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ABSTRACT. Reinforced concrete (RC) members strengthened with externally bonded fiber-reinforced-polymer 
(FRP) plates are numerically investigated by a plasticity-based limit analysis approach. The key-concept of the 
present approach is to adopt proper constitutive models for concrete, steel reinforcement bars (re-bars) and 
FRP strengthening plates according to a multi-yield-criteria formulation. This allows the prediction of concrete 
crushing, steel bars yielding and FRP rupture that may occur at the ultimate limit state. To simulate such limit-
state of the analysed elements, two iterative methods performing linear elastic analyses with adaptive elastic 
parameters and finite elements (FEs) description are employed. The peak loads and collapse mechanisms 
predicted for FRP-plated RC beams are validated by comparison with the corresponding experimental findings.  
 
KEYWORDS. Finite element modelling; Multi-yield-criteria limit analysis; Reinforced concrete elements; FRP-
strengthening systems.  
 
 
 
INTRODUCTION  
 

any existing steel-reinforced concrete structures, including decks and beams in highway bridges as well as 
beams, slabs and columns in buildings, are being assessed as having insufficient load carrying capacity due to 
their deterioration, ageing, poor initial design and/or construction, lack of maintenance, corrosion of steel 

reinforcement or underestimated design loads. In other cases they no longer comply with the current standards and 
requirements because of changed load conditions or modification of structural system for some reason. It is both 
economically and environmentally preferable to upgrade these structures rather than replace/rebuild them, even more if 
rapid, simple and effective strengthening techniques are employed. In this context, flexural and/or shear repair and 
rehabilitation of RC structures with externally bonded fiber reinforced polymer sheets, strips and fabrics is generally viewed 
as a valid and viable solution. Moreover, these techniques can be carried out while the structure is still in use as well as 
they can be targeted at where the structural deficiency is more marked [1, 2]. On the other hand, to estimate the actual 
efficacy of the strengthening system, without performing expensive laboratory tests, as well as to design the proper repair 
interventions to reach a given gain in load carrying capacity, analytical tools and predictive numerical models are highly 
needed. 
Experimental investigations confirm that, after the application of such FRP techniques [3], a significant increase in 
flexural/shear capacity of the RC elements (up to about 125%) is achieved. Experiments also show the enhancement of 
the confinement effect exerted on concrete by the FRP laminates, resulting in shifting the failure mode of the 
strengthened elements from brittle concrete crushing to more ductile steel yielding and/or FRP rupture [4]. In fact, the 
FRP strengthening system mitigates crack development and, as a result, increases the overall ductility of the RC element. 
The above considerations make indeed a limit analysis plasticity-based numerical approach, among many others presented in 
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the relevant literature (see e.g. [5–8]), both applicable and effective, especially when primary interest is in determining the 
limit (peak) load of FRP-strengthened RC elements. It is worth noting that all the phenomena arising just after a state of 
incipient collapse, such as delamination [9], debonding [10], damage in a wider sense, are not treatable and this consistently 
with the spirit of a limit analysis approach. Accurate treatment of such post-elastic phenomena is prosecutable only with 
more accurate step-by-step FE nonlinear analyses. Aware of such limitation, the methodology here proposed should then 
be viewed only as a preliminary design tool to gain a quick insight into the bearing capacity evaluation of the analyzed 
elements by determination of the peak load value, the prediction (but not the description) of failure mode as well as the 
detection of critical zones within the addressed FRP-strengthened RC elements.  
The numerical methodology here referred, already used by the authors to predict the limit-state solution of RC elements 
(see e.g. [11, 12]) and of pinned-joint orthotropic composite laminates (see e.g. [14, 15]), is quite versatile and is based on 
iterative linear FE analyses carried out on the structure endowed with spatially varying moduli and, if necessary, given 
initial stresses. Such quantities, viewed as pertaining to a fictitious material substituting the real one, are iteratively adjusted 
in such a way as to build, with reference to the assumed yield criteria, a collapse mechanism and an admissible stress field for the 
real structure so as to apply the kinematic and the static approaches of limit analysis, respectively. If a nonstandard nature 
of the constitutive behaviour has to be postulated, the peak load value of the analysed elements can, in fact, be 
numerically detected by predicting an upper and a lower bound to it. 
In the present study a very general multi-yield-criteria formulation of the above-mentioned limit analysis methodology is 
presented to appropriately describe the behaviour at collapse of structural elements of engineering interest strengthened 
by FRP techniques. Precisely, to simulate the behaviour at a state of incipient collapse of the three main constituent 
materials, concrete is described by a Menétrey–Willam-type yield criterion endowed with cap in compression, steel 
reinforcement bars are handled by the von Mises yield criterion, FRP strengthening laminates are governed by a Tsai–Wu-
type criterion and the quoted methodology is applied in concomitance to the three yield criteria.  
To demonstrate the actual capabilities of the proposed approach, large-scale prototypes of a few FRP-strengthened RC 
beams, experimentally tested up to collapse [4, 16], are numerically investigated.  
 
