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ABSTRACT. Explicit and simple expressions for root compliance coefficients, 
which can be used to define root rotations and root displacements at the 
crack tip cross section of orthotropic cracked beams, are derived under 
general self-equilibrated loading conditions at the crack tip. The effects of 
both shear deformations and transverse elasticity are taken into account in 
order to accurately define displacement fields and energy release rate. The 
derivation builds on and extends one-dimensional formulations in the 
literature. The employment of the novel analytical expressions requires the 
determination of one a priori unknown parameter which describes the effects 
of the transverse elasticity and is determined through matching of well 
established 2D results in the literature. The one-dimensional model accurately 
reproduces crack tip effects in symmetric isotropic and orthotropic 
specimens; shear deformations are included in the formulation for an accurate 
derivation of the root displacement coefficients; the accuracy reduces in 
asymmetric specimens where the matching parameter becomes load 
dependent. 
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INTRODUCTION 
 

n many problems of fracture in beam-type structures the effects of the transverse elasticity of the intact portion of 
the specimen ahead of the crack tip are not negligible and must be taken into account when calculating displacements 
and fracture parameters. Such effects are usually associated with relative rotations and displacements at the crack tip 

section between the two arms of the cracked portion of the specimen. They are known in the literature as root rotations 
and displacements and have been the object of many studies. 
A great deal of attention has been focused on modeling the root rotations, which have been shown to enter into some 
important fracture mechanics calculations, such as those of the J-integral and the energy release rate [1-3]. Among the 
others, e.g. [1-2,4-7], reference is made here to the results presented in [3] for orthotropic cracked beams subjected to 
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arbitrary end loadings. They determined the compliance coefficients describing root rotations due to elementary, self-
equilibrated crack tip loading systems for a wide range of thickness-wise positions of the crack and orthotropy ratios. The 
results obtained through rigorous 2D finite element analyses were validated by comparison with results obtained using 
other methods for different geometries in both isotropic [2] and orthotropic [8-9] materials. Recently, the accuracy of the 
numerical compliance coefficients has been demonstrated in [10] and by the analytical solutions in [11], for symmetric 
orthotropic strips, and in [12-13] for thin layers on half-planes. Root rotation coefficients can also be obtained from 
expressions of the energy release rate in terms of crack tip forces using the methodology proposed in [3], which has been 
recently applied in [10] to Double Cantilever Beam (DCB) specimens and in [14] to sandwich specimens under general 
end loadings. The methodology does not allow to derive root displacements. 
Little attention has been placed on deriving the root displacements, which do not directly enter into the energy release rate 
and mode mixity and have been shown to play a role only in special problems. As examples, they need to be included in 
compliance-based analyses of the strain energy release rate, in the analysis of displacement controlled fracture tests, such 
as the wedge test, and in the analysis of problems where contact occurs along the crack surfaces, as in the inverted four 
point bending test. They are also important in modeling buckling and post-buckling of the detached layers using structural 
theories [5-6,15]. 
Kanninen [16] was among the firsts to include the effects of the transverse elasticity of the intact portion ahead the crack 
tip in the study of crack propagation and arrest in a symmetrical DCB specimen. Because of the symmetry, half of the 
specimen was treated as a finite length beam which is partly free and partly supported by a Winkler foundation with 
stiffness modulus dependent on the beam elastic and geometrical parameters. This model was firstly based on the Euler-
Bernoulli beam theory to be used for the analysis of stationary cracks. Subsequently, the model was extended using the 
Timoshenko beam theory and a generalized elastic foundation depending on two parameters [17-18]. Recently Thouless 
[10] proposed an approach which links to the original Kanninen's [16] formulation and uses the solution of an elastic and 
isotropic Euler-Bernoulli beam on an elastic foundation in order to find the relationships between the compliance 
coefficients describing root rotations and root displacements for a symmetric DCB specimen subjected to transverse point 
forces. These relationships were furthermore used to derive the root displacements also for orthotropic specimens. 
In this paper, a structural model for the closed form derivation of the crack tip compliance coefficients in orthotropic 
specimens under general end loadings, as shown in Fig. 1a, is presented. The main goal of the work is to formulate a 
simple but sufficiently accurate model for practical applications, which is able to provide the root displacement 
coefficients. The model is based on shear deformable beam theory and builds on the Kanninen's original formulation, 
which is here extended in order to consider new end-loading conditions. In particular, the problem of the equilibrium of a 
two-layered system with elastic interlayer uplift is analysed, as shown in Fig. 1b. The solution procedure previously 
followed by the authors to solve the problem of multi-layered systems with imperfect interfaces [19-24] is employed and 
leads to explicit expressions for the root rotation and displacement compliance coefficients under different crack tip 
loading conditions. 

 

 
 

Figure 1: (a) Edge cracked specimen subjected to end loadings. (b) Elastically connected semi-infinite beams: model geometry and self-
equilibrated elementary end loading conditions. 
 
The paper is organized as follows. In the next section the equilibrium, compatibility and constitutive equations governing 
the model formulation are detailed and rearranged into two coupled linear differential equations for the shear and normal 
interfacial tractions. Details on the solution procedure leading to exact expressions for the interfacial tractions and all 
other static and kinematic variables are provided. In the third section explicit expressions for the relative rotation and 
displacement compliance coefficients under three elementary end loading conditions are derived analytically and presented 
for Timoshenko and Euler-Bernoulli layers. The simplified formulation based on Euler-Bernoulli beam theory is detailed 
in Appendix A. The novel expressions are employed on varying elastic moduli and geometrical parameters and the related 
numerical results are shown and discussed in the fourth section after validation through comparison with results in the 
literature. All numerical results shown are listed in table form in Appendix B, where the matching procedure is described. 
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A practical application of the solutions to the analysis of an exemplary fracture specimen is shown in the fifth section, 
where the two formulations developed in the paper are compared to show the limits of the simplified model based on 
Euler-Bernoulli beam theory. The sixth section concludes the paper with a final discussion on the differences between the 
proposed model and others in the literature and on the limit of applicability of the present formulation. 
 
