, ϵ8)t, ie, a = 1 8 (ϵ1 + ϵ2 + ϵ3 + ϵ4 + ϵ5 + ϵ6 + ϵ7 + ϵ8), b = 1 8 (ϵ1 − ϵ2 − ϵ3 − ϵ4 + ϵ5 + ϵ6 + ϵ7 − ϵ8), c1 = 1 8 (ϵ1 − ϵ2 + ϵ3 + ϵ4 − ϵ5 − ϵ6 + ϵ7 − ϵ8), c2 = 1 8 (ϵ1 + ϵ2 − ϵ3 + ϵ4 − ϵ5 + ϵ6 − ϵ7 − ϵ8), c3 = 1 8 (ϵ1 + ϵ2 + ϵ3 − ϵ4 + ϵ5 − ϵ6 − ϵ7 − ϵ8), d1 = 1 8 (ϵ1 + ϵ2 − ϵ3 − ϵ4 − ϵ5 − ϵ6 + ϵ7 + ϵ8), d2 = 1 8 (ϵ1 − ϵ2 + ϵ3 − ϵ4 − ϵ5 + ϵ6 − ϵ7 + ϵ8), d3 = 1 8 (ϵ1 − ϵ2 − ϵ3 + ϵ4 + ϵ5 − ϵ6 − ϵ7 + ϵ8). (∗∗) 58 s. g. kim Let T1 = (a+ϵ, b+δ, c1 +γ1, c2 +γ2, c3 +γ3, d1 +ρ1, d2 +ρ2, d3 +ρ3) ∈ L(3l2∞) and T2 = (a−ϵ, b−δ, c1 −γ1, c2 −γ2, c3 −γ3, d1 −ρ1, d2 −ρ2, d3 −ρ3) ∈ L(3l2∞) be such that 1 = ∥T1∥ = ∥T2∥ for some ϵ, δ, γj, ρj for j = 1, 2, 3. Then, for k = 1, 2, 1 ≥ ∣∣Tk((1, 1), (1, 1), (1, 1))∣∣ = 1 + |ϵ + δ + γ1 + γ2 + γ3 + ρ1 + ρ2 + ρ3|, 1 ≥ ∣∣Tk((1, −1), (1, 1), (1, 1))∣∣ = 1 + |ϵ − δ − γ1 + γ2 + γ3 + ρ1 − ρ2 − ρ3|, 1 ≥ ∣∣Tk((1, 1), (1, −1), (1, 1))∣∣ = 1 + |ϵ − δ + γ1 − γ2 + γ3 − ρ1 + ρ2 − ρ3|, 1 ≥ ∣∣Tk((1, 1), (1, 1), (1, −1))∣∣ = 1 + |ϵ − δ + γ1 + γ2 − γ3 − ρ1 − ρ2 + ρ3|, 1 ≥ ∣∣Tk((1, −1), (1, −1), (1, 1))∣∣ = 1 + |ϵ + δ − γ1 − γ2 + γ3 − ρ1 − ρ2 + ρ3|, 1 ≥ ∣∣Tk((1, −1), (1, 1), (1, −1))∣∣ = 1 + |ϵ + δ − γ1 + γ2 − γ3 − ρ1 + ρ2 − ρ3|, 1 ≥ ∣∣Tk((1, 1), (1, −1), (1, −1))∣∣ = 1 + |ϵ + δ + γ1 − γ2 − γ3 + ρ1 − ρ2 − ρ3|, 1 ≥ ∣∣Tk((1, −1), (1, −1), (1, −1))∣∣ = 1 + |ϵ − δ − γ1 − γ2 − γ3 + ρ1 + ρ2 + ρ3|. Therefore, we have 0 = ϵ + δ + γ1 + γ2 + γ3 + ρ1 + ρ2 + ρ3, 0 = ϵ − δ − γ1 + γ2 + γ3 + ρ1 − ρ2 − ρ3, 0 = ϵ − δ + γ1 − γ2 + γ3 − ρ1 + ρ2 − ρ3, 0 = ϵ − δ + γ1 + γ2 − γ3 − ρ1 − ρ2 + ρ3, 0 = ϵ + δ − γ1 − γ2 + γ3 − ρ1 − ρ2 + ρ3, 0 = ϵ + δ − γ1 + γ2 − γ3 − ρ1 + ρ2 − ρ3, 0 = ϵ + δ + γ1 − γ2 − γ3 + ρ1 − ρ2 − ρ3, 0 = ϵ − δ − γ1 − γ2 − γ3 + ρ1 + ρ2 + ρ3. Hence, A(ϵ, δ, γ1, γ2, γ3, ρ1, ρ2, ρ3) t = 0. By (∗∗), 0 = ϵ = δ = γ1 = γ2 = γ3 = ρ1 = ρ2 = ρ3. Hence, T is extreme. Therefore, we complete the proof. Corollary 2.3. If T = (a, b, c1, c2, c3, d1, d2, d3) ∈ extBL(3l2∞), then |a|, |b|, |cj|, |dj| ∈ {0, 14, 1 2 , 3 4 , 1} for j = 1, 2, 3. the geometry of L(3l2∞) 59 Theorem 2.4. ([26]) extBLs(3l2∞) = { ± (1, 0, 0, 0, 0, 0, 0, 0), ±(0, 1, 0, 0, 0, 0, 0, 0, ), ± (1 2 , 0, 0, 0, 0, − 1 2 , − 1 2 , − 1 2 ) , ± ( 0, 