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ABSTRACT. The Miner number M, used as a tool for lifetime prediction of mechanical and structural 
components in most of the standards related to fatigue design, is generally accepted as representing a damage 
stage resulting from a linear progression of damage accumulation. Nonetheless, the fatigue and damage 
approach proposed by Castillo and Fernández-Canteli, permits us to reject this conventional cliché by relating 
M to the normalized variable V, which represents percentile curves in the S-N field unequivocally associated to 
probability of failure. This approach, allowing a probabilistic interpretation of the Miner rule, can be applied to 
fatigue design of mechanical and structural components subjected to variable amplitude loading. The results of 
an extensive test program on concrete specimens under compressive constant and load spectra, carried out 
elsewhere, are used. A parallel calculation of the normalized variable V and the Miner number M is performed 
throughout the damage progression due to loading allowing probabilities of failure to be assigned to any value 
of the current Miner number. It is found that significant probabilities of failure, say P=0.05, are attained for 
even low values of M, thus evidencing the necessity of a new definition of the safety coefficient of structural or 
machine components when the Miner rule is considered. The experimental and analytical probability 
distributions of the resulting Miner numbers are compared and discussed, the latter still providing a non-
conservative prediction in spite of the enhancement. A possible correction is analyzed. 
  
KEYWORDS. Cumulative damage; Miner number; Statistical interpretation. 
 
 
 
INTRODUCTION  
 

he cumulative concept proposed by Palmgren and Miner maintains that the damage level can be expressed in 
terms of the number of cycles applied at a given stress range divided by the number of cycles needed to produce 
failure for the same stress range. Failure occurs when the summation of these damage increments at several stress T 
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ranges becomes unity. After this formulation, this rule is repeatedly tested for different materials under multi-step and 
variable amplitude loading programs. Though its applicability has been often questioned, it has been practically adopted by 
all standards related to structural and mechanical fatigue design. 
While Birnbaum and Saunders [1] tried to find a relation of the probabilistic distribution of the Miner number to the crack 
growth, Van Leeuwen and Siemes [2, 3] conducted series of tests on plain concrete and interpreted directly the scatter of 
the Miner number M by obtaining theoretical expressions for the mean and standard deviation values of M from the 
Wöhler curve. These formulae, initially derived for the simple case of constant amplitude cycling were then extended to 
the case of general loading. They showed that the Miner number M at failure is a stochastic variable with an approximate 
log-normal distribution and emphasized the importance of the study of the scatter of the Wöhler curve for constant 
amplitude cycling. Based on Holmen’s investigation on concrete [4], Fernández-Canteli [5] justified a generalization of the 
Van Leeuwen and Siemes work by considering a probabilistic S-N field providing a statistical distribution of the Miner 
number although based on a log-normal distribution. Some theoretical advances were performed in [6] and [7]. 
From this, it follows that the Miner number can be used to ascertain the probability of failure, as a more suitable design 
criterion, rather than as a measure of a problematic and abstract “degree of damage”. It can then be taken as a basis for a 
consistent life prediction in fatigue design, in accordance with the consideration of fatigue failure as limit state. 
 
 
RESULTS FROM HOLMEN 
 

n this Section, the fatigue results for concrete specimens under compression provided in the study of Holmen [4] are 
introduced and eventually adapted in order to proceed to the probabilistic interpretation of the Miner Number. 
 

 

 
Figure 1: S-N field fitted with the Mc Call model [7] for the normalized fatigue results for concrete under compression from Holmen 
[4].  
 
S-N fatigue results for constant stress level 
Fig. 1, shows the S-N field resulting from the fatigue data obtained in Holmen’s fatigue experimental program, according 
to Tab. 1, using the procedure proposed by Mc Call [8]. The tests were carried out for constant stress range S=Smax-
Smin=(max-min)/R and constant minimum stress level (Smin=minR=0.05), where max and min are, respectively, the 
maximum and minimum stress applied during the test and R is the fracture stress of the concrete This model, based on 
fitting a regression hyperbola linking the respective percentiles values resulting from the cumulative distribution functions 
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(cdf) at any of the intervening stress ranges seems to be applicable only when a large number of results are at disposal, as 
this is the case, with an extensive amount of data. Nevertheless,  it does not fulfil “a priori” the requested physical and 
statistical requirements for a model to be valid, in particular, the compatibility between the cumulative distribution 
functions of the number of cycles given stress range F[N;Δσ] and of the stress range given number of cycles E[Δσ;N].  As 
an alternative,  the S-N resulting under consideration of the Weibull (or Gumbel) probabilistic model proposed by Castillo 
and Fernández-Canteli is shown in Fig. 2. The parameters estimated using the latter model allows us to define the 
normalized variable V=(log N-B)(log -C) as a Weibull (or Gumbel) distribution for minima, thus facilitating the relation 
of the V values to the probability of failure. 
 