 
THEORETICAL BACKGROUND AND FUNDAMENTALS 
 
Constitutive models of concrete, steel and FRP 

oncrete is assumed as an isotropic, nonstandard material obeying a plasticity model derived from the Menétrey–
Willam (M–W) failure criterion [17]. The latter provides a three parameter failure surface having the following 
expression: 
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Eq. (1) is expressed in terms of the three stress invariants , ,    known as the Haigh–Westergaard (H–W) coordinates 
(i.e. hydrostatic and deviatoric stress invariants and Lode angle); m  is the friction parameter of the material depending, as 
shown in Eq. (2), on the compressive strength '

cf , the tensile strength '
tf  as well as the eccentricity parameter e . The 

eccentricity e , whose value governs the convexity and smoothness of the elliptic function ( , )r e , describes the out-of-
roundness of the M–W deviatoric trace and it strongly influences the biaxial compressive strength of concrete. The failure 
surface (1) is open along the direction of triaxial compression; therefore, to limit the concrete strength in high hydrostatic 
regime, a cap in compression closing the surface (1) is adopted. The cap is formulated in the H–W coordinates as follows: 
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where ( , )MW
a   is the explicit form of the parabolic meridian of the M–W surface easily obtainable from Eq. (1). The 

values a  and b  entering Eq. (3), namely the hydrostatic stress values corresponding to the intersection of the cap 
surface with the M–W surface and the hydrostatic axis, respectively, locate the cap position and can be calibrated 
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according to experimental results [18]. Due to the dilatancy of concrete, a non-associated flow rule is postulated for the 
adopted M–W-type yield surface. 
Steel is modelled as an isotropic, perfectly plastic material obeying the well-established von Mises yield criterion. For a 
multi-axial loading scenario the von Mises yield condition is expressed as: 
 

 ( ) ( )i j i j yf f     0            (4) 
 

where ( )i j   is the von Mises effective stress and yf  is the yield strength. Since in the FE-model the steel reinforcement 
are modelled by 1D truss elements, a uniaxial stress condition is considered in the following and Eq. (4) applies in the 
simpler shape r yf  , r  being the stress in the re-bar longitudinal direction.  

Finally, the FRP strengthening plates are modelled as orthotropic laminates in plane stress conditions obeying a Tsai–Wu-
type yield criterion [19]. For a unidirectional lamina in plane stress case the Tsai–Wu polynomial criterion has the 
following form: 
 

F F F F F F           2 2 2
11 1 22 2 66 6 12 1 2 1 1 2 22 1        (5) 

 

where 1 and 2 denote the principal directions of orthotropy (the fibres are directed along the material axis 1) and 6 12   
in the contracted notation. The coefficients iF  and i jF  ( , 1, 2,6)i j   entering Eq. (5) are functions of the strength 
parameters of the unidirectional lamina: 
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with: tX , cX  the lamina longitudinal tensile and compressive strengths, respectively; tY , cY  the lamina transverse tensile 
and compressive strengths, respectively; S  the shear strength of the lamina. In the expressions (6) the compressive 
strengths cX  and cY  have to be considered intrinsically negative. Also FRP composite plates are considered as 
nonstandard material and, therefore, a non-associated flow rule is postulated for their constitutive behaviour. 
 