1 2 , − 1 2 , − 1 2 , − 1 2 , 0, 0, 0 ) , ± (1 4 , − 3 4 , 1 4 , 1 4 , 1 4 , 1 4 , 1 4 , 1 4 ) , ± ( − 3 4 , 1 4 , 1 4 , 1 4 , 1 4 , 1 4 , 1 4 , 1 4 ) , ± (3 4 , 1 4 , 1 4 , 1 4 , 1 4 , − 1 4 , − 1 4 , − 1 4 ) , ± (1 4 , 3 4 , − 1 4 , − 1 4 , − 1 4 , 1 4 , 1 4 , 1 4 )} . Theorem 2.5. extBLs(3l2∞) = extBL(3l2∞) ∩ Ls( 3l2∞). Proof. It follows from Theorems 2.2 and 2.4. Remarks. (1) 24 = |extBLs(3l2∞)| < |extBL(3l2∞)| = 2 8. (2) Let T = (a, b, c1, c2, c3, d1, d2, d3) ∈ L(3l2∞). Then, by scaling, we may assume that dj ≥ 0 for j = 1, 2, 3. Proof. Let T1((x1, x2), (y1, y2), (z1, z2)) := T((ϵ1x1, x2), (ϵ2y1, y2)), (ϵ3z1, z2), where ϵk = ±1 be given satisfying ϵjdj ≥ 0 for j = 1, 2, 3. Question. Is it true that extBLs(nl2∞) = extBL(nl2∞) ∩ Ls( nl2∞) for n ≥ 4? 3. The exposed points of the unit ball of L(3l2∞) Theorem 3.1. Let f ∈ L(3l2∞)∗ with α = f(x1y1z1), β = f(x2y2z2), γ1 = f(x2y1z1), γ2 = f(x1y2z1), γ3 = f(x1y1z2), δ1 = f(x1y2z2), δ2 = f(x2y1z2), δ3 = f(x2y2z1). 60 s. g. kim Then, ∥f∥ = max {∣∣∣∣aα + bβ + ∑ j=1,2,3 cjγj + ∑ j=1,2,3 djδj ∣∣∣∣ : a = 1 8 (ϵ1 + ϵ2 + ϵ3 + ϵ4 + ϵ5 + ϵ6 + ϵ7 + ϵ8), b = 1 8 (ϵ1 − ϵ2 − ϵ3 − ϵ4 + ϵ5 + ϵ6 + ϵ7 − ϵ8), c1 = 1 8 (ϵ1 − ϵ2 + ϵ3 + ϵ4 − ϵ5 − ϵ6 + ϵ7 − ϵ8), c2 = 1 8 (ϵ1 + ϵ2 − ϵ3 + ϵ4 − ϵ5 + ϵ6 − ϵ7 − ϵ8), c3 = 1 8 (ϵ1 + ϵ2 + ϵ3 − ϵ4 + ϵ5 − ϵ6 − ϵ7 − ϵ8), d1 = 1 8 (ϵ1 + ϵ2 − ϵ3 − ϵ4 − ϵ5 − ϵ6 + ϵ7 + ϵ8), d2 = 1 8 (ϵ1 − ϵ2 + ϵ3 − ϵ4 − ϵ5 + ϵ6 − ϵ7 + ϵ8), d3 = 1 8 (ϵ1 − ϵ2 − ϵ3 + ϵ4 + ϵ5 − ϵ6 − ϵ7 + ϵ8), ϵj = ±1, for j = 1, 2, . . . , 8 } Proof. Proof. It follows from Theorem 2.2 and the Krein-Milman Theo- rem. Theorem 3.2. expBL(3l2∞) = extBL(3l2∞). Proof. We will show that extBL(3l2∞) ⊂ expBL(3l2∞). By Theorem 2.2, Corollary 2.3 and Remarks(2), it suffices to show that if T =(1, 0, 0, 0, 0, 0, 0, 0), ( − 1 2 , 1 2 , 1 2 , 1 2 , 0, 0, 0, 0 ) ( − 3 4 , 1 4 , 1 4 , 1 4 , 1 4 , 1 4 , 1 4 , 1 4 ) , (3 4 , − 1 4 , − 1 4 , − 1 4 , 1 4 , 1 4 , 1 4 , 1 4 ) , then T ∈ expBL(3l2∞). Claim: T = (1, 0, 0, 0, 0, 0, 0, 0) ∈ expBL(3l2∞). Let f ∈ L(3l2∞)∗ with α = 1, 0 = β = γj = δj for j = 1, 2, 3. Note that, by Corollary 2.3 and Theorems 2.2 and 3.1, ∥f∥ = 1 = f(T) and |f(S)| < 1 for