 
Figure 2: S-N field fitted with the Weibull model of Castillo-Canteli [6] for the normalized fatigue results for concrete under 
compression from Holmen [4].  
 
 

S Number of cycles to failure 

0.95 257; 74; 105; 120; 206; 83; 123; 109; 37; 76; 143; 85; 203; 72; 217 

0.90 356; 201; 295; 252; 680; 509; 540; 311; 257; 457; 216; 226; 451; 1129; 342 

0.825 1246; 2590; 5560; 4820; 2410; 2400; 4110; 3590; 3330; 1460; 1258; 5598; 3847; 1492; 2903 

0.75 16190; 27940; 67340; 1860; 12600; 6710; 26260; 50090; 15570; 9930; 20300; 48420; 24900; 
36350; 17280 

0.675 3294820; 1459140; 1329780; 1241760; 339830; 896330; 280320; 102950; 658960; 1399830; 
Run-Out; 485620; 366900; 1250200; 11784100 (Run-Out); Run-Out 

 
Table 1: Results of the fatigue tests under constant stress range loading for Smin=0.05. From Holmen [4]. 

 
Load collective and basic loading block used 
When a continuous load collective is used for fatigue design or fatigue testing as a practical representation of the real 
random or pseudo-random load history, it may be discretized as a histogram and handled as a multi-step load sequence. In 
the variable amplitude tests of Holmen’s investigation [4], the histogram called loading model 3, represented in Fig. 3a, 
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was derived from a loading collective, consisting in 30 steps of the maximum normalized stress Smax= max/ R . After 
truncation at level 18 and omission of stress ranges below level 9, which implies to discard the lower stress levels, 
presumably without causing damage, the definitive stress collective in Fig. 3b, considered as representative of the effective 
stress being supported by the concrete in the real off-shore structure, was applied to the specimens in a pseudo-random 
sequence.  
 

   a) 

b) 
 

Figure 3: Holmen’s load collectives from [4]: a) Original load histogram consisting in 30 stress steps and b) Loading model 3 with 
truncation of higher stress amplitudes and omission of lower stress amplitudes applied in the fatigue variable testing. 
 
In order to reduce as much as possible the influence of the sequence, a proportional fraction of the number of cycles 
represented in the histogram, the so called “basic loading block”, will repeatedly applied until failure. The smaller the 
length of the basic loading block, the closer the random nature of real load applied, and the better the agreement between 
the total number of cycles applied during the test and its correspondence to the different stress ranges intervening in the 
load collective for the purpose of the Miner number calculation. An improvement of the real sequence could be achieved 
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by arranging the stress range sequence intervening in the basic stress block in a random manner. After direct conversion 
of the load to stress for the cylindrical specimens used in the test, the stress ranges corresponding to the 18 levels 
considered in the load collective, the number of cycles in the original block and those in the basic stress block are exposed 
in Tab. 2. The number of total cycles to failure for the tests performed under variable loading according to Holmen and 
the corresponding number of replications of the basic stress blocks necessary to achieve failure are displayed in Tab. 3.  
 