Numerical limit analysis methodology 
Two distinct limit analysis methods are applied simultaneously. The former, based on the kinematic approach of limit 
analysis, is able “to build” the collapse mechanism of the analysed structure and to compute an upper bound to the peak 
load multiplier. The latter, based on the static approach of limit analysis, is instead oriented “to build” a statically and 
plastically admissible stress field (corresponding to a given load) so giving a lower bound to the peak load multiplier. The 
reason for computing two bounds arises from the postulated non associativity of concrete and FRP composite material 
that injects such characteristic on the behaviour of the whole RC-structural element. The two methods, conceived in [20] 
and [21] with reference to von Mises materials, are known as Linear Matching Method (LMM) and Elastic Compensation 
Method (ECM), respectively. Both have been rephrased and widely employed by the authors [14], [15]. Their use to 
bracket the real peak load value of a structure made of a nonstandard material has been also experienced with success 
[11]–[13]. All the analytical details of LMM and ECM are in the above quoted papers and are here omitted for brevity. 
The novelty or key-feature of the present study is actually the implementation of LMM and ECM with reference to three 
different constitutive criteria at the same time. Indeed, the three criteria are those given in the previous section for the 
three main constituents of the FRP-strengthened RC members here addressed, i.e.: Menétrey–Willam-type for concrete; 
Tsai–Wu-type for FRP sheets; von Mises for steel bars. For completeness, the two methods are briefly expounded looking 
only at their geometrical interpretation sketched in Fig. 1 and 2. On taking into account that both methods are performed 
iteratively, the sketches refer to a current iteration, say (k-1)th.  
Looking at the geometrical interpretation of the LMM sketched in Fig. 1, at the current iteration, say at the (k-1)th FE-
analysis, a fictitious structure (i.e. the structure under study with its real geometry, boundary and loading conditions but 
made of fictitious material) is analysed under loads ( 1)k

iP p , with ( 1)kP   load multiplier and ip  assigned reference loads. 
The fictitious linear solution computed at each Gauss Point (GP) of the FE mesh, can be represented, at the generic GP, 
by a point ( 1)k

L
  lying on the complementary dissipation rate equipotential surface referred to the fictitious viscous 

material, say ( 1) ( 1) ( 1) ( 1)( , , )k k k k
j I jW D W     , whose geometrical dimensions and centre position depend on the fictitious 

values ( 1)k
ID   and ( 1)k

j   fixed at the current GP ( I  ranging over the elastic constants entering the considered material; j  
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ranging over the needed stress components). The point ( 1)k
L

  with its coordinates, say ( 1)k
j   in the chosen principal 

stress space, shown in the sketch of Fig. 1, represents the fictitious solution in terms of stresses while the outward normal 
at ( 1)k

L
 , say the normal of components ( 1)k

j  , represents the fictitious solutions in terms of linear viscous strain rates. 

The fictitious moduli and initial stresses are then modified so that ( 1)k
L

  is brought onto the yield surface of the real 
constitutive material the analysed structure is made with. The latter surface is here presented by the ellipsoidal shaded 
surface of Fig. 1. Namely ( 1)k

L
  is brought to identify with point ( 1)k

M
 , having the same outward normal as ( 1)k

L
  but 

lying on the real material yield surface. The described modification of ( 1)k
ID   and ( 1)k

j   implies that the “modified” 
( 1) ( 1) ( 1) ( 1)( , , )k k k k

j I jW D W      matches the yield surface at point ( 1)k
M

 , this step is the so called “matching procedure”, see 

again Fig. 1. The fictitious solution in terms of strain rates, namely ( 1) ( 1)k c k
j j     where the apex c  stands for “at 

collapse”, as well as the stress coordinates of ( 1)k
M

 , say the stresses at yield ( 1)Y k
j  , give all the information pertaining to a 

state of incipient collapse built at the current GP. In particular, the fictitious strain rates ( 1) ( 1)k c k
j j    , with the associated 

displacement rates ( 1) ( 1)k c k
j ju u   , define a collapse mechanism. The related stresses ( 1)Y k

j   are the pertinent stresses at yield.  
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Figure 1: Geometrical sketch, in the principal stress space, of the matching procedure, from iteration (k-1) to (k) at the current GP 
within the current element 
 