 
MODEL FORMULATION 
 

he two-layered system under consideration is shown in Fig. 1b and consists of two semi-infinite beams (x≥0) 
which have constant rectangular cross sections, unit width and height hi (i=1,2). The beams are made of the same 
linearly elastic and orthotropic material with principal material directions x,y,z and longitudinal Young's modulus 

Ex, transverse Young's modulus Ez, in plane shear modulus Gxz and Poisson ratios xz and zx. The beams are connected 
by a continuous bond which is assumed to be perfect in the longitudinal x-direction, while it ensures a partial composite 
action in the transverse z-direction. As a consequence, interlayer uplifts can occur at the interface, but no slips between 
the layers at their interface are possible. Such a connection is modeled by continuously distributed tangential and normal 
reactions; the latter are related to the relative deflection between the two beams according to a linearly elastic relationship 
with k the proportionality constant. For our convenience, this connection modulus is expressed in terms of the average 
transverse stiffness of the beams as 
 

1 2

2 z
wk

E
k

h h



,           (1) 

 
where an arbitrary correction factor, say kw, is introduced to take into account that the beam model is only an 
approximation. In Kanninen's original formulation, where Ez=Ex and h1=h2, the correction factor was assumed as kw=1. 
Recently, with reference to the same Kanninen's symmetrical DCB specimen, Thouless [10] proposed alternative values 
for kw to obtain a reasonably good approximation for the energy release rate under 2D Linear Elastic Fracture Mechanics 
(LEFM) conditions. As detailed in the third section and Appendix B, kw is here determined so that the results found 
according to the proposed model match well-established root rotation compliance coefficients in the literature. Finally, the 
system is subject to the self-equilibrated loading condition shown in Fig. 1b: each beam is loaded at the end x=0 by point 
forces acting in the axial direction, N0, and in the direction normal to the beam axis, V0, and by a bending moment, M0, in 
addition to a compensating moment, N0(h1+h2)/2, applied at the same end of the lower beam. These loading conditions 
are part of the elementary crack tip loadings which are used in the literature to fully describe the local crack tip fields and 
the energy release rate in beam-type structures subjected to arbitrary end loadings [2, 25]. 
Under the assumption of small strains, displacements and rotations and assuming Timoshenko beams to approximately 
account for the effects of the shear deformations, the problem of the equilibrium of the two-layered system under 
consideration is governed by three differential equations for each beam arm, with a total of eight unknowns: pt and pn, 
respectively the shear and normal tractions between the two layers at their common interface, and i, wi and ui, 
respectively the rotation, the deflection along the z-direction and the axial displacement along the x-direction for the i-th 
beam (i=1,2). The differential equations are 
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where, hereinafter, primes denote differentiation with respect to x and s=5/6 is the shear correction factor. In the 
reference systems of Fig. 1b, the rotations are positive if counter-clockwise, whereas the deflections are positive if 
downward and the axial displacements are positive if rightward. Furthermore, the continuously distributed normal 
tractions pn are defined as 
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 2 1np k w w             (3) 

 
whereas the continuously distributed shear tractions pt are consistent with the assumption of perfect connection in the 
longitudinal x-direction imposing that 
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It is worthwhile noting that the interface condition expressed by Eqn. (4) makes the axial and bending problems of the 
two elastically connected semi-infinite beams coupled and it needs to be imposed in order to analyze the elementary end 
loading condition with N0≠0 and related compensating moment, which would otherwise generate unrealistic sliding 
displacements at the interface in asymmetric specimens. 
In order to solve the problem, it is convenient to rearrange the basic equations described above. Such a rearrangement, 
based on differentiating Eqn. (3) four times and Eqn. (4) three times with respect to x, leads to the following two coupled 
linear differential equations with constant coefficients for the unknowns pn and pt: 
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having defined, according to Eqn. (1), 
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define relative thickness and orthotropy ratios in the layers and 2( // )x xz xzE G     . 

It is worthwhile noting that all the coefficients in Eqn. (6) are positive, except for the coefficient ĉ  which is positive only 
for h2>h1 and vanishes in the case of symmetrical specimen with a mid-thickness interface (h1=h2). Furthermore, under the 
assumption of infinite shear stiffness of the layers ˆ 0a   and Eqn. (5) so simplified is proved to govern the problem of 
the two elastically connected semi-infinite beams according to Euler-Bernoulli beam theory, for which the effects of the 
shear deformations are neglected. Appendix A presents this simplified formulation and a comparison with the model first 
proposed in [16] and recently reconsidered in [10] with reference to a DCB specimen. 
The solution of the coupled differential problem (5) requires further rearrangement of the equations: firstly, the second of 
Eqn. (5) is solved for the first derivative of the interfacial shear tractions; secondly, this result is substituted in the first of 
Eqn. (5) leading to the following fourth-order linear differential equation with constant coefficients for the interfacial 
normal tractions 
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The general solution of the differential equation can be written in three different forms: 
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with â  and ê  given by Eqns. (6) and (8). 
When the normal tractions along the interface between the beams have been obtained, closed form expressions for the 
shear tractions and for the internal forces and displacements for each beam arm can be derived, as detailed in what 
follows. 
Firstly, integration of the second of Eqn. (5) gives the shear tractions along the interface between the two beams: 
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where for brevity, hereinafter, d x  indicates integration of · once with respect to x; whereas C5 is an additional arbitrary 

constant. Secondly, integration of Eqn. (2) gives, respectively, the axial forces 
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and the bending moments in the beams (i=1, 2) 
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which contain six more arbitrary constants C5+i, C7+i and C9+i (i=1,2). Thirdly, integration of the internal forces gives the 
rotations 
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and the deflections of the beams (i=1,2) 
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with six more arbitrary constants C11+i, C13+i and C15+i (i=1,2). From Eqn. (13a) the relative rotation between the two 
beam arms is given by 
 