 
 
 
 
 

Stress 
range 
level 

Normalized 
stress range 

Number of 
cycles 

corresponding  
to the original 

histogram 

Number of 
cycles 

corresponding  
to the    basic 
loading block 

Accumulated 
number of 

cycles applied 
in the original 

histogram 

Accumulated 
number of 

cycles applied 
in the basic 

loading block 

18 0.7750 18869 25 18869 25 

17 0.7324 10915 14 29784 39 

16 0.6897 16967 22 46751 61 

15 0.6471 22927 30 69678 91 

14 0.6044 33314 44 102992 135 

13 0.5618 41992 55 144984 190 

12 0.5191 56802 75 201786 265 

11 0.4765 66522 88 268308 353 

10 0.4338 83321 111 351629 464 

9 0.3912 90008 120 441637 584 

8 0.3485 103360 137 544997 721 

7 0.3059 103360 137 648357 858 

6 0.2632 101594 135 749951 993 

5 0.2206 104832 139 854783 1132 

4 0.1779 90695 120 945478 1252 

3 0.1353 79438 105 1024916 1357 

2 0.0926 54029 72 1078945 1429 

1 0.0500 30788 41 1109733 1470 

 
Table 2: Stress ranges corresponding to the 18 levels considered in the load collective and number of cycles in the original block and 
basic stress block 
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Test 
ref. 

Smax Nf Miner 
Number of 

basic 
 load blocks

1 0.775 294670 0.6 201 
2 0.775 291911 0.58 199 
3 0.775 687112 1.38 468 
4 0.775 76328 0.15 52 
5 0.775 143992 0.29 98 
6 0.775 548075 1.12 373 
7 0.775 809727 1.64 551 
8 0.8 49698 0.22 34 
9 0.8 64508 0.3 44 
10 0.825 25537 0.25 18 
11 0.825 55710 0.53 38 
12 0.825 92798 0.93 64 
13 0.825 102330 1.04 70 
14 0.836 31890 0.5 22 
15 0.836 31971 0.51 22 
16 0.836 20388 0.22 14 
17 0.836 83638 1.11 57 
18 0.775 41038 0.18 71 
19 0.775 189486 0.86 325 
20 0.775 213384 0.83 366 
21 0.775 161450 0.58 277 
22 0.775 28714 0.13 50 
23 0.775 43345 0.19 75 
24 0.775 72929 0.34 125 
25 0.775 32715 0.14 57 
26 0.8 28717 0.3 50 
27 0.8 39697 0.41 68 
28 0.825 33856 0.75 58 
29 0.825 9615 0.2 17 

Test
ref. 

Smax Nf Miner 
Number of 

basic 
 load blocks

30 0.825 4416 0.08 8 
31 0.825 30583 0.68 53 
32 0.836 8724 0.25 15 
33 0.836 34492 1.04 60 
34 0.836 20299 0.61 35 
35 0.836 47683 1.47 82 
36 0.836 27093 0.78 47 
37 0.836 12300 0.41 22 
38 0.743 34490 0.07 60 
39 0.743 178077 0.35 305 
40 0.743 79856 0.16 137 
41 0.743 153162 0.3 263 
42 0.743 75187 0.15 129 
43 0.743 85593 0.17 147 
44 0.743 96517 0.19 166 
45 0.743 192318 0.38 330 
46 0.756 120790 0.41 207 
47 0.756 22476 0.08 39 
48 0.779 49445 0.4 85 
49 0.779 15298 0.14 27 
50 0.779 66704 0.55 115 
51 0.779 38960 0.31 67 
52 0.79 55944 0.64 96 
53 0.79 106438 1.29 183 
54 0.79 58068 0.69 100 
55 0.79 40810 0.48 70 
56 0.79 51615 0.6 89 
57 0.79 21427 0.25 37 

 

 

Table 3: Number of total cycles Nf applied until failure, experimental Miner numbers resulting from the Holmen’s variable loading 
tests and corresponding number of replications of the basic stress blocks necessary to achieve failure. 
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EXPERIMENTAL 
MINER 

NUMBER  

MINER 

NUMBER 

(BASIC STRESS 

BLOCK BASED) 
0.08 0.118 
0.07 0.074
0.08 0.083 
0.14 0.137 
0.13 0.143
0.15 0.149 
0.14 0.164 
0.20 0.250
0.22 0.280 
0.25 0.264 
0.25 0.301 
0.15 0.159 
0.22 0.232 
0.16 0.168 
0.18 0.204
0.17 0.181 
0.19 0.215 
0.25 0.252
0.19 0.204 
0.08 0.118 

 