If the expounded rationale is repeated at all GPs of the mesh, a collapse mechanism, ( 1) ( 1)( , )c k c k

j iu    , with the related 

stresses at yield, ( 1)Y k
j  , can be defined for the whole structure and an upper bound value to the collapse load multiplier, 

say ( 1)k
UBP  , can be evaluated at current (k-1)th FE elastic analysis. However, the above stress at yield, computed through 

the matching, do not meet the equilibrium conditions with the acting loads ( 1)k
iP p  and the procedure, as said, is carried 

on iteratively until the difference between two subsequent UBP  values is less than a fixed tolerance.  
Also the ECM can easily be explained by means of a geometrical sketch as the one given in Fig. 2 with reference to a 
generic yield surface ( , , ) 0j I jF D   . The ECM starts with a first sequence, say 1s  , of FE analyses, carried on the 
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structure endowed with the proper (real) material elastic parameters and suffering applied initial loads ( ) ( )1
D Di i

sP p P p , and 
by the initial real values of the elastic parameters. At the current iteration, say at the (k-1)th FE analysis, the elastic stress 
solution is computed at the GPs of the mesh. Such values, averaged within the current element #e , allow to define a 
solution “at element level”, which, as shown in the sketch of Fig. 2, locates in the principal stress space a stress point, say 

( 1)ke
e


 . ( 1)kY

e


  denotes the corresponding stress point at yield (i.e. lying on the yield surface) measured on the direction 

/ | |
e e
e eO O 

 
  . In the figure are reported other stress points, representing the average stress elastic solution within 

elements #1, #2, ,# , , #e n  . If the elastic solution at the # the   element is such that ( 1) ( 1)| | | |
Yk ke

e eO O 
 

 
   then the 

element’s Young modulus is reduced according to the formula: 
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where the square of the updating ratio, within the square brackets, is used to increase the convergence rate. 
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Figure 2: Geometrical sketch, in the principal stress space, of the ECM at current iteration (k-1) of the current sequence s. Stress 

points representing the elastic solution at elements #1, #2, , # , , #e n  ; with ( 1)k

R

  “maximum stress” among all the elements 

 
After the above moduli variation, the maximum stress value has to be detected in the whole FE mesh, namely the value 

corresponding to the stress point farthest away from the yield surface, say ( 1)k
R

  in the sketch of Fig. 2. If ( 1)| | k
RO 


  is 

greater than ( 1)| |Y k
RO 


  (as drawn in Fig. 2) a new FE analysis is performed within the current sequence trying to re-distribute 

the stresses within the structure; and this by keeping fixed the applied loads but with the updated ( )k
eE  values given by Eq. 

(7). The iterations are carried on, inside the given sequence, until all the stress points just reach or are below their 
corresponding yield values, which means that an admissible stress field has been built for the given loads. Increased values 
of loads are then considered in subsequent sequences of analyses, each one with an increased value of ( )

D
sP , till further 

load increase does not allow the stress point ( 1)k
R

  to be brought below yield by the re-distribution procedure. A LBP  load 

multiplier can then be evaluated at last admissible stress field attained for a maximum acting load ( )
D i

sP p , say at s S , and at 
last FE analysis, say at k K , as 
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NUMERICAL SIMULATIONS OF EXPERIMENTAL TESTS 
 