2 1                (14a) 
 
whereas the relative deflection between the two beam arms follows directly from Eqn. (3) 
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The general solution derived above contains 17 arbitrary constants, which are evaluated using suitable boundary 
conditions. Seven conditions are obtained by imposing that the expressions given by Eqn. (13) for displacements and 
rotations satisfy the bond conditions Eqn. (4) of perfect connection in the longitudinal x-direction and Eqn. (3) of elastic 
connection in the transverse z-direction for all points of the interface. The prescription of free end boundary at infinity 
(x→∞) gives five further conditions. These twelve conditions result in the following relations: 
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Then, imposing that the static quantities equate the applied forces at the end x=0 yields C3 and C4, which enter the 
expressions given by Eqn. (14) for the relative rotation and deflection between the two beam arms. The remaining 
arbitrary constants C12, C14 and C16 remain indeterminate but are not of interest here because they describe a rigid motion 
of the whole self-equilibrated two-layered system. Finally, substituting such results into the expressions given by Eqn. (14), 
evaluated at x=0, gives the end relative deflection and rotation, say w0 and 0 respectively, between the two beams in 
terms of the end forces (V0, M0 and N0). The compliance coefficients describing the rotations and displacements follow 
directly from these relationships, as detailed below. 
 
 
ROOT ROTATION AND DISPLACEMENT COMPLIANCE COEFFICIENTS 
 

he three elementary schematics of the bi-layered system shown in Fig. 2 are considered. The self-equilibrated end 
loading conditions shown in Fig. 1b are reproduced by the superposition of these schematics. The relative rotation 
at x=0 given in Eqn. (14) defines the root rotation and is related to the end forces by 
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and the relative deflection at x=0 defines the root displacement and is given by 
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where dK and cK (K=V0,M0,N0) are compliance coefficients, which depend on the relative thickness-wise position  of the 
delamination, on the orthotropy ratios  and , and on the correction factor kw, as detailed in what follows. 

 

 
 

Figure 2: Schematics of the elementary loading conditions considered for the analytical derivation of the compliance coefficients. 
 
(1) Symmetrical transverse forces 
The first schematic, shown in Fig. 2(s1), corresponds to the end loading with V0≠0, M0=0 and N0=0. In this case, we 
have 
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noting that 2( // )x xz xzE G     . 

(2) Symmetrical bending 
The second schematic, shown in Fig. 2(s2), corresponds to the end loading with M0≠0 and V0=N0=0. In this case, we 

obtain 0 0M Vc d  defined by Eqn. (18), according to Betti's theorem, and 
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together with Eqns. (20) and (21). 
(3) Pair of longitudinal forces with compensating moment 
The third schematic, shown in Fig. 2(s3), corresponds to the end loading with N0≠0, V0=0 and M0=0. In this case, 
equilibrium is guaranteed by a compensating counter-clockwise moment equal to N0(h1+h2)/2 applied to the lower beam. 
In this case, the compliance coefficients are 
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where F is defined in Eqn. (20) together with Eqn. (21). 
The beam model proposed in this paper leads to the simple explicit expressions given by Eqns. (18) to (24) for the 
compliance coefficients describing both root rotations and root displacements as functions of the model parameters. The 
model parameters characterize the specimen material and geometry (namely, the orthotropy ratios and the relative 
thickness of the two layers), in addition to the correction factor kw introduced in Eqn. (1), which is the only a priori 
unknown model parameter. 
Analogous root rotation and displacement compliance coefficients have been derived under the assumption of Euler-
Bernoulli beam theory, as detailed in Appendix A. They are listed below: 
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where the upper/sub-script EB has been used to differentiate with respect to the previous results. These coefficients 

could be obtained from Eqns. (18)-(24) by imposing infinite shear stiffness, which implies ˆ 0a   and then ˆ 0d  . 

Suitable values for kw or EB
wk  are here chosen by reproducing well-established values for the compliance coefficients in the 

literature. In particular, the root rotation coefficients determined in [3] using accurate 2D finite element analyses, shown in 
Table 10 in appendix B, are considered. Details about the matching procedure are given in Appendix B. Tabs. 1-9 show 

the values of kw or EB
wk  obtained by matching the three coefficients in isotropic and orthotropic specimens. The tables 

also define the values of the root rotation and displacement coefficients obtained a posteriori using the matched kw or 
EB
wk  in Eqns. (18)-(24) and (25). In the next two sections some numerical results are shown and discussed, and an 

application of these results is presented with reference to an exemplary fracture problem. 
 
 
NUMERICAL RESULTS AND DISCUSSION 
 

n this section, some sets of numerical results obtained by employing the analytical expressions for the root rotations 
and displacements derived in this paper and listed in Tabs. 1-9 are presented. This has three aims. The first is to 
validate the model through comparison with the results of other methods in the literature. The second is to highlight 

the effects of the choice of the matching compliance coefficient. The third is to discuss the effects of the geometrical and 
material properties of the specimen on the compliance coefficients. 

 

I 
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Figure 3: Correction factors of the average transverse stiffness for isotropic materials (==1) with varying Poisson ratio =0,0.3. 

Results  for matching on 0Nd  are in Tabs. 3 and 9. 
 
 

 
 

Figure 4: Relative rotation compliance coefficients under symmetrical transverse forces for isotropic materials (==1) with varying 
Poisson ratio =0,0.3. 
 
In Figs. 3 to 8 the results based on Timoshenko beam theory (continuous lines in all figures) are shown as functions of 
the relative thickness-wise position  of the delamination. Results obtained using the simplified model based on Euler-

Bernoulli beam theory are presented in Figs. 3 and 9 to 11 (dashed lines). Fig. 3 shows the correction factors kw and EB
wk  

evaluated for isotropic materials (==1 and xz=zx=) on varying the Poisson ratio  =0,0.3. Figs. 4-11 show the root 
rotation and root displacement compliance coefficients obtained using Timoshenko and Euler-Bernoulli beam theory and 
the previously matched correction factors in isotropic and degenerate orthotropic specimens with =1 and =0.5. The 

matching coefficient is shown in the diagrams using triangle marks for 0Vd , circle marks for 0Md  and square marks for 
0Nd ; the compliance coefficients derived using 2D elasticity in [3] and used for the matching are shown by dashed-dot 

lines and presented in Table 10. 
The diagrams, along with the equations in the previous section, highlight the features of the approach, its strengths and 
weaknesses. 
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Figure 5: Relative rotation compliance coefficients under symmetrical bending for degenerate orthotropic materials (=1) with varying 
=0.5,1. The three upper curves refer to =0.5, the lower to =1 (isotropy). 
 

