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ABSTRACT. Up to this moment, there is no guideline regarding the materials 
to produce mouthguards. The most used is Ethylene-Vinyl Acetate (EVA). 
Studies indicate that laminating EVA sheets with rigid components could 
increase the protection capacities of the mouthguards. On the other hand, 
other studies suggest that only replacement of the material within its structure 
can increase energy absorption. Therefore, this work aims to evaluate the 
impact response of four different foils when compared to a 4 mm thickness 
EVA sheet. Five different materials were subjected to impact tests with 
energies of 1.72 J, 2.85 J and 4.40 J. In this context was considered the 
following materials: EVA foils (G1), EVA foils with an EVA foam core (G2), 
EVA foils with an acetate core (G3), Foils of Erkoloc-pro (G4) and Foils of 
Ortho IBT resin (G5). Comparisons between the materials were made by 
qualitative analysis of the average energy-time and load-displacement curves, 
as well as by comparison of the peak load, maximum displacement, contact 
time and absorbed energy using the Kruskal-Wallis test. It was possible to 
conclude that statistically significant differences were found in the energy 
absorbed (p=0.001). Laminated foils with a soft core (G2) are a good option 
to produce mouthguards, while EVA foils with an acetate core (G3) and foils 
of Ortho IBT resin (G5) were declared unsuitable. 
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INTRODUCTION 
 

t is known that collision or contact sports and some recreational activities can expose practitioners to harmful impacts 
in the orofacial region, with the associated risk of injury. Despite the current call for prevention in the health area, 
studies developed by Green [1] and Knapik et al. [2] reveal that the incidence and prevalence of orofacial lesions tend 

to increase. Bourguignon and Sigurdsson [3] estimated, for example, that 14% to 25% of children, adolescents and young 
adults can be the target of at least one traumatic episode in their lifetime. Therefore, in particular, athletes who practice 
collision or contact sports are advised to use safety devices, such as mouthguards, to minimize the risk of traumatic injuries. 
Several authors even claim that properly adjusted mouthguard reduces the incidence of orofacial injuries in sports [4-6]. For 
this purpose, there are three types of mouthguards: Ready-Made or Stock Mouth guard; the Mouth-Formed “Boil-And- 
Bite” and the Custom-Fitted Mouth guard, which is considered the best protection for teeth, lips and jaw, because it is done 
by a dentist or dental technician and can be adapted to the athlete’s mouth [7]. According to Bastian et al. [8] the boil and-
bite mouthguards were the most recommended by orthodontists. However, most patients who used these mouthguards 
reported forgetfulness as the most frequent reason for not always using them due to the discomfort created. On the other 
hand, some athletes do not use mouthguards because they consider that it affects performance and promotes some 
discomfort [9], but Ferreira et al. [10] clarify that mouthguards do not impair the athlete’s performance.  
According to American Dentistry Association Council (see https://www.ada.org/en/member-center/oral-health-
topics/mouthguards), a mouthguard should not only protect teeth and surrounding structures but also prevent ingestion or 
inhalation in case of loss or fractured teeth. Also, it must be made of resilient materials able to dissipate the forces applied 
during an impact and to reduce the deflection transmitted to the underlying structures. The open literature [1, 3, 11, 12] also 
reports that such devices should be psychologically and physically comfortable for the patient. However, up to this moment, 
there is no guideline regarding the materials to produce mouthguards, but Green [1] and Fukasawa et al. [13] indicate that 
Ethylene-Vinyl Acetate (EVA), a thermoplastic co-polymer, is the most used material in these components. Nevertheless, 
the higher vinyl acetate content promotes greater flexibility for EVA foils, which is reflected in lower stiffness and hardness. 
On the other hand, higher damping capacity and, consequently, better energy absorption.  
In this context, Knapik et al. [2] report that, although latex rubber was a material widely used in the first mouthguards, it 
has less shock absorption, less hardness and less tear and tensile strength than EVA or polyurethane. Kadota et al. [14] use 
mouthguards with 3 mm of EVA to protect weak periodontal tissue of children, in which the thickness of the sheet is 
considered a determining factor for the reduction of the external force to teeth. However, for Westerman et al. [15] this 
minimum thickness must be between 3 and 4 mm to absorb energy and reduce the forces transmitted when impacted. These 
authors also mention that there is an inverse proportion between the shock absorption capacities and the thickness of the 
mouthguard. Nevertheless, according to Australian Dental Association, a minimum thickness of 4 mm is required for the 
labial flange of a mouthguard. Moreira et al. [16] developed studies using a custom-made mouthguard produced by the 
Erkoform 3D Motion with the Occluform-3 accessory considering two plaques of ethyl vinyl acetate 4 mm and 2 mm thick 
and found that there were no statically significant differences concerning the retention parameters. On the other hand, 
Takeda et al. [17] and Lunt et al. [18] report that higher values of thickness for mouthguards improve the protection because 
they increase the absorbed energy, but excessive thicknesses impair the athletes’ comfort and performance. Consequently, 
it compromises the use of mouthguards in critical situations. Besides that, Lunt et al. [18] concluded that only the 
combination of different materials, EVA with rigid laminates sandwiches and/or additional air spacing, is possible to 
promote significant improvements in the level of protection.  
EVA polymeric foams have gained increasing importance due to a unique combination of properties, such as good damping 
performance, lightness, good ageing, chemical resistance and inertness. In this context, the open literature reports significant 
benefits in terms of absorbed energy when air cells are introduced within the EVA sheet thickness or with the addition of 
foaming agents [1, 3, 13, 19]. However, the main disadvantage of the current standard of production of customized 
mouthguards is the fabrication process that requires two appointments - one for impression-taking and another for insertion 
and athlete instruction – and implies wasting the excess of the material, increasing the associated costs. 3D printing could 
be the solution to overcome this limitation. New materials with shore A hardness similar to that of EVA foils have become 
available and could be useful to produce mouthguards, guaranteeing the required precision and preventing material waste 
[1, 2].  
Although all options have been widely used in other sports or even in the development of passive safety mats for athletes, 
from a scientific point of view, there are still few studies regarding the mechanical characterization of these materials for 
application in mouthguards. Therefore, this study intends to evaluate the response to the impact of five materials to obtain 
an architecture with better performance. In this context, it can replace the conventional EVA in mouthguards. For this 
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purpose, the following materials will be considered: EVA foils, EVA foils with an EVA foam core, EVA foils with an acetate 
core, Foils of Erkoloc-pro and Foils of Ortho IBT resin. Impact tests were carried out with energies of 1.72 J, 2.85 J and 
4.40 J, and the results compared with those obtained with EVA. 
 