Analysed full-scale tests 

he numerical study has comprised 6 RC beams, flexural- or shear-strengthened with different layers and 
configurations of externally bonded carbon FRP (CFRP) or glass FRP (GFRP) sheets. Full-scale four-point 
bending experimental tests  [4, 16] are numerically simulated to predict peak load and failure mechanism. Precisely: 

two experimental campaigns have been taken into considerations in this paper. The first campaign includes 3 RC beams 
tested by Shahawy et al. [4] (namely beams labelled S5-PRE1, S6-PRE3, S6-PRE5) strengthened with 1 to 3 layers of 
CFRP laminates which were bonded to the soffit of the beam. Such tests were carried out up to failure to investigate 
mainly the effects of a variable number of CFRP laminates on the first crack load, cracking behaviour, deflections, 
serviceability loads, ultimate strength as well as failure modes. The second campaign was carried out at the Oregon 
Department of Transportation by Kachlakev et al. [16] in the late 1990s within an experimental project aimed to 
investigate the structural behaviour of the Horsetail Creek Bridge. Precisely, 3 full-scale RC beams were constructed and 
tested to experimentally replicate the structural behaviour of the actual strengthened bridge beams. Different 
configurations and strengthening schemes were adopted: a) one beam was flexural-strengthened by CFRP sheets, applied 
to the bottom of the element and having fibres oriented along the length of the beam (specimen F-SB); b) one beam was 
shear-strengthened by GFRP sheets, applied on the side of the element and having fibres oriented perpendicular to the 
length of the beam (specimen S-SB); c) one beam (specimen FS-SB) was both shear- and flexural-strengthened with 
combined systems a) plus b).  
A quite ductile behaviour was observed in almost all the 6 examined specimens and the increased flexural/shear capacity 
was fully activated. In particular, in [4] all the strengthened beams failed by concrete crushing with a significant rise in the 
flexural capacity and ductility as the number of laminates increases; the restraining effect conveyed by the CFRP laminates 
was experienced even at first crack, the strengthened beams exhibiting closely spaced cracks as compared with several 
widely spaced cracks of the corresponding control (un-strengthened) beam. Similarly, in [16] the application of FRP sheets 
increased the load-carrying capacity and improved ductility of the beams, with greater deflections at failure; moreover, the 
addition of shear GFRP sheets compensated for the lack of stirrups and altered the failure mode from diagonal tension 
(shear) failure to ductile (flexure) failure. The beams, in fact, failed by flexure at the mid-span, with yielding of steel re-bars 
followed, after extended deflections, by crushing of concrete at the top of the beam in compression zone. However, it is 
worth noting that specimen FS-SB actually did not fail in the experimental test, the loading being terminated because of 
limitations in the testing machine capacity.  
Materials properties of concrete, steel re-bars and FRP laminates of the analysed beams are reported in Tab. 1–3. For all 
the examined specimens the Poisson’s ratio for concrete and steel has been assumed as 0.2   and 0.3  , respectively. 
Where not explicitly given as experimental data, the value of the concrete tensile strength reported in Tab. 2 has been 
assumed as 1/2' '0.33( )t cf f  according to [22], while that of the Young modulus .'( / )c cE f 0 322 10 . Likewise, with regard 
to the FRP strengthening sheets, typical values of the FRP lamina moduli and strengths, according to [23], have been 
assumed in Tab. 3 where not directly available in the experimental campaigns.  
 
 

reinforcement 
bar  d (mm) A (mm2) fy (MPa) Es (GPa) 

Φ3  3 7.0 468.84 200.0 

Φ9  9 50.3 468.84 200.0 

Φ13  13 132.7 468.84 200.0 

#5  15.9 199 410 200.0 

#6  19.1 284 410 200.0 

#7  22.2 387 410 200.0 
 

Table 1: Material properties and geometrical data of reinforcement bars of the analysed specimens 
 

T 
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specimen label  '
cf  (MPa) '

tf  (MPa) cE  (GPa)

S5-PRE1  29.65 1.80 30.48 

S6-PRE3  41.37 2.12 33.68 

S6-PRE5  41.37 2.12 33.68 

F-SB  13.75 2.31 17.55 

S-SB  14.73 2.39 18.16 

FS-SB  13.02 2.25 17.08 
 

Table 2: Material properties of concrete of the analysed specimens 
 

FRP system # 
 FRP lamina properties FRP lamina strengths 

 ft  

(mm) 
E1  

(GPa) 
E2   

(GPa)
E6  

(GPa)
12  
(-) 

tX  

(MPa)
cX  

(MPa) 
tY  

(MPa) 
cY  

(MPa)
S  

(MPa)