 

 
 

Figure 6: Relative rotation compliance coefficients under a pair of longitudinal forces for degenerate orthotropic materials (=1) with 
varying =0.5,1. The three upper curves refer to =0.5, the lower to =1 (isotropy). 
 
In isotropic and orthotropic symmetric specimens, where =1, all matching procedures lead to the same value of kw, as 

shown in Fig. 3 for isotropy. The same is true for EB
wk , which differs from kw also because it does not depend on the 

Poisson ratios. This implies that matching a single root rotation coefficient against the 2D solutions using Timoshenko or 
Euler-Bernoulli beam theory yields accurate predictions of all other root rotation coefficients, through Eqns. (18), (22), 
(24) and (25), as shown in Figs. 4-6 and 9. As further validation of these results, Tabs. 7 and 8 of Appendix B show that 

for isotropic layers 0.812EB
wk  , 0 5.436V

EBd   and 0 3.659V
EBc  . These values perfectly match the results derived in [10] 

for a symmetrical DCB specimen. 
In isotropic and orthotropic asymmetric specimens, with ≠1, using different root rotation coefficients in the matching 

procedure yields different predictions of kw or EB
wk  and the difference increases on decreasing , as shown in Fig. 3 for an 

isotropic layer. Fig. 3 shows that the percentage difference between the kws calculated using 0Vd  and 0Md  as matching 
coefficient and the Timoshenko model is about 6%,7% for =0.8 and =0,0.3 and 23%,29% for =0.6 and =0,0.3. The 
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discrepancies are observed also in results obtained using Euler-Bernoulli beam theory and imply that the other root 
rotation compliance coefficients calculated a posteriori using Eqns. (18), (22), (24) and (25) differ from those of 2D 

elasticity in Table 10. This is shown in Figs. 4-8 and 9, which also highlight that the values of 0Vd  and 0Md  are quite well 
reproduced when one of the two compliance coefficients is chosen for matching, while quite significant differences are 

found on the derived coefficients when matching is performed on 0Nd . 
 
 

 
 

Figure 7: Relative deflection compliance coefficients under symmetrical transverse forces for isotropic materials (==1) with varying 
Poisson ratio =0,0.3. 
 

 

 
 

Figure 8: Relative deflection compliance coefficients under a pair of longitudinal forces for degenerate orthotropic materials (=1) 
with xz=0.3 and varying =0.5,1. 
 

 
The discrepancies between the sets of results for each compliance coefficient find an explanation in the different 
description of the mechanical behavior according to the beam theory and 2D plane stress conditions. This represents a 
limit of applicability for the structural model proposed in the paper to specimens having a relative position of the 
delamination lower than 0.6. 
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Figure 9: Relative rotation compliance coefficients under symmetrical transverse forces according to the simplified model and for 
degenerate orthotropic materials (=1) with varying =0.5,1. 
 

 
 

 
 

Figure 10: Relative deflection compliance coefficients under symmetrical transverse forces according to the simplified model and for 
degenerate orthotropic materials (=1) with varying =0.5,1. 
 
Similar considerations can be made from the results shown in Figs. 7, 8 and 10, 11 which depict the root displacement 

compliance coefficients 0Vc , 0Nc  and 0V
EBc , 0N

EBc  under symmetrical transverse forces and a pair of longitudinal forces, 

respectively. 0 0M Vc d  and 0 0M V
EB EBc d  are shown in Figs. 4 and 9. 

It is worthwhile noting that the relative rotation compliance coefficients under symmetrical bending and a pair of 
longitudinal forces calculated using the Euler-Bernoulli model coincide with those pertinent to the Timoshenko beam 

based model, shown in Figs. 5 and 6: 0 0M M
EBd d  and 0 0N N

EBd d , even if the correction factors differ. This is a 
consequence of the well known equivalence between the 2D elasticity and beam theory descriptions of the problem under 
such loading conditions, e.g. [8]. On the other hand, the relative rotation compliance coefficient under symmetrical 

transverse forces 0V
EBd , shown in Fig. 9, differs from 0Vd , shown in Fig. 4, according to the following relationship 
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0 0 1(1 )V V
EB s xzd d

  



    
 

        (26) 

 
which is a generalization of Eqn. (B.4) introduced for matching. The difference is made clear by referring to how the 
effects of shear deformations are accounted for in the two formulations. Within the Timoshenko beam theory, the effects 
of the shear deformations are taken into account through the beam compatibility and constitutive equations leading to 
Eqn. (2) which governs the problem and, as a consequence, they enter directly in the expressions of rotations and 
displacements. On the other hand, in the simplified formulation based on the Euler-Bernoulli beam theory the effects of 

shear deformations are included only in the matching procedure for the evaluation of the correction factor EB
wk , as 

discussed in Appendix B. This point is discussed again in the next section with reference to a practical application of the 
two formulations to the analysis of an exemplary fracture specimen, since it has important effects on the determination of 
the root displacement compliance coefficients. 

 
 

 
 

Figure 11: Relative deflection compliance coefficients under a pair of longitudinal forces according to the simplified model and for 
degenerate orthotropic materials (=1) with varying =0.5,1. 
 
The final comment regards the solutions for orthotropic specimens. The correction factors obtained using the Euler-

Bernoulli model EB
wk  are independent of the orthotropy ratio  in all cases. This sets simple rescaling rules for the 

compliance coefficients in Eqn. (25) and values for ≠1 can be easily obtained by rescaling the values for =1 by 1/4 for 
0M

EBd  and 0N
EBd , by 1/2 for 0 0V M

EB EBd c  and 0N
EBc  and by 3/4 0V

EBc . On the other hand, the correction factors obtained using 
the Timoshenko model depend on all the elastic constants and the rescaling rules on the compliance coefficients in Eqns. 