all S ∈ extBL(3l2∞)\{±T}. The claim follows from Theorem 2.3 of [21]. the geometry of L(3l2∞) 61 Claim: T = ( − 1 2 , 1 2 , 1 2 , 1 2 , 0, 0, 0, 0 ) ∈ expBL(3l2∞). Let f ∈ L(3l2∞)∗ with −α = 1 2 = β = γ1 = γ2, 0 = γ3 = δj for j = 1, 2, 3. Note that, by Corollary 2.3 and Theorems 2.2 and 3.1, ∥f∥ = 1 = f(T) and |f(S)| < 1 for all S ∈ extBL(3l2∞)\{±T}. The claim follows from Theorem 2.3 of [21]. Claim: T = ( − 3 4 , 1 4 , 1 4 , 1 4 , 1 4 , 1 4 , 1 4 , 1 4 ) ∈ expBL(3l2∞). Let f ∈ L(3l2∞)∗ with α = − 1 2 , 5 14 = β = γj = δj for j = 1, 2, 3. Note that, by Corollary 2.3 and Theorems 2.2 and 3.1, ∥f∥ = 1 = f(T) and |f(S)| < 1 for all S ∈ extBL(3l2∞)\{±T}. The claim follows from Theorem 2.3 of [21]. Claim: T = ( 3 4 , −1 4 , −1 4 , −1 4 , 1 4 , 1 4 , 1 4 , 1 4 ) ∈ expBL(3l2∞). Let f ∈ L(3l2∞)∗ with α = 1 2 , − 5 14 = β = γ1 = γ2 = −γ3 = −δj for j = 1, 2, 3. Note that, by Corollary 2.3 and Theorems 2.2 and 3.1, ∥f∥ = 1 = f(T) and |f(S)| < 1 for all S ∈ extBL(3l2∞)\{±T}. The claim follows from Theorem 2.3 of [21]. We complete the proof. Theorem 3.3. ([26]) expBLs(3l2∞) = extBLs(3l2∞). Theorem 3.4. expBLs(3l2∞) = expBL(3l2∞) ∩ Ls( 3l2∞). Proof. It follows from Theorems 3.2 and 3.3. Question. Is it true that expBLs(nl2∞) = expBL(nl2∞) ∩Ls( nl2∞) for n ≥ 4? 4. Optimal constants in the Bohnenblust-Hille inequality for symmetric multilinear forms and polynomials Theorem 4.1. 1 ≤ Cp(n : K) ≤ n n n! Cs(n : K) ≤ n n n! C(n : K) for all n ≥ 2. Proof. It is enough to show that Cp(n : K) ≤ n n n! Cs(n : K). Let P ∈ P(nc0 : K), ∥P∥ = 1. By the polarization formula, ∥P̌∥ ≤ n n n! ∥P∥ = n n n! , where P̌ is the corresponding symmetric n-linear form to P . Hence,( ∞∑ j=1 | n! nn P(ej)| 2n n+1 )n+1 2n ≤ ( ∞∑ j1,··· ,jn=1 ∣∣∣∣ n!nn P̌(ej1, · · · , ejn) ∣∣∣∣ 2n n+1 )n+1 2n ≤ Cs(n : K). 62 s. g. kim Theorem 4.2. Cs(2 : R) = C(2 : R) = √ 2. Proof. It is enough to show that Cs(2 : R) = √ 2. Let T ( (x1, x2), (y1, y2) ) = 1 2 x1y1 − 1 2 x2y2 + 1 2 x1y2 + 1 2 x2y1. Then T ∈ Ls(2l2∞), ∥T∥ = 1. By a result of [12], √ 2 ≤ ( ∑2 i,j=1 |T(ei, ej)| 4 3 ) 3 4 ≤ Cs(2 : R) ≤ C(2 : R) = √ 2. Theorem 4.3. ([16]) extBLs(2l2∞) = { ±(1, 0, 