1: CFRP unidirectional  0.17 141.3 14.5 5.86 0.21  2758 -2758 52 -206 93 

2: CFRP unidirectional  1.00 62.0 4.8 3.27 0.22 958.4 -599 57 -228 99.97

3: GFRP unidirectional  1.30 21.0 7.0 1.52 0.26 599.8 -333.2 39 -128 30.34
 

Table 3: Material properties of strengthening FRP systems of the analysed specimens 
 
Mechanical model, cross-section details and FE modelling 
The mechanical model of the analysed beams is shown in Fig. 3: geometry loading and boundary conditions of the beams 
are reported in Fig. 3a; cross-section details with FRP strengthening schemes for each RC beam are instead sketched in 
Fig. 3b. The beams were tested in four-point bending, i.e. they were simply supported and loaded by two equal line loads 
symmetrically placed about mid-span and denoted as P p , with P  being the load multiplier and p  the reference load 
whose magnitude has been assumed so as to be equivalent to a total load of 100kN. The symmetry of the problem allows 
modelling only half specimen: zero displacements in z  direction are set on the shaded symmetry plane shown in Fig. 3a.  
Note that the flexural and shear FRP sheets of the beams tested in [16] were wrapped continuously around the bottom of 
the beam, that is a U-shaped strengthening system has been adopted as shown in Fig. 3b. Tab. 4 specifies, for each 
specimen, geometrical data, mechanical details, steel re-bars arrangement and FRP configuration.  
The elastic FE analyses, representing the iterations within the two limit analysis methods, have been performed by the FE-
code ADINA [24]. 3D-solid 8-nodes elements, with 2x2x2 GPs per element, are adopted for modelling concrete; steel re-
bars and stirrups are modelled by 1D truss elements, having 2 nodes and 1 GP per element; 2D-solid 4-nodes membrane 
elements, under plane stress hypothesis and with 2x2 GPs per element, are used for the thin FRP strengthening sheets. 
Each node is endowed with the three translational degrees of freedom, while a perfect bond between concrete and steel 
re-bars as well as between concrete and FRP sheets is postulated in the FE-model. Concrete, steel re-bars and stirrups are 
assumed isotropic; an orthotropic material formulation has been adopted for FRP sheets in the material reference system 
(1,2,3) where (1,2) define the orthotropy plane of the lamina with fibres oriented along the direction 1. Concerning the M–
W-type yield function, for the eccentricity e , whose value can be related to the material brittleness ' '/t cf f , the expression 

proposed by Balan et al. [25] has been used. The cap surface, Eq. (3), is instead defined by the values '. ca f  0 7923  and 
'.b cf  1 8964  as suggested by Li and Crouch [18].  

To give an idea of the FE modelling, the meshes of two of the analysed specimens are reported in Fig. 4. It is worth 
noting that the fully 3D FE model used (i.e. 3D FEs in conjunction with 3D constitutive concrete laws), is more accurate 
and truthful than 2D numerical approaches often employed in this context. In addition, the FRP strengthening plates have 
been modelled by 2D orthotropic laminae so taking into account the transverse stiffness contribution across the plates, 
though not comparable to that along the direction of the fibres. The thickness of such 2D-solid elements has been set in 
accordance with the number of the layers of the FRP strengthening sheets. The number of FEs, summarised in Tab. 5, 
has been chosen after a preliminary mesh sensitivity study to assure an accurate FE elastic solution. Finally, a Fortran main 
program has been utilised to control the “adjusting” of the elastic parameters at each GP of each element to accomplish 
the matching, when performing the LMM, and to realise the stress redistribution, within the ECM. 
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Numerical predictions against experimental findings 
The values of the numerically predicted upper (PUB) and lower bound (PLB) to the peak load multiplier are reported in Tab. 
6 and compared to the experimentally detected ones (PEXP) for all the examined specimens. By inspection of the numerical 
results, the proposed limit analysis methodology appears to be an accurate predictive tool for determining the load-
carrying capacity of FRP-plated RC elements. The upper bound values, predicted by the LMM, are always above the 
experimental ones, with relative errors of approximately 5%. Likewise, the lower bound values, predicted by the ECM, are 
below the corresponding experimental values with relative errors of less than 10%. The use of the LMM and of the ECM,  
both applied simultaneously to the three yield criteria of the main constituents of the analysed structural elements (the 
latter being the key feature of the numerical methodology here proposed), allows “bracketing” the real collapse load value 
by two bounds that are sufficiently close to each other so giving a very precise result in terms of peak load multiplier. The 
average (among all the considered specimens) relative errors concerning the PUB and PLB predictions are of 6.08% and 
7.55%, respectively. 
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Figure 3: Mechanical model of the analysed specimens: a) geometry, loading and boundary conditions; b) cross-section details with 
FRP strengthening schemes 
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specimen label 
 geometrical details steel re-bars arrangement  FRP arrangement