(18)-(24) are more complicated, but for 0Md  and 0Nd  which are independent of the Poisson ratios and rescale as 1/4. To 
conclude, all compliance coefficients depend also on the second orthotropy ratio , however the effect of  is only 
quantitative and does not modify the conclusions drawn above. 
 
 
APPLICATION OF THE RESULTS 
 

his section presents an application of the two formulations developed in the paper to the analysis of an exemplary 
fracture specimen. This allows to clarify how the described results can be effectively used in practice and the 
differences between the two formulations. 

The exemplary case of the symmetric DCB specimen shown in Fig. 12a is considered. The material is linearly elastic and 
orthotropic with principal material directions x, y, z and longitudinal Young's modulus Ex, transverse Young's modulus 

T 
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Ez, in plane shear modulus Gxz and Poisson ratios xz and zx. The specimen is subjected to a pair of transverse forces F at 
a distance a from the crack tip. The interest is here focused on the derivation of the displacement field in the specimen 
and the calculation of the relative transverse load point displacement w, in particular. In order to do this, within classical 
beam theories, the upper and lower arms behind the crack tip are treated as cantilever beams, built-in at the crack tip cross 
section (x=a), and with the same length a and constant rectangular cross sections with unit width and height h. The 
effective compliance of the intact portion ahead of the crack tip is accounted for through suitable root rotations and 
displacements. 

 

 
 

Figure 12: Symmetric DCB specimen: a) geometry and loading configuration; b) loads at the crack tip. 
 
Assuming Timoshenko beams and using the concepts of root rotations and displacements, the maximum relative 
deflection w occuring between the two arms can be written as follows 
 

3

0 03
11

8 2

s xzx

w w
Fa Fa

a
G hE h




              (27) 

 
where the first term on the right hand side is the result of the bending moment induced by the applied loads; the second 
term accounts for the effects of the shear deformations along the arms; the last two terms are the corrections related to 
the relative rotation 0 and deflection w0 at the crack tip cross section. Alternatively, assuming Euler-Bernoulli beams, 
the maximum relative deflection wEB at the loaded point can be written as follows 
 

3

0 03
1

8EB EB EB

x

w w
Fa

a
E h

     ,         (28) 

 
which differs from Eqn. (27) for the absence of the term accounting for the effects of the shear deformations along the 
arms. 
On the basis of Eqns. (16) and (17), setting the crack tip loads N0=0, V0=F and M0=Fa, as shown in Fig. 12b, and noting 

that 2( // )x xz xzE G      yield 

 

0 0 0 0

3 2

3 2
11 1

8 4M V M V
xz

x s xx x

w
Fa Fa Fa F

d d c c
E h EE h E h

 
 

 
         

  
    (29) 

 
and 
 

 0 0 0 0

3 2

3 2
11 1

8 M V M VEB
EB EB EB EB

x xx x

w
Fa Fa Fa F

d d c c
E h EE h E h

      .      (30) 

 
Firstly, the equations above explain why some of the root displacement coefficients, those that do not multiply by the 
crack length, do not enter the expression of the energy release rate, which can be obtained using the compliance method. 

Secondly, taking into account Eqn. (26) and noting that 0 0M M
EBd d , 0 0M Vc d , 0 0M V

EB EBc d  show that all terms of the two 
relations assume the same values but for the last term, which describes the effect of the root displacement due to the 
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crack tip shear force. As an example, without loss of generality, in an isotropic specimen with =0.3 from Tabs. 1 and 7 of 

Appendix B we have 0 1.559Vc   and 0 03.659 2.347V V
EBc c  . 

In order to clarify this relevant difference and understand which model leads to the most accurate estimate for the root 
displacement due to crack tip shear, the finite element method has been used and a numerical analysis has been carried out 
through the commercial finite element code ANSYS 2019R1. A mesh consisting of plane stress four-node quadrilateral 
elements has been used and convergence checked by varying the mesh in size and number of elements. The 
corresponding root rotation and displacement compliance coefficients have been determined following the method 
described in [3]. The root rotation compliance coefficients due to bending moment and transverse force listed in Table 10 
of Appendix B have been successfully reproduced. Furthermore, the root displacement compliance coefficient due to 

shear has been calculated, that is 0 1.537Vc  . This result shows straightforwardly that the Timoshenko beam based model 
leads to more accurate estimates for the root displacement compliance coefficients than the Euler-Bernoulli beam based 
model which yields a 138% error on the prediction. In order to account for the effects of shear deformations in fracture 
specimens approximated as Euler-Bernoulli beams, the simplified model requires that the particular matching procedure 
based on Eqn. (B.4) is used, which has the effect of decreasing the correction factor of the transverse elasticity to include 
the effects of the shear deformations. However, this leads to accurate estimates for the root rotations but to eccessive 
overestimates for the root displacements. 
On the other hand, it is worthwhile noting that the terms on the right hand side of Eqn. (29) have different relevance in 
the evaluation of the maximum relative deflection in the DCB specimen under consideration. In particular, the fourth 
term related to root displacements under shear is in general little to not relevant compared to the others for many 
geometries and orthotropy ratios. To better understand this point, the contributions due to bending moment, shear 
deformations and root rotations and displacements are conveniently evaluated as percentage of the total maximum relative 
deflection for degenerate orthotropic specimens (=1) with =1,0.5,0.05,0.025. In the case of medium/long 

delaminations (a/h≥6) the term 0Vc  has no relevance and is smaller than 1% of the total even for very low =0.025. For 
medium/short length delaminations (e.g. a/h=3), the first term related to bending moment induced by the applied loads is 
the most relevant for high =1,0.5 but decreases from about 55% of the total for =1 to 26% for =0.025; the 
contribution of root rotations becomes the most relevant for low =0.05,0.025 and increases from 40% for =1 to 58% 
for =0.025; the shear deformations term increases from 5% for =1 to 12% for =0.025; once again, the contribution 

of 0Vc  has very little relevance and is smaller than 1% for =1,0.5 and equals to 3% for =0.05 and 4% for =0.025. 
 