0, 0), ±(0, 1, 0, 0), ± 1 2 (1, −1, 1, 1), ± 1 2 (1, −1, −1, −1) } . Theorem 4.4. sup {( 2∑ i,j=1 |T(ei, ej)| 4 3 )3 4 : T ∈ Ls(2l2∞), ∥T∥ = 1, T /∈ extBLs(2l2∞) } = Cs(2 : R). Proof. Let l := sup {( 2∑ i,j=1 |T(ei, ej)| 4 3 )3 4 : T ∈ Ls(2l2∞), ∥T∥ = 1, T /∈ extBLs(2l2∞) } . For |c| < 1 2 , let Tc ( (x1, x2), (y1, y2) ) = 1 2 x1y1 − 1 2 x2y2 + cx1y2 + cx2y1. Then Tc ∈ Ls(2l2∞), ∥Tc∥ = 1. By Theorem 4.3, Tc /∈ extBLs(2l2∞). It follows that Cs(2 : R) ≥ l ≥ sup {( 2∑ i,j=1 |Tc(ei, ej)| 4 3 )3 4 : |c| < 1 2 } = sup |c|< 1 2 ( 2 (1 2 )4 3 + 2|c| 4 3 )3 4 = √ 2 = Cs(2 : R). the geometry of L(3l2∞) 63 Theorem 4.5. Let n ≥ 2. Then, 2 n+1 2n ≤ Cp(n : R). Proof. Let w := sup {( ∞∑ j=1 |P(ej)| 2n n+1 )n+1 2n : P ∈ P(nc0), ∥P∥ = 1, P ( (xm) ∞ m=1 ) = ∞∑ j=1 ajx n j for some aj ∈ R } . Claim: w = 2 n+1 2n . Let P ∈ P(nc0), ∥P∥ = 1, P((xm)∞m=1) = ∑∞ j=1 ajx n j for some aj ∈ R. Let A := {j ∈ N : aj ≥ 0} and B := N\A. Note that, for every k ∈ N, 1 ≥ ∣∣∣∣∣P ( ∑ j∈A, j≤k ej )∣∣∣∣∣ = ∑ j∈A, j≤k |aj| and 1 ≥ ∣∣∣∣∣P ( ∑ j∈B, j≤k ej )∣∣∣∣∣ = ∑ j∈B, j≤k |aj|. Hence, ∑ j∈A |aj| ≤ 1, ∑ j∈B |aj| ≤ 1. It follows that( ∞∑ j=1 |P(ej)| 2n n+1 )n+1 2n = (∑ j∈A |aj| 2n n+1 + ∑ j∈B |aj| 2n n+1 )n+1 2n ≤ (∑ j∈A |aj| + ∑ j∈B |aj| )n+1 2n ≤ 2 n+1 2n , which shows that w ≤ 2 n+1 2n . Let P0 ( (xm) ∞ m=1 ) = xn1 − x n 2 ∈ P( nc0) for (xm) ∞ m=1 ∈ c0. Then ∥P0∥ = 1. Hence, 2 n+1 2n = ( ∞∑ j=1 |P0(ej)| 2n n+1 )n+1 2n ≤ w ≤ 2 n+1 2n . Therefore, 2 n+1 2n ≤ Cp(n : R). We complete the proof. 64 s. g. kim Corollary 4.6. C(2 : R) < 2 3 4 ≤ Cp(2 : R) ≤ 2 √ 2. Theorem 4.7. Let T : l2∞(R) × l2∞(R) → R be given by T(x, y) =∑2 i,j=1 aijxiyj, with aij ∈ R, a12 = a21. Then the symmetric bilinear forms satisfying ( 2∑ i,j=1 |T(ei, ej)| 4 3 )3 4 = √ 2∥T∥ are given by T(x, y) = a(x1y1 − x2y2 + x1y2 + x2y1) or T(x, y) = a(−x1y1 + x2y2 + x1y2 + x2y1) for all a ∈ R\{0}. Proof. It follows from Theorem 4.1 of [3]. Theorem 4.8. Let T ∈ Ls(2l2∞), ∥T∥ = 1, T(ej, ej) ̸= 0 for j = 1, 2. Then, ( 2∑ i,j=1 |T(ei, ej)| 4 3 )3 4 = Cs(2 : R) if and only if T ∈ extBLs(2l2∞). Proof. It follows from Theorems 4.2, 4.3 and 4.7. Theorem 4.9. sup{( 2∑ i,j=1 |T(ei, ej)| 