 b 

(mm) 
h 

(mm)
L 

(mm) 
L0 

(mm)
L1 

(mm)
dy 

(mm)
top 

re-bars
bottom 
re-bars stirrups  FRP 

system #
N 

layers

S5-PRE1  203 305 2743 2439 305 54 2 Φ3 2 Φ13 Φ9@203  1a 1 

S6-PRE3  203 305 2743 2439 305 54 2 Φ3 2 Φ13 Φ9@203  1a 2 

S6-PRE5  203 305 2743 2439 305 54 2 Φ3 2 Φ13 Φ9@203  1a 3 

F-SB  305 768 6096 5486 1828 63.5 2#6,  
1#5 

3#7,  
2#6 –  2a 1–3 

S-SB  305 768 6096 5486 1828 63.5 
2#6, 
1#5 

3#7, 
2#6 

–  3b 2, 4 

FS-SB  305 768 6096 5486 1828 63.5 2#6,  
1#5 

3#7,  
2#6 –  2a+3b 1–3+ 

2, 4 
a the fibres are oriented along the length of the beam; b the fibres are perpendicular to the length of the beam. 

 

Table 4: Geometrical and mechanical details of the analysed specimens 
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Figure 4: FE-model of two analysed specimens: a) specimen F-SB; b) specimen S-SB 
 



 

D. De Domenico et alii, Frattura ed Integrità Strutturale, 29 (2014) 209-221; DOI: 10.3221/IGF-ESIS.29.18                                                         
 

218 
 

specimen label 

 Number of FEs in the specimen models 

 3D-solid 
elements

2D-solid 
elements

truss 
elements

total 
elements 

number of 
nodes 

S5-PRE1  672 100 168 940 1397 

S6-PRE3  672 100 168 940 1397 

S6-PRE5  672 100 168 940 1397 

F-SB  816 150 132 1098 1402 

S-SB  816 280 132 1228 1402 

FS-SB  816 430 132 1378 1402 
 

Table 5: Number of FEs for the analysed specimens. 
 

specimen label 
 Peak load multipliers 

 PEXP PUB PLB PUB/PEXP PLB/PEXP 

S5-PRE1  0.666 0.720 0.570 1.081 0.856 

S6-PRE3  0.979 1.093 0.913 1.116 0.933 

S6-PRE5  1.162 1.206 1.076 1.038 0.926 

F-SB  6.900 7.255 6.730 1.051 0.975 

S-SB  6.900 7.164 6.497 1.038 0.942 

FS-SB  9.300a 9.685 8.512 1.041 0.915 
a beam FS-SB actually did not fail in the test and the reported value has been predicted by a nonlinear FE analysis [16]. 

 

Table 6: Peak load multipliers for the analysed specimens 
 
Fig. 5 shows, for two of the analysed specimens, namely beam S6-PRE5 and F-SB, the plots of the upper and lower 
bounds to the peak load multiplier versus the iteration number. Analogous results are obtained for all the other specimens 
but are omitted for sake of brevity. As shown, only a few iterations are sufficient to obtain a converged solution in terms 
of both PUB and PLB value.  