 
CONCLUSIONS 
 

his paper deals with the analytical derivation of root compliance coefficients which can be used to define root 
rotations and root displacements at the crack tip cross section of orthotropic cracked beams. The work is limited 
to homogeneous and orthotropic materials with the axes of material symmetry parallel to the reference axes. 

Explicit and simple expressions have been derived for use in practical applications under general loading conditions at the 
crack tip. Accounting for root effects is important to accurately define energy release rate, mode mixity and displacements 
fields in the specimens. 
The derivation builds on and extends one-dimensional formulations in the literature and describes the intact part of the 
specimen as two beams joined by an elastic Winkler type bond. The effects of both shear deformations and transverse 
elasticity are taken into account; in addition, the continuity condition imposed on the relative sliding displacements of the 
two beams at their interface to describe the continuity of the intact portion ahead of the crack tip makes the axial and 
bending problems coupled. This allows to extend Thouless' [10] treatment to problems where the geometry is not 
symmetrical and where root displacements may be relevant, and to loading by axial forces. 
The novel analytical expressions for the root coefficients depend on the elastic constants and the geometrical parameters 
and one a priori unknown parameter, kw, which defines the connection modulus and describes the effects of the 
transverse elasticity. The parameter is obtained through matching of well established results in the literature for the root 
rotation compliance coefficients. 
For fixed geometry and material properties, obtaining an unique value for the parameter kw derived by matching the root 
rotations due to the different elementary loadings would imply an accuracy of the one-dimensional model in predicting the 
displacement field comparable to that of 2D elasticity. The results show that this is true in isotropic and orthotropic 

T 
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systems with mid-thickness cracks (=1) and in systems where the crack is only slightly misaligned, down to =0.8. In 
highly asymmetric systems, the connection modulus matching the elasticity solutions appears not to be unique and 
depends on the elementary loading conditions. The differences are due to the limitations of the structural model, which 
neglects mutual coupling effects due to the deformations of adjacent points along the longitudinal axis (Winkler type 
support). In these problems, the matching coefficient to determine the a priori unknown model parameter should be 
chosen based on the role played by each compliance coefficient in the problem of interest. As an example, in a fracture 
mechanics problem devoted to the evaluation of the energy release rate, the fact that the contribution of the root rotations 
due to crack tip moments always prevails on that of the shear forces, since it varies as a higher power of the crack length, 
could suggest to choose the root rotation under symmetrical bending as matching coefficient. 
Results also show that the model of two Timoshenko beams connected by a Winkler type bond accurately defines the 
root displacement coefficients of symmetric fracture specimens under general loading conditions and overcome the 
limitations of models based on Euler-Bernoulli beam theory, which largely overestimate predictions of these coefficients. 
On the other hand, the simplicity of the closed form solutions of the Euler-Bernoulli model, where the correction factor 
is independent of the material orthotropy and simple rescaling formulas can be used to define root coefficients, suggests 
the use of these solutions for all problems where the effects of the root displacements are negligible compared to the 
other root deformations. 
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APPENDIX A. SIMPLIFIED FORMULATION ACCORDING TO EULER-BERNOULLI BEAM THEORY 
 

his Appendix presents a simplified formulation based on modeling the two semi-infinite beams shown in Fig. 1b 
as linearly elastic and orthotropic Euler-Bernoulli beams. 
According to Euler-Bernoulli beam theory, the shear strains within the two layers are neglected. This implies that, 

firstly, the rotations are related to the deflections of the beams (i=1,2) as 
 

'
i iw              (A.1) 

 

secondly, infinite shear stiffnesses are assumed so that ˆ 0a   and then ˆ ˆ4 0d e   . In this case, the general solution of 
Eqn. (7) modifies as 
 

   1 2 3 4exp( ) cos( ) sin( ) exp( ) cos( ) sin( )np x C x C x x C x C x             (A.2) 
 
where 
 

4 ˆ / 2e             (A.3) 
 

with ê  given by Eqn. (8). 
In analogy to the procedure described in the second section, the shear tractions follow from Eqn. (11), the internal forces 
are given by Eqn. (12), and the rotations and axial displacements are derived by Eqns. (13a-b); whereas Eqn. (13c) for the 
deflections is substituted by the following 
 

15di i iw x C              (A.4) 

 
The remaining Eqn. (14) for the relative rotation and deflection and Eqn. (15) for the arbitrary constants are still valid. 
Following the procedure described in the second section yields explicit expressions of the compliance coefficients 
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pertinent to this simplified model based on Euler-Bernoulli beam theory. They are given by Eqn. (25). Once again, an a 

priori unknown parameter EB
wk  enters into these expressions. Its identification requires a matching procedure similar to 

that presented in the third section and detailed in Appendix B also for the Timoshenko beam model. 
To conclude, it is worthwhile noting that for the special case of symmetric geometry (=1) and loadings (N0=0) the 

expressions for the compliance coefficients 0M
EBd , 0 0V M

EB EBd c  and 0V
EBc  given by Eqn. (25) coincide with those reported in 

[10] in both isotropy and orthotropy. 
 
 
APPENDIX B. MATCHING PROCEDURE AND SUMMARY RESULTS TABLES 
 

n this Appendix the numerical results shown and discussed in the fourth section are listed in table form for different 
geometries (=1,0.8,0.6,0.4). The results obtained using the model according to Timoshenko beam theory are 
presented in Tabs. 1 to 3 for isotropic specimens (==1) with varying Poisson ratios xz=zx==0,0.3,0.5 and in 

Tabs. 4 to 6 for orthotropic specimens with =1, =0.5 and varying Poisson ratios xz=0,0.3,0.5. Similar results through 
the simplified model according to Euler-Bernoulli beam theory are reported in Tabs. 7 to 9 for =1 and =1. 
 

  kw 0Vd  0Md  0Nd  0Vc  0Nc  
 0 2.603 3.036   2.044 1.518 
1 0.3 4.472 2.316 16.154 8.077 1.559 1.158 
 0.5 7.116 1.836   1.236 0.918 
 0 2.458 2.830 2.137 1.415 

0.8 0.3 4.134 2.182 13.214 6.607 1.648 1.091 
 0.5 6.427 1.750 1.322 0.875 
 0 1.988 2.871 2.535 1.436 

0.6 0.3 3.111 2.295 10.851 5.426 2.027 1.148 
 0.5 4.486 1.911   1.688 0.956 
 0 1.309 3.318 3.656 1.659 

0.4 0.3 1.820 2.814 9.071 4.536 3.101 1.407 
 0.5 2.347 2.478 2.730 1.239 

 

Table 1: Numerical results according to the Timoshenko beam based model and 0Md based matching for isotropic materials (==1). 

