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ABSTRACT. The fictitious notch rounding concept is applied for the first time to V-notches with root hole 
subjected to in-plane mixed mode loading. Out-of-bisector crack propagation is taken into account. The 
fictitious notch radius is determined as a function of the real notch radius the microstructural support length 
and the notch opening angle. Due to the complexity of the problem, a method based on the simple normal 
stress failure criterion has been used. It is combined with the maximum tangential stress criterion to determine 
the crack propagation angle. An analytical method based on Neuber's procedure has been developed. The 
method provides the values of the microstructural support factor as a function of the mode ratio and the notch 
opening angle. The support factor is considered to be independent of the microstructural support length. 
Finally, for comparison, the support factor is determined on a purely numerical basis by iterative analysis of FE 
models.  
  
KEYWORDS. Fictitious notch rounding; Mixed mode loading; V-notches with root hole; Microstructural 
support. 
 
 
 
INTRODUCTION  
 

ll previous publications on the fictitious notch rounding (FNR) concept deal with the pure loading modes 1, 2 
and 3. The difficulty of considering mixed mode loading conditions is due to the fact that the most critical 
direction, in which cracks might provisionally initiate and propagate, varies as a function of the mode ratio. This 

direction varies from the notch bisector line in the case of pure mode 1 loading, to a direction substantially out of the 
notch bisector line in the case of pure mode 2 loading. The present work extends the FNR concept to mixed mode 1 and 
2 loading conditions for the first time and provides a solution to the problem as a function of the mode ratio.  
The FNR concept [1-3] refers to the fact that the theoretical maximum notch stress does not characterise the static 
strength or fatigue strength of pointed or sharply rounded notches. The notch stress averaged over a short radial distance 
at pointed notches or over a small distance normal to the notch edge at rounded notches (real notch radius ) is the key 
parameter of the method. The mentioned distance * is usually called ‘microstructural support length’. In the high-cycle 
fatigue regime, notch stress averaging should take a path which coincides with the point and direction of fatigue crack 
initiation and propagation. The basic idea of the FNR concept is to determine the fatigue-effective averaged notch stress 
directly (i.e. without actual notch stress averaging) by performing the notch stress analysis with a fictitiously enlarged 
notch radius f given by  

A 



 

F. Berto, Frattura ed Integrità Strutturale, 34 (2015) 169-179; DOI: 10.3221/IGF-ESIS.34.18                                                                                
 

170 
 

 f = + s *            (1) 
 
By taking advantage of the analytical frame provided by Filippi et al. [4] and Neuber [1], the FNR approach has been 
applied to V-notches under mode 1 and mode 3 loading, respectively [5, 6]. The support factor s was found to be highly 
dependent on the notch opening angle 2. A satisfactory agreement was found between the theoretical stress 
concentration factor Kt(f) evaluated at the fictitiously rounded notch and the averaging stress concentration factor K t  