 

a) b) 
 

Figure 5: Values of the upper (PUB) and lower (PLB) bounds to the peak load multiplier versus iteration number against to the collapse 
experimental threshold (PEXP): a) specimen S6-PRE6; b) specimen F-SB. 
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The numerical methodology also gives some hints on the state of specimens at incipient collapse by pointing out the 
plastic zones (collapse mechanism) built by the LMM at the last converged solution.  

Fig. 6a and 7a show the strain rate components at collapse, c
xx , of concrete FEs in the deformed configuration for beam F-

SB and S6-PRE3, respectively. The plastic zones arise at the mid-span of the element, while the remaining portions of the 
beam rotate rigidly around a sort of plastic hinge as observed in the experimental flexural collapse mechanism. The 
predicted plastic zones appear sufficiently confined and reasonably close to the damaged zones experimentally detected, 
see [4] and [16]. The beams fail due to concrete crushing near the loading point in the compression zone as observed in 
the experimental test. The collapse mechanism is also described by the strain rates at collapse of FRP FEs in the fibre 

direction, i.e. 1
c , reported in Figs. 6b and 7b in the un-deformed configurations for the two analysed beams. The most 

critical FRP zones are highlighted and, obviously, these zones are those where the FRP sheets, to a greater extent, bear the 
load and act compositely with concrete in the global collapse mechanism. Finally, it is worth noting that for both the 
predicted collapse mechanisms the stresses numerically obtained in the steel FEs at the mid-span (where a plastic hinge 
develops) are just yielded as observed in the experimental outcomes. Other types of FRP-strengthened RC-elements have 
been analysed within the same research programme, obtaining encouraging confirmations on the predictive performance 
of the proposed approach, see e.g. [26]. 

 

a) b) 

 

Figure 6: Collapse mechanism of the specimen F-SB: a) contour plot of the strain rate components c
xx  of concrete FEs reported in 

the deformed configuration of the beam; b) contour plot of the strain rates 1c  of FRP FEs in the fibre direction 
 

a) b) 

 

Figure 7: Collapse mechanism of the specimen S6-PRE3: a) contour plot of the strain rate components c
xx  of concrete FEs reported 

in the deformed configuration of the beam; b) contour plot of the strain rates 1c  of FRP FEs in the fibre direction 

 
 
CONCLUDING REMARKS 
 

 numerical limit analysis methodology has been presented to analyse RC members strengthened with externally 
bonded FRP plates. A multi-yield-criteria formulation has been proposed to appropriately describe the behaviour, at 
a state of incipient collapse, of the three main constituent materials: concrete, steel-bars and FRP laminates. The 

latter formulation is essential to deal with concrete crushing, steel bars yielding and FRP rupture that may occur at 
ultimate limit states. The lack of associativity postulated for concrete and FRP composite laminates has resulted in 
adopting a nonstandard limit analysis approach which underlies the use of two numerical methods for limit analysis, the LMM 
and the ECM, to search for an upper and a lower bound to the actual peak load multiplier.  
Operationally, as compared to previous results presented in [12] or to alternative numerical approaches e.g. [16, 27, 28], 
the multi-yield-criteria formulation here proposed does not entail any significant computational cost: simple FE analyses 
(performable with any commercial FE-code) have to be solved. The more accurate and consistent 3D modelling that 
accounts for three materials through three distinct yield criteria seems to give good results.  
The reliability and effectiveness of the proposed methodology have been proved by analysing full-scale laboratory tests on 
RC beams strengthened with externally bonded FRP sheets. The obtained numerical results, in terms of peak load 

A 
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multiplier and collapse mechanism, are very satisfactory and correlate well with the corresponding experimental findings  
[4, 16]. The methodology appears able to deal with practical engineering problems such as the estimate of the load-
carrying capacity of RC beams strengthened by FRP sheets, issue of great significance in civil engineering. The numerical 
methodology may be also viewed as an useful predictive tool for estimating the actual efficacy of strengthening systems 
for existing structures. 
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