 
Matching  the compliance coefficients using the Timoskenko beam based model 
In order to define the correction factor kw, a matching has been performed on the root rotations due to moment, shear 
and normal force presented in [3]. The numerical values used in the present paper are the difference between the root 

rotation compliance coefficients for the upper, say  1
Ka , and lower, say  2

Ka , layers given in Table 1 of [3] (the upper-script 

K=M0,V0,N0 denotes the end loading moment, shear or normal force). Matching is then based on equating  1  2
K K Kd a a  . 

For completeness, the numerical values  1  2
K Ka a  are reported in Table 10. 

As an example, with reference to the model according to the Timoshenko beam theory, for matching based on the root 

rotation compliance coefficient 0Vd , under symmetrical transverse force, the use of Eqn. (18) leads to the following 
expression 
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k









          (B.1) 

 

where 0 0 0
 1  2

V V Va ad    has been enforced. Substituting Eqn. (B.1) into Eqns. (19) to (24) gives the remaining compliance 
coefficients. These results are reported in Table 2 for isotropic specimens and in Table 5 for degenerate orthotropic 

specimens with =0.5 (=1). It is worthwhile noting that 0Md  and 0Nd  for a generic  could be obtained on rescaling of 
1/4 those pertinent to =1; rescaling of the other coefficients is through more complicated expressions of the elastic 
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constants. Similar considerations are valid for matching based on the other root rotation compliance coefficients 0Md  and 
0Nd , under moment and normal force, but explicit expressions for 0M

wk  and 0N
wk  cannot be derived from Eqns. (22) and 

(24) together with Eqns. (20) and (21). The pertinent numerical results are listed in Tabs. 1 and 3 for isotropic specimens 
and in Tabs. 4 and 6 for degenerate orthotropic specimens with =0.5 (=1). 
 

  kw 0Vd  0Md  0Nd  0Vc  0Nc  
 0 2.604 3.036   2.043 1.518 
1 0.3 4.474 2.316 16.153 8.077 1.559 1.158 
 0.5 7.120 1.836   1.236 0.918 
 0 2.601 2.751   2.061 1.376 

0.8 0.3 4.451 2.103 13.109 6.554 1.576 1.052 
 0.5 7.049 1.671   1.252 0.836 
 0 2.590 2.515   2.137 1.258 

0.6 0.3 4.358 1.939 10.440 5.220 1.647 0.970 
 0.5 6.776 1.555   1.321 0.778 
 0 2.598 2.355   2.332 1.178 

0.4 0.3 4.205 1.851 8.151 4.075 1.833 0.926 
 0.5 6.277 1.515   1.500 0.758 

 

Table 2: Numerical results according to the Timoshenko beam based model and 0Vd based matching for isotropic materials (==1). 
 

  kw 0Vd  0Md  0Nd  0Vc  0Nc  
 0 2.638 3.016   2.026 1.508 
1 0.3 4.551 2.296 16.124 8.062 1.543 1.148 
 0.5 7.275 1.816   1.220 0.908 
 0 3.864 2.257   1.604 1.128 

0.8 0.3 7.604 1.609 12.432 6.216 1.143 0.804 
 0.5 14.212 1.177   0.836 0.588 
 0 6.345 1.607   1.217 0.803 

0.6 0.3 15.418 1.031 9.310 4.655 0.781 0.515 
 0.5 39.156 0.647   0.490 0.323 
 0 11.966 1.097   0.901 0.549 

0.4 0.3 40.932 0.593 6.762 3.381 0.487 0.297 
 0.5 217.687 0.257   0.211 0.129 

 

Table 3: Numerical results according to the Timoshenko beam based model and 0Nd based matching for isotropic materials (==1). 

 
  kw 0Vd  0Md  0Nd  0Vc  0Nc  
 0 2.603 4.294 3.437 2.147 
1 0.3 3.757 3.574 19.210 9.605 2.861 1.787 
 0.5 5.013 3.094   2.477 1.547 
 0 2.458 4.002 3.595 2.001 

0.8 0.3 3.499 3.354 15.714 7.857 3.013 1.677 
 0.5 4.610 2.922 2.625 1.461 
 0 1.988 4.060 4.264 2.030 

0.6 0.3 2.699 3.484 12.904 6.452 3.659 1.742 
 0.5 3.409 3.100 3.256 1.550 
 0 1.309 4.692   6.148 2.346 

0.4 0.3 1.643 4.188 10.787 5.394 5.488 2.094 
 0.5 1.942 3.852 5.048 1.926 

 

Table 4: Numerical results according to the Timoshenko beam based model and 0Md based matching for orthotropic materials with 
=1 and =0.5. 
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  kw 0Vd  0Md  0Nd  0Vc  0Nc  

 0 2.604 4.294   3.437 2.147 
1 0.3 3.759 3.574 19.210 9.605 2.860 1.787 
 0.5 5.016 3.094   2.476 1.547 
 0 2.601 3.891   3.467 1.945 

0.8 0.3 3.744 3.243 15.589 7.795 2.889 1.621 
 0.5 4.984 2.811   2.504 1.405 
 0 2.590 3.557   3.594 1.778 

0.6 0.3 3.688 2.981 12.415 6.208 3.012 1.490 
 0.5 4.859 2.597   2.624 1.298 
 0 2.598 3.331   3.921 1.665 