 
EXPERIMENTAL PROCEDURE 
 

ive groups of thermoforming foils, conveniently described in Tab. 1, were prepared to perform low velocity impact 
tests by drop-weight. The first group used EVA, considered a generic foil with a vinyl acetate ratio <0.3 % and Shore 
A 82 hardness. For the EVA_SOFT and EVA_HARD groups, laminated foils were produced using a hot press 

machine and by the moulding technique. Erkoloc-pro foils (with the hard side of PETG and the soft side of TPU) from 
Erkodent® with 3 mm were used in the ERKOLOC group. Finally, in the RESIN_IBT group, the foils were printed on the 
NextDent™ 5100 3D printer. The chosen material was NextDent Indirect Bonding Tray (Ortho IBT), a monomer based 
on acrylic esters with Shore A hardness similar to EVA.  
 

Group/Material Thickness Structure 

EVA EVA 4 mm  
 

EVA_SOFT EVA + EVA foam 
1.5 mm EVA+2 mm EVA 
foam+1.5 mm EVA  

EVA_HARD EVA + Acetate 2 mm EVA+0.5 mm 
acetate+2 mm EVA  

ERKOLOC PETG co-polyester + Therm. 
polyurethane 

2 mm PETG+1 mm TPU  

RESIN_IBT 
Aliphatic Urethane Acrylate 
Oligomer 4 mm  

 

Table 1: Materials analysed in this study. 
 
The low velocity impact tests were carried out using a drop weight-testing machine Instron-Ceast 9340. A 10 mm diameter 
impactor with a mass of 3.4 kg was used. The test was performed on circular section samples of 55 mm and the impactor 
strokes at the center of the samples obtained by centrally supporting the 120x120 [mm] samples. Impact energies of 1.72 J