EXPERIMENTAL

MINER 

NUMBER 

MINER 

NUMBER 

(BASIC STRESS 

BLOCK BASED)
0.30 0.300 
0.29 0.281
0.30 0.341 
0.50 0.441 
0.51 0.441
0.41 0.441 
0.31 0.341 
0.30 0.323
0.34 0.359 
0.35 0.375 
0.41 0.464 
0.40 0.433 
0.53 0.558 
0.38 0.406 
0.48 0.477
0.41 0.438 
0.61 0.701 
0.58 0.571
0.60 0.607 
0.30 0.300 

 

EXPERIMENTAL 
MINER 

NUMBER 

MINER 

NUMBER 

(BASIC STRESS 

BLOCK BASED)
0.60 0.577 
0.55 0.586
0.64 0.655 
0.68 0.779 
0.69 0.682
0.75 0.852 
0.78 0.942 
0.93 0.940
0.58 0.795 
1.04 1.028 
1.11 1.142 
0.86 0.932 
1.04 1.202 
0.83 1.050 
1.12 1.070
1.29 1.248 
1.38 1.342 
1.47 1.643
1.64 1.581 
0.60 0.577 

 
Table 4: Comparison between the Miner numbers estimated using the basic stress block approach proposed in this work and those 
directly overtaken from Holmen (shown in increasing order). 
 
 
THE PROBABILISTIC S-N FIELD 
 

or the damage assessment of the variable loading test results when the Miner approach is applied, the fatigue 
Weibull regression model proposed by Castillo and Fernández-Canteli the derivation of which is extensively 
justified in [6]. The consideration of the compatibility condition between the lifetime and stress range distributions, 

see Fig. 4, besides other physical and statistical considerations, leads to a functional equation, the solution of which 
provides the following S-N field: 
 

           ,loglog;
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


 

 CBN
CBN

NF    (1) 

 

where B and C are, respectively, a limit or threshold number of cycles and fatigue limit for N→ ∞ and β, λ and δ  are, 
respectively, the Weibull shape, location and scale parameters. The percentile curves are hyperbolas sharing the 
asymptotes log N =B and log =C (see Fig. 4), with the zero percentile curve representing the minimum possible required 
number of cycles to achieve failure for different values of log .  
The model parameters can be determined with the free software program ProFatigue [9] in a two-step procedure: first B 
and C, then the Weibull parameters β, λ and δ  using well-established methods described in the literature. As soon as the 
five parameters are estimated, the whole S-N field is analytically defined enabling a probabilistic prediction of the fatigue 
failure under constant amplitude loading to be achieved, see Fig. 5. 
From Eq. (1) it is apparent that the probability of failure for an element subject to a stress range   during N cycles 
depends only on the product V=( log N−B )(log  −C). This illustrates that, as soon as B and C are known, V  becomes a 
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normalizing variable of the data results permitting the whole experimental data set to be pooled in a single Weibull 
distribution with the same shape parameter β as they would pertain to a single sample. This statistical normalization 
proves to be a suitable and powerful procedure increasing the reliability of the parameter estimation, allowing the whole S-
N field to be described by a unique Weibull distribution function.   
 

 
Figure 4: S-N field according to [6] illustrating the compatibility condition. 

 
This means that any V value is associated to a percentile curves but also to a damage stage that may be unequivocally 
related to a probability of failure. In this way, an extension of lifetime prediction under varying load is achieved by 
identifying damage with the V value, and the V value with the probability of failure represented by its cumulative 
distribution function.  
Now, the approach proposed consists in deriving the cdf for the Miner number, as resulting from the S-N field found and 
the stress history applied. With this aim, simultaneous calculation of the normalized variable V and the corresponding 
Miner number M at any stage of the loading history makes it possible to relate any Miner number along the damage 
process to a probability of failure, i.e. mapping of the Miner number into a cumulative distribution function [7]. 
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Figure 5: Weibull S-N field with estimated parameters derived from Holmen’s constant stress range concrete tests using the 
probabilistic fatigue model from [6]. 
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CALCULATION OF THE MINER NUMBER AND ITS PROBABILISTIC ANALYSIS ACCORDING TO THE APPROACH 