obtained by integrating the relevant stress over the distance * in the bisector line of the pointed V-notch. 
It is worth mentioning that the notch stress averaging method was originally proposed for brittle fracture problems by 
Wiegardt [7] and later extended by Weiss [8]. The FNR concept was mathematically formalised by Neuber [1, 3, 9], who 
provided a general theoretical frame of the method. The application of the concept to strength assessments was 
demonstrated in Ref. [2]. There is also a correspondence of the concept with the ‘critical distance approach’ proposed and 
successfully applied by Peterson [10]. It was also applied many years later to notched thin plates subjected to fatigue 
loading [11, 12] using the characteristic length a0 derived by El-Haddad, Topper and Smith [13] from the conventional 
endurance limit and the threshold stress intensity factor range. 
Referring to Neuber’s concept, Radaj [14-17] proposed to apply the FNR method to assess the high-cycle fatigue strength 
of welded joints (toe or root failures). A worst case assessment for welded low-strength steels, notch radius  = 0 mm, 
microstructural support length * = 0.4 mm and support factor s = 2.5, resulted in f = 1.0 mm. This reference radius was 
found to be generally applicable to fatigue strength assessments of welded joints in structural steels and aluminium alloys 
and has become a standardised procedure within the design recommendations of the International Institute of Welding 
(IIW) [18].  
A recent work has been devoted to the application of the FNR approach to notches with root hole subjected to pure 
mode 1 loading [19, 20]. Some analytical expressions have been derived for the fictitious notch radius f and the support 
factor s taking advantage of some closed form expressions specifically derived for V-notches with root hole [21]. An 
extension to pure mode 3 loading has been carried out in [22] on the basis of the same set of equations [21]. 
The case of in-plane shear loading (mode 2) is more complex to analyse than mode 1 and mode 3 loading. The reason for 
the higher complexity is the fact that out-of-bisector crack propagation is observed, because the maximum notch stress 
occurs outside the notch bisector line. The mode 2 problem was considered from a theoretical point of view resulting in 
closed-form solutions for elliptical notches and in numerical solutions for keyhole notches [23]. In a recent paper, pointed 
V-notches subjected to pure mode 2 loading were investigated [24]. Due to the complexity of the analytical developments, 
the support factor s was determined numerically using the FE method. The key problem was the choice of the crack path 
direction for stress averaging over the microstructural support length. Two criteria available from the literature were used 
to determine the angle of most probable crack propagation, the maximum tangential stress (MTS) criterion according to 
Erdogan-Sih [25] and the minimum strain energy density (MSED) criterion according to Sih [26].  
Taking advantage of the closed form equations provided in Ref. [21] for V-notches with root hole, the FNR concept has 
been mathematically formalised for this notch shape in the case of in-plane shear loading [27]. Two analytical methods 
and one numerical method have been proposed in the quoted contribution for determining the fictitious notch radius f 
and therefrom the support factor s dependent on the notch opening angle 2 . In all three methods, the crack propagation 
angle has been determined based on the MTS criterion.  
A state-of-the art review of the FNR approach comprising also the recent developments just mentioned has been carried 
out in Refs [28, 29]. While the application of the FNR approach to the pure loading modes is well developed, in-plane 
mixed mode loading remains an open problem which is difficult to solve for various reasons. The main difficulty is that 
the most probable crack propagation angle depends on the mode ratio ranging from pure mode 1 to pure mode 2 loading.  
The aim of the present paper is to provide a theoretically founded basis for the application of the FNR approach to in-
plane mixed mode loading. Using the newly developed analytical frame [21], the values of the support factor s as a 
function of the mode ratio M and the notch opening angle 2 are obtained. As implied by Eq. (1), the support factor s is 
considered to be independent of the microstructural support length *, which is only approximately the case. But all the s 
values reported in the present contribution are on the safe side when used for strength assessments.  
The analytical procedure given by Neuber [1, 3] for determining the factor s is applied in edge-normal directions outside 
the bisector line. This is an extension of what has been done by the authors [5, 6] in the cases of pure mode 1, mode 2 and 
mode 3 loading. By this method, V-notches with root hole, both in the real and in the fictitious configuration, are 
considered. Pointed notches are the limit case obtained when the real notch root radius tends to zero. The proposed 
method requires a numerical solution of the rather complex governing equation to determine the values of s, but easy-to-
survey tables and diagrams present these values as a function of the mode ratio M for various notch opening angles 2 in 
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order to provide a simple tool for the engineering application of the FNR approach in the case of mixed mode loading. 
Finally, for verification of the method, the factor s is also determined on a purely numerical basis by iteration of FE 
models.  
 
 
ANALYTICAL FRAME FOR V-NOTCHES WITH ROOT HOLE SUBJECTED TO MIXED MODE LOADING 

CONDITIONS 
 

sing the normal stress criterion in combination with the MTS criterion (for the crack propagation angle), an 
analytical method has been developed for evaluating the fictitious notch radius f and the support factor s 
therefrom as a function of the mode ratio M defined below. The method refers to Fig. 1 where the real root 
radius  is substituted by the fictitious notch radius f. 
The V-notch with root hole subjected to mode 1 loading is considered. Taking the relevant boundary conditions 

into account, the stress components for the symmetric mode result from Ref. [21]: 
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Figure 1: Fictitious notch rounding concept applied to mixed mode loading (mode 1+2): real root hole notch with stress averaged 
over * in direction of crack propagation (a) and substitute root hole notch with fictitious notch radius f producing max =  (b). 
 