6 4 ) 4 6 : T ∈ extBL(3l2∞)} = (7 + 3 3 2 ) 2 3 4 < C(3 : R). Proof. Diniz et al. [12] showed that 2 2 3 ≤ C(3 : R) ≤ 1.782. By Theo- rem 2.2 and Corollary 2.3, sup {( 2∑ i,j=1 |T(ei, ej)| 6 4 )4 6 : T ∈ extBL(3l2∞) } = (7 + 3 3 2 ) 2 3 4 < 2 2 3 ≤ C(3 : R). Questions. (1) Is it true that Cs(n : R) = C(n : R) for all n ≥ 3? (2) Is it true that Cp(2 : R) = 2 3 4 ? the geometry of L(3l2∞) 65 References [1] R.M. Aron, Y.S. Choi, S.G. Kim, M. Maestre, Local properties of polynomials on a Banach space, Illinois J. Math. 45 (1) (2001), 25 – 39. [2] C. Boyd, R.A. Ryan, Geometric theory of spaces of integral polynomials and symmetric tensor products, J. Funct. Anal. 179 (1) (2001), 18 – 42. [3] W. Cavalcante, D. Pellegrino, Geometry of the closed unit ball of the space of bilinear forms on l2∞, arXiv:1603.01535v2. [4] Y.S. Choi, H. Ki, S.G. Kim, Extreme polynomials and multilinear forms on l1, J. Math. Anal. Appl. 228 (2) (1998), 467 – 482. [5] Y.S. Choi, S.G. Kim, The unit ball of P(2l22), Arch. Math. (Basel) 71 (6) (1998), 472 – 480. [6] Y.S. Choi, S.G. Kim, Extreme polynomials on c0, Indian J. Pure Appl. Math. 29 (10) (1998), 983 – 989. [7] Y.S. Choi, S.G. Kim, Smooth points of the unit ball of the space P(2l1), Results Math. 36 (1-2) (1999), 26 – 33. [8] Y.S. Choi, S.G. Kim, Exposed points of the unit balls of the spaces P(2l2p) (p = 1, 2, ∞), Indian J. Pure Appl. Math. 35 (1) (2004), 37 – 41. [9] V. Dimant, D. Galicer, R. Garćıa, Geometry of integral polynomials, M-ideals and unique norm preserving extensions, J. Funct. Anal. 262 (5) (2012), 1987 – 2012. [10] S. Dineen, “Complex Analysis on Infinite Dimensional Spaces”, Springer- Verlag, London, 1999. [11] S. Dineen, Extreme integral polynomials on a complex Banach space, Math. Scand. 92 (1) (2003), 129 – 140. [12] D. Diniz, G.A. Muñoz-Fernández, D. Pellegrino, J.B. Seoane- Sepúlveda, Lower bounds for the constants in the Bohnenblust-Hille in- equality: the case of real scalars, Proc. Amer. Math. Soc. 142 (2) (2014), 575 – 580. [13] B.C. Grecu, Geometry of 2-homogeneous polynomials on lp spaces, 1 < p < ∞, J. Math. Anal. Appl. 273 (2) (2002), 262 – 