PROPOSED  
 

n this Section, the Miner numbers obtained in the experimental program of Holmen [4] are estimated for the 
concrete specimens subject to pseudo-random load using the load collective described in the precedent Section as 
being representative of the real load to which the concrete specimen is subjected during each test. In fact, three 

different test series, see Tab. 4, were performed with small differences among the stress collectives applied, the influence 
of which is disregarded. Thereafter, these Miner number results are related to the normalized variable V and, 
subsequently, to probability of failure. Finally, this theoretical Miner number distribution will be compared with that 
obtained directly from the experimental results.   
Since the total number of cycles, but not the real pseudo-random loading sequence, applied during Holmen’s varying 
loading tests [4] is provided, only an estimation of the real loading history can be achieved as the number of replications 
of the basic stress block necessary to accomplish the total number of cycles. As a result, the value of the Miner number 
obtained for the different tests using the substitutive basic stress block appraisal differs from that given by Holmen, see 
Tab. 4, which displays the Miner numbers as directly overtaken from Holmen and those estimated by equating the total 
number of cycles resulting for repeated application of the basic stress block. A median error of about 10% is observed, 
which seems to be acceptable for this study as the calculated Miner numbers represents an underestimation of the real 
ones. A practical coincidence between both Miner number families may be enforced by adequately determination of the 
number of replications, with a possible fraction of the last replication, irrespective of the total number of cycles 
considered, i.e. alternative to the values contained in Tab. 3.  
Once the Miner number resulting for any of the real experimental tests is found as a result of the application of the 
prescribed number of replications of the basic stress blocks, we proceed to establish the probability of failure associated 
with them. First, the S-N field is evaluated from the constant stress range tests using the ProFatigue code, see Fig. 5. This 
provides the model parameters and accordingly, the cdf of the normalizing variable V=(log N-B) (log -C) thus relating V 
values to probability of failure, see Fig. 6.  
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Figure 6: Experimental Weibull cumulative distribution functions for the normalized variable V obtained from the fatigue results 
under constant stress range tests of Holmen [4] using the probabilistic fatigue model of Castillo and Fernández-Canteli [6]. 
 
For each test, an experimental Miner number Mi has been obtained from the particular stress history “i” applied during 
the test consisting in a number of replications of the basic stress block according to Tab. 3. The same stress history 
provides the corresponding value of the normalized variable Vi  for such a test, the probability of failure related to which 
is given by the cdf of the normalized variable V. In this way, the same probability of failure obtained for the Vi value is 
assigned to the corresponding value of the experimental Miner number Mi. Thus, an unequivocally correspondence 
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between the experimental V values and those of the Miner number M is established, allowing the cdf predicted for the 
experimental Miner results to be established by simple mapping of the Miner numbers obtained for the experimental test 
failures into probabilities of failure, see Fig. 7. Accordingly, an approach for probabilistic lifetime prediction is established 
by means of the normalized variable V that improves the reliability provided by the conventional Miner rule. 
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Figure 7: From the experimental Weibull cumulative distribution function for the normalized variable V (upper-right) and  the 
established relation between V and M  (down-right), the experimental cdf of the Miner number (down-left) is found for the fatigue of 
Holmen [5]. 
 
Now, the cumulative distribution function for the Miner number sample obtained from the results of the experimental 
program with varying stress range tests of Holmen is determined by applying any plotting point position rule. The Miner 
number values are ranged in increasing order and the corresponding probabilities of failure calculated. The resulting cdf is 
compared with that predicted from the normalized variable V distribution, as shown in Fig. 8. 
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Figure 8: a) Cumulative distribution functions for the Miner number fitted, respectively, from the experimental results and from the 
approach proposed based on the normalized variable V assuming a Weibull distribution and b) correspondence among those 
distributions when a scale correction is applied to the experimental results. 
 
The precedent procedure is summarized as follows: 

a) From Holmen’s results, the experimental probabilistic S-N field is evaluated, in this case, using the ProFatigue 
program based on the Weibull model proposed by Castillo and Fernández-Canteli [6]. 

b) The load collective is defined from standards or other regulations related to the particular type of the structure 
considered.  

c) A histogram is derived from the stress collective in a sufficient number of stress steps to guarantee accurateness 
in the calculations. In this case, the results provided by Holmen [4] are considered. Possible truncation and 
omission of some levels of the histogram are undertaken in order to approximate the histogram to the practical 
load distribution. 