The parameter 1 is Williams’ [30] mode 1 eigenvalue, which is dependent on the notch opening angle 2 
The generalised mode 1 notch stress intensity factor K1 can be expressed as follows: 
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When the notch radius  tends to zero, K1 tends to the mode 1 notch stress intensity factor K1 defined according to 
Gross and Mendelson [31]:  
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Considering the V-notch with root hole under mode 2 loading, the stress components for the antisymmetric mode result 
also from Ref. [21]: 
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The parameter 2 is Williams’ [30] mode 2 eigenvalue, which is dependent on the notch opening angle  
The generalised mode 2 notch stress intensity factor K2 can be expressed as follows: 
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When the notch root radius tends to zero, K2 tends to the mode 2 notch stress intensity factor K2 defined according to 
the following expression: 
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It is important to underline that the property of K to converge to the stress intensity factor of the pointed V-notch, K2, 
when the notch root radius tends to zero, is a characteristic of the set of equations provided in Ref. [21] for V-notches 
with root hole. Other sets of equations [32, 33] applicable to rounded V-notches of different shape do not have this 
property as discussed in Ref. [34]. In that paper it was also documented the stable trend of the generalized notch stress 
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intensity factors given in Eqs (4) and (8) as a function of the distance r. The problem of the oscillating trend of Kand 
Kdescribed in [33] for blunt V-notches with flanks tangent to the notch root radius is overcome by employing the set of 
equations reported in [21]. Fictitious notch rounding is considered for V-notches with root hole subjected to mode 1 and 
mode 2 loading based on Eqs. (2.1) and (5.1). Based on the MTS criterion, the crack propagation angle 0 is obtained 
from the following condition  
 
 d/d = 0            (8)  
 
The hoop stress field  depends on the position variables r and  in such a way the condition d/d = 0 does not 
determine the angle of crack propagation unless a value of r is specified. The angle 0 increases by increasing the distance r 
due to the higher contribution of Mode 2 with respect to Mode 1 loading at greater distances from the notch tip. In this 
paper the values of =0 (worst case configuration) and r=0.005 mm (early crack propagation) have been set to evaluate 
the crack initiation angle 0.  
It will be shown in the following that the specific value of r allows us to match the values of s obtained for pure mode 1 

[20] and pure mode 2 [27]. The normal stress criterion is now introduced for the averaged stress   and the MTS criterion 
for the crack propagation angle 0. Based on Eqs. (2.1) and (5.1) the maximum theoretical notch stress th(r, 0) is 
obtained and the averaged stress  in the direction of 0 is determined: 
 

  
*

0

1
σ σ , dr

ρ * th r
 






             (9) 

 
The determinate integral in Eq. (9) has first been solved in its indeterminate form separated into mode 1 and mode 2 
components (termed ii1 and ii2), and only then in its determinate form (termed di1 and di2).  
�he determinate integrals referring to mode 1 and mode 2, respectively, result in the following form: 
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For the sake of brevity of presentation and due to the length of the final expressions, the explicit forms of di1 and di2 are 
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The equation * 0( , *) lim ( )    , according to the procedure given by Neuber [1,3], results in the following equation 
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Solving Eq. (14), with K1=K1 and K2=K2, it is possible to determine the fictitious radius f and therefrom the support 
factor s by using the following expression derived from Eq. (1): 
 

 
*

fρs





             (15) 

 
The factor s under mixed mode loading results as a function of the mode 1 and mode 2 stress intensity factors and of the 
crack propagation angle 0. Eq. (14) can be solved in general terms for any ratio K2/K1 of the notch stress intensity 
factors, the crack propagation angle 0 being dependent on this ratio. The mode ratio is defined as follows based on 
the ratio  of the notch stress intensity factors K2 and K1: 
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Pure mode 1 loading results in M = 0 and pure mode 2 loading in M = 1. The dimension of the notch stress intensity 
factors being dependent on the relevant eigenvalues 2 or 1, which are not identical in general, a length parameter ℓf is 
introduced in Eq. (17) with the condition ℓf=1. 
In the case of pointed notches,  = 0, Eq. (14) can be applied by replacing Kby K1 and K by K2 while 0 remains the 
angle of crack propagation. Pointed notches are relevant in worst case considerations of strength assessments. The 
following expression is valid for , updating Eq. (17): 
 

 2 12

1
f

K

K
               (18) 

 
The simplified hypothesis,  K1=K1and K2=K2 which has been inherently assumed for the analytical calculations, avoids 
an iterative procedure for the determination of s and then of f. This is the hypothesis implicitly used by Neuber without 
the explicit introduction of the stress intensity factors [1], but is approximately true only when the fictitiously enlarged 
notch root radius is sufficiently small. In the reality, for large f,  K1 and K2 do not match K1 and K2 [20,34].  
 