0.4 0.3 3.606 2.826 9.693 4.846 3.328 1.413 
 0.5 4.465 2.490   2.932 1.245 

 

Table 5: Numerical results according to the Timoshenko beam based model and 0Vd based matching for orthotropic materials with 
=1 and =0.5. 
 

  kw 0Vd  0Md  0Nd  0Vc  0Nc  
 0 2.638 4.266   3.408 2.133 
1 0.3 3.818 3.546 19.175 9.587 2.833 1.773 
 0.5 5.107 3.066   2.449 1.533 
 0 3.864 3.192   2.697 1.596 

0.8 0.3 6.084 2.544 14.784 7.392 2.149 1.272 
 0.5 8.828 2.112   1.784 1.056 
 0 6.345 2.272   2.047 1.136 

0.6 0.3 11.386 1.696 11.072 5.536 1.528 0.848 
 0.5 19.023 1.312   1.183 0.656 
 0 11.966 1.552   1.516 0.776 

0.4 0.3 26.246 1.048 8.041 4.021 1.023 0.524 
 0.5 56.875 0.712   0.695 0.356 

 

Table 6: Numerical results according to the Timoshenko beam based model and 0Nd based matching for orthotropic materials with 
=1 and =0.5. 
 
Matching  the compliance coefficients using the Euler-Bernoulli beam based model 
With reference to the simplified model according to the Euler-Bernoulli beam theory, for matching based on the root 

rotation compliance coefficient 0M
EBd  under moment, the use of the first of Eqn. (25b) leads to the following expression 
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where 0 0 0
 1  2

M M M
EBd a a   has been enforced. Substituting Eqn. (B.2) into Eqns. (25a) and (25b) gives the remaining 

compliance coefficients. Similarly, for matching based on the root rotation compliance coefficient 0N
EBd  under normal 

force, from the second of Eqn. (25b) we derive 
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 EB
wk  0V

EBd  0M
EBd  0N

EBd  0V
EBc  0N

EBc  
1 0.812 5.436 16.154 8.077 3.659 2.718

0.8 0.790 4.990 13.214 6.607 3.769 2.495 
0.6 0.714 4.791 10.851 5.426 4.231 2.396 
0.4 0.577 4.998 9.071 4.536 5.507 2.499 

 

Table 7: Numerical results according to the Euler-Bernoulli beam based model and 0M
EBd based matching for orthotropic materials with 

==1. 
 

 EB
wk  0V

EBd  0M
EBd  0N

EBd  0V
EBc  0N

EBc  
1 0.812 5.436 16.153 8.077 3.659 2.718

0.8 0.816 4.911 13.109 6.555 3.680 2.456
0.6 0.833 4.435 10.440 5.220 3.768 2.218
0.4 0.885 4.035 8.151 4.075 3.995 2.018

 

Table 8: Numerical results according to the Euler-Bernoulli beam based model and 0V
EBd based matching for orthotropic materials with 

==1. 
 

The third case of matching based on the root rotation compliance coefficient 0V
EBd  under transverse force deserves more 

attention. Neglecting the effects of shear deformations in fracture specimens approximated as Euler-Bernoulli beams 
leads to unacceptable underestimates of the energy release rate. In order to overcome this limit, as suggested in [10], it 

appears more suitable to base the matching of 0V
EBd  on a modified root rotation coefficient obtained by modifying the 

exact 2D results 0 0
 1  2
V Va a  to account for the effects of the shear deformations so that they are correctly modelled in the 

energy release rate. This is done by equating 
 

 0 0 0 0 0 1
 1  2  1  2 (1 )V V EB V EB V V

EB s xzd a a a a
  



       
 

      (B.4) 

 

where the second term on the right hand side of Eqn. (B.4) comes directly from the expression of the energy release rate 
defined in Eqn. (6) in [3] in terms of modified crack tip stress resultants. For symmetric specimens this is equivalent to 
perform matching on the energy release rate. Combining Eqn. (B.4) and the second of Eqn. (25a) gives 
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This modification implies that, in the case for =1, the correction factors obtained by matching any of the three root 
compliance coefficients coincide. 

The rescaling laws presented in [3] for the root compliance coefficients  1  2
K K Kd a a   show that the correction factors 

obtained using Eqns. (B.3-5) are independent of . The root compliance coefficients in Eqn. (25) for ≠1 can then be 

easily obtained by rescaling the values corresponding to =1 by 1/4 for 0M
EBd  and 0N

EBd , by 1/2 for 0 0V M
EB EBd c  and 0N

EBc  

and by 3/4 for 0V
EBc . Tabs. 7 to 9 report results for =1 and =1. 

 
 EB

wk  0V
EBd 0M

EBd  0N
EBd 0V

EBc  0N
EBc  

1 0.818 5.416 16.124 8.062 3.639 2.708
0.8 1.009 4.417 12.432 6.216 3.138 2.208
0.6 1.317 3.527 9.310 4.655 2.672 1.763 
0.4 1.868 2.777 6.762 3.381 2.281 1.389 

 

Table 9: Numerical results according to the Euler-Bernoulli beam based model and 0N
EBd based matching for orthotropic materials with 

==1. 
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  0 0
 1  2
M Ma a  0 0

 1  2
N Na a  

0 0
 1  2
V Va a  

0 0
 1  2
V EB V EBa a  

xz = 0 0.3 0.5 
 1 16.154 8.062 3.036 2.316 1.836 5.436 
1 0.8 13.214 6.216 2.751 2.103 1.671 4.911 
 0.6 10.851 4.655 2.515 1.939 1.555 4.435 
 0.4 9.071 3.381 2.355 1.851 1.515 4.035 
 1 19.210 9.587 4.294 3.574 3.094 7.688 

0.5 0.8 15.714 7.392 3.891 3.243 2.811 6.945 
 0.6 12.904 5.536 3.557 2.981 2.597 6.272 
 0.4 10.787 4.021 3.330 2.826 2.490 5.706 

 

Table 10: Numerical values of the root rotations calculated from [3] and used for matching for orthotropic materials with =1 and 
=0.5,1. 
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