d) Since the real load sequence applied to the specimens is unknown, though the peak distribution applied during 
the test is defined, an approximation is assumed by considering a proportional reduction of the original load 
collective. In this case, a basic loading block is defined as 1/750 times of the original load histogram. 

e) The Miner number obtained for any of the real tests is calculated. Herewith, the factual pseudo-random load 
history applied by Holmen’s tests is not exactly known but can be approximated by means of the basic stress 
block derived from the load collective. A comparison is made between the Miner number calculated using 
repetitions of until the total number of cycles corresponds to that given by Holmen and the Miner number 
provided by Holmen. Differences aro und 10% are found these being considered acceptable. 

f) For any test, the necessary repetitions of the basic stress block are evaluated as those giving the same total 
number of cycles to failure found by Holmen.  

g) For any test, the normalized variable V= (log N-B) (log -C) is calculated for the test stress history up to failure 
owning to the particular Miner number obtained for that test by replications of the basic stress block.  

h) Since the cdf for V is defined according to the probabilistic fatigue model, and the correspondence between V 
and the Miner number M is established, it is possible to derive the cdf for the Miner number values, that is, it is 
possible to relate any value of the Miner number to the corresponding probability of failure. The immediate 
relation of the Miner number and probability is established. 

i) The cdf of the experimental Miner number is calculated and compared with the theoretical one. A simple 
correction of the scale parameter lead to good agreement for fatigue lifetime prediction. 

 
 
DISCUSSION OF THE RESULTS 
 

ig. 6 displays the cumulative distribution function corresponding to the experimental Miner numbers obtained 
from the test program of Holmen and the predicted cdf of the Miner number derived from the normalized 
variable V, which on its turn is calculated from the initial S-N field for constant stress range tests of Holmen. Since 

V belongs to a three parameter Weibull distribution family according to the probabilistic model of Castillo and Fernández-
Canteli it is expected that the Miner number also belongs also to a three parameter Weibull family, as stated in [9], The 
location parameter of the M distribution λ(M), i.e. the threshold M value below which the probability of failure is zero, is 
defined as that value of M associated with the location parameter for V, λ(V). Account given of the small value of λ(M), 
nullity of λ(M)=0 can be accepted, which implies the Miner number being described by a two-parameter Weibull 
distribution. Under this assumption, the parameter estimates of both M distributions, i.e. the experimental and the 
theoretical ones, are, respectively, β=1.436, δ=0.568 for the experimental Miner number and β=1.515, δ=1.341 for the 
predicted one, i.e., for the theoretical one, confirming a reasonable coincidence between the shape parameters in both 
distributions but also with the shape parameter found for the S-N field. This allows us to assume “a priori” the value of 
the location parameter as known in the parameter estimation for the Miner number. On the contrary, a significant 
difference arises between both Miner scale parameters that, unfortunately stays on the unsafe side pointing out the 
necessity of introducing a correction if a safe lifetime prediction is intended. A scale parameter ratio δmod / δorig =2.364 is 
found, which can be used supposed an arbitrary correction for the moment being, see Fig. 7. In such a case, a practical 
coincidence is achieved between both probability distributions, experimental and analytical. It follows that the 
consequence of applying the Miner rule, which evidently cannot be accepted as a scientific law to reproduce faithfully the 
damage process, may be corrected by assuming a size effect that requires extrapolation of the theoretical distribution, as 
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derived from the normalized variable, to a longer scale. The value of this correction must be checked for different 
materials and different load spectra so that further investigation is needed. Anyway, the modification of the scale 
parameter, being simple though not yet fully understood, opens a new way for predicting lifetime under pseudo-random 
varying loading. Assuming a Gumbel instead a Weibull distribution does not affect very much the calculations but 
obviates the question of the lower threshold value due to the existence of the Gumbel function practically from the first 
cycle. Other advantages, as reduction of the number of parameters and avoiding to accept nil probability of failure in legal 
cases, are also explained in [10]. 
 