 
EVALUATION OF THE SUPPORT FACTOR UNDER MIXED MODE LOADING CONDITIONS 
 

y considering Eq. (14) and solving it for different values of the mode ratio M, it is possible to obtain the support 
factor s as a function of the mode ratio M. To evaluate the values of s, the condition ≈ 0 approximating pointed 
notches has been used. This choice was made for two specific reasons. The first reason is that pointed notches are 

the most critical ones in strength assessments. In many practical cases, the real notch radius is not equal to zero, but it is 
very small and it can be approximated in the safe direction by the worst case condition  = 0. The second reason is that 
by considering pointed notches, it is possible to define the mode ratio M  uniquely. 
The mode ratio M is evaluated here by using K = K1 and K = K2. Eq. (8) has been employed here to determine the 
crack propagation angle 0  by applying the MTS criterion to pointed V-notches . 
Due to the fact that Eq. (14) has been expressed in terms of the real notch radius this radius has to remain finite.  
In this contribution, = 0.001 mm has been introduced in order to model quasi-pointed V-notches. The values of s have 
been evaluated by solving Eq. (14) numerically for different values of the mode ratio M and keeping constant *=0.1 mm 
together with =0.001 mm. The data are plotted in Fig. 2. The support factor s rises with the mode ratio M varying from 
M = 0 (pure mode 1) to M = 1 (pure mode 2). Whereas the rise is rather weak for the keyhole (2 = 0), it is rather strong 

B 
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for larger notch opening angles (2 = 60°). It has to be noted that large values of s mean large fictitious notch radii f, i.e. 
uncritical strength conditions. 
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Figure 2: Support factor s as a function of the mode ratio M for different values of the notch opening angle 2 
 
 
VALIDATION OF THE PROPOSED FNR APPROACH FOR MIXED MODE LOADING CONDITIONS 
 

he FNR approach applied to in-plane mixed mode loading is validated by comparisons based on the FE method 
considering inclined V-notches with end holes (notch radius f=s*) characterized by different notch opening 
angles 2. Geometry and dimensions of the double-V-notched plate are shown in Fig. 3 together with the applied 

remote boundary conditions. The values of the notch stress intensity factors K1 and K2 found by FE analysis for the 
corresponding pointed V-notches (=0) are presented in Tab. 1 for different notch opening angles 2 and notch 
inclination angles . Tab. 2 also summarises the mode ratio M, the crack propagation angle 0 and the support factor s 
determined by solving Eq. (14) for the specific parameters. 
The following parameters are considered in the numerical investigation by FE analysis: 
– the notch opening angle 2= 0, 30, 45 and 60°, 
– the notch inclination angle = 15, 30, 45 and 60° corresponding to a value of M varying between 0.16 and 0.73, 
– the microstructural support length * varying between 0.05 and 0.3 mm, 

– the notch depth 2a = 10 2  mm combined with the plate width w = 100 mm. 
The averaged stress has been obtained by numerical integration over the length * of the hoop stress component 
(th=) along the direction 0 evaluated by using Eq. (8). 
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The stress concentration factor characterising the averaged notch stress over * in pointed V-notches is defined in Eq. 
(20) with reference to the nominal stress n. 
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The stress concentration factor Kt(f) of the fictitiously rounded notch is defined as follows: 
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           (21) 

 
The relative deviation can be defined as follows: 
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Figure 3: Geometry and dimensions of the double-V-notched quadratic plate specimen considered in the FE analyses; remote loading 
by prescribed nominal stress n; dimensions w = 100 mm and 2a = 14.14 mm; real pointed versus fictitiously rounded (root hole) V-
notch. 
 