282. [14] B.C. Grecu, G.A. Muñoz-Fernández, J.B. Seoane-Sepúlveda, Unconditional constants and polynomial inequalities, J. Approx. Theory 161 (2) (2009), 706 – 722. [15] S.G. Kim, Exposed 2-homogeneous polynomials on P(2l2p) (1 ≤ p ≤ ∞), Math. Proc. R. Ir. Acad. 107A (2) (2007), 123 – 129. [16] S.G. Kim, The unit ball of Ls(2l2∞), Extracta Math. 24 (1) (2009), 17 – 29. [17] S.G. Kim, The unit ball of P(2d∗(1, w)2), Math. Proc. R. Ir. Acad. 111A (2) (2011), 79 – 94. [18] S.G. Kim, The unit ball of Ls(2d∗(1, w)2), Kyungpook Math. J. 53 (2) (2013), 295 – 306. [19] S.G. Kim, Smooth polynomials of P(2d∗(1, w)2), Math. Proc. R. Ir. Acad. 113A (1) (2013), 45 – 58. [20] S.G. Kim, Extreme bilinear forms of L(2d∗(1, w)2), Kyungpook Math. J. 53 (4) (2013), 625 – 638. 66 s. g. kim [21] S.G. Kim, Exposed symmetric bilinear forms of Ls(2d∗(1, w)2), Kyungpook Math. J. 54 (3) (2014), 341 – 347. [22] S.G. Kim, Exposed bilinear forms of L(2d∗(1, w)2), Kyungpook Math. J. 55 (1) (2015), 119 – 126. [23] S.G. Kim, Exposed 2-homogeneous polynomials on the 2-dimensional real pre- dual of Lorentz sequence space, Mediterr. J. Math. 13 (5) (2016), 2827 – 2839. [24] S.G. Kim, The geometry of L(2l2∞), to appear in Kyungpook Math. J. 58 (2018). [25] S.G. Kim, The unit ball of Ls(2l3∞), Comment. Math. Prace Mat. 57 (1) (2017), 1 – 7. [26] S.G. Kim, The geometry of Ls(3l2∞), Commun. Korean Math. Soc. 32 (4) (2017), 991 – 997. [27] S.G. Kim, S.H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc. 131 (2) (2003), 449 – 453. [28] J. Lee, K.S. Rim, Properties of symmetric matrices, J. Math. Anal. Appl. 305 (1) (2005), 219 – 226. [29] G.A. Muñoz-Fernández, S. Révész, J.B. Seoane-Sepúlveda, Ge- ometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand. 105 (1) (2009), 147 – 160. [30] G.A. Muñoz-Fernández, J.B. Seoane-Sepúlveda, Geometry of Ba- nach spaces of trinomials, J. Math. Anal. Appl. 340 (2) (2008), 1069 – 1087. [31] R.A. Ryan, B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl. 221 (2) (1998), 698 – 711. [32] W.M. Ruess, C.P. Stegall, Extreme points in duals of operator spaces, Math. Ann. 261 (4) (1982), 535 – 546.