 
MINER AS ALLEGED LINEAR CUMULATIVE DAMAGE HYPOTHESIS 
 

he Miner number is generally accepted as representing a stage of damage resulting from a “linear” progression of 
damage accumulation. Nonetheless, the probabilistic conception of the S-N field permits us to reject this 
conventional cliché as being a gratuitous and wrong assertion. In fact, we have shown above how M can be related 

to probability of failure, as a measure of damage progression, by means of the normalized variable V considered in the 
fatigue approach proposed by Castillo and Fernández-Canteli [6] and the same can be achieved using as an alternative, in 
principle in better consonance to the real logarithmic scale characterizing lifetime problems, to the conventional the so 
called logarithmic Miner, denoted LM defined as: 
 

LM= ∑ log ni / log Ni                                            (2) 
 

which according to a parallel interpretation as that applied in the case of the conventional Miner number would be 
labelled as “logarithmic cumulative damage hypothesis” and, expectantly, lead to a fully different lifetime prediction. 
After applying the same load spectra as in the Miner number case, totally different LM values are observed to those for 
conventional M, as expected. Notwithstanding, the same probabilities of failure are found for the reciprocal M and LM 
values in both cases. This proves that the probability of failure, as a measure of damage, happens to be independent of the 
model adopted (conventional or logarithmic Miner rule) if an adequate mapping of the measure of cumulative damage is 
adopted into the probability of failure is established, thus proving by extension, the inconsistency of the conventional 
belief, which denotes “linear” the damage progression for the conventional Miner number.   
 
 
CONCLUSIONS 
 

he main conclusions derived from the present work are: 
- A probabilistic definition of the S-N field is necessary for the adequate probabilistic evaluation of the 

Miner number. 
- A statistical interpretation of the Miner is possible, without practically maintaining the simplicity of its calculation 

in the conventional approach allowing an increase of reliability in the lifetime prediction of structural and 
mechanical components. 

- The Miner number statistical distribution happens to be Weibull, as stated in former literature of the authors, 
whereas the prediction for the Miner number in a probabilistic way needs to be modified by introducing a scale 
correction. 

- The statement that the Miner rule responds to a “linear cumulative damage hypothesis” is gratuitous and wrong. 
- Other fatigue programs under variable loading with other materials should be considered in order to confirm the 

properties of the Miner distribution as exposed here. 
 
 

REFERENCES 
 
[1] Birnbaum, Z.W., Saunders, S.C., A probabilistic interpretation of Miner’s rule, SIAM J. of Applied Mathematics, 16 

(3) (1968) 637-652. 
[2] Van Leeuwen J., Siemes, A.J.M.., Miner’s rule with respect to plain concrete, Heron, Delft, 24(1) (1979). 
[3] Van Leeuwen J., Siemes, A.J.M.., Fatigue of concrete, Report No B 76-443/04.2.6013, Tables, TNO-IBBC, Delft, 

(1977).  

T 

T 



 

                                                A. Fernàndez-Canteli et alii, Frattura ed Integrità Strutturale, 30 (2014) 327-339; DOI: 10.3221/IGF-ESIS.30.40 
 

339 
 

[4] Holmen, J.O., Fatigue of concrete by constant and variable amplitude loading, Institutt for Betongkonstruksjoner, 
Norges Tekniske Høgskole, Universitet i Trondheim (1979). 

[5] Fernández-Canteli, A., Statistical interpretation of the Miner-number using an index of probability of total damage, 
Fatigue of Steel and Concrete Structures, IABSE, Zürich, (1982). 

[6] Castillo , E., Fernández-Canteli, A., A unified statistical methodology for modeling fatigue damage, Springer, (2009). 
[7] Castillo, E.,  Fernández-Canteli, A., Statistical models for damage accumulation, Encyclopedia of Statistical Sciences, 

John Wiley & Sons, Balakrishnan (Editor), Chapter 5, (2011) 1-30. 
[8] Mc Call, J.T., Probability of failure of plain concrete, ACI Journal, 55 (1958) 233-244. 
[9] ProFatigue. Software program for assessment of fatigue results, University of Oviedo. 2013. (Free download at 

dcif.uniovi.es/profatigue/ProFatigue_pkg.exe. User’s Guide: dcif.uniovi.es/profatigue/ProFatigue-UserGuide-
2013.pdf). 

[10] Fernández Canteli, A., Castillo, E., A unified probabilistic approach for fatigue life and damage prediction, XIV 
Portuguese Conference on Fracture, Invited Lecture, Regua (2014) 31-42. 