 

2
 (°) 

  
(°)

K1 

(MPa mm1-1) 
K2 

(MPa mm1-2) 1 2 0 (°)  M s 

45 15 472 128 0.550 0.660 –13.49 0.272 0.169 2.56 
 30 376 222 0.550 0.660 –25.73 0.592 0.340 3.16 
 45 244 257 0.550 0.660 –36.52 1.053 0.516 4.24 
 60 112 223 0.550 0.660 –46.70 1.993 0.704 6.08 

 

Table 1: Notch stress intensity factors K1 and K2 and crack propagation angle0 for different mode ratios M resulting in support 
factors s. 
 
 
COMPARISON WITH FE RESULTS 
 

he maximum stress max(*,s) has been determined in this section directly by means of finite element analyses 
modeling the plate shown in Fig. 3 with f=s*, while  values are those evaluated analytically. The finite element 
analyses (FEA) were carried out by using Ansys (release 13.0). In total 2000 models have been analysed, each 

model characterized by the specific values of 2 and f. The results from some models exhibiting relative deviations 
less than or equal to 10% are listed in Tab. 2 as example. The errors are due not only to the adopted simplified hypothesis, 
K1=K1 and K2=K2, but also to the fact that the maximum stress component max takes place outside the notch bisector, 
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creating an additional stress concentration effect linked to the nominal stress component parallel to the notch inclination 
angle . 
Finally it is worth mentioning that another consistent approach for mixed-mode loading is based on the strain energy 
density (SED) averaged on a defined control volume [35]. This approach has been successfully used to assess the static 
behaviour of notched plates made of brittle material as well as the high-cycle fatigue strength of welded joints. In the 
presence of pointed notches subjected to mixed mode 1–2 loading conditions, the control volume (a semicircular sector 
under plane strain or plane stress conditions) is introduced as constant, at first for mode 1 loading conditions. In the case 
of blunt U- or V-notches, the crescent shape control volume is rigidly rotated with respect to the notch bisector line and 
centred in the point of maximum tangential stress (or maximum strain energy density) on the notch edge resulting in an 
‘equivalent’ mode 1 loading condition. One of the main advantages of the average SED approach is that it can be applied 
using coarse meshes. 
 

 

2α (°) β (°)  M 0 (°) s 
ρ*  

(mm) 
ρf  

(mm) 
tK  

Eq.(28) 
Kt(ρf) 
FEM 

Δ (%) 

45 15 0.272 0.169 –13.50 2.56 0.05 0.128 16.90 16.93 0.17
     0.1 0.256 12.06 12.57 4.07
     0.2 0.511 8.61 9.24 6.86
      0.3 0.767 7.07 7.81 9.47 
 30 0.592 0.340 –25.73 3.16 0.05 0.158 14.62 14.73 0.75 
      0.1 0.316 10.58 10.92 3.11 
      0.2 0.631 7.67 8.18 6.28 
      0.3 0.947 6.36 6.97 8.79 
 45 1.053 0.516 –36.52 4.24 0.05 0.212 11.08 11.19 0.99
     0.1 0.424 8.18 8.56 4.48
     0.2 0.848 6.05 6.65 9.03

 
 

Table 2: FNR results for mixed mode loading conditions; normal stress failure criterion combined with the MTS criterion for 0; 
different values of the microstructural support length * and the mode ratio M. 
 
 
CONCLUSIONS 
 

ased on FNR concept used in combination with the normal stress criterion for the averaged notch stress and the 
maximum tangential stress criterion for the crack propagation angle, the support factor has been analytically and 
numerically determined for V-notches with root hole subjected to in-plane mixed mode loading. A suitable 

definition and quantification of the mode ratio for pointed V-notches has been found. Taking advantage of a recently 
conceived analytical frame for V-notches with root hole, the original Neuber procedure for determining the fictitious 
notch radius and the support factor has been applied to out-of-bisector crack propagation, the propagation direction 
being determined by the maximum tangential stress criterion as a function of the mode ratio and the notch opening angle. 
Different values of this length, of the notch depth and of the notch opening angle have been considered as well as 
different mode ratios. The obtained values of the support factor are well suited for engineering usage in structural strength 
assessments. The relative deviations have been found variable from case to case. A large set of cases have been found to 
be characterized by relative deviations less than 10%, directly using the original Neuber’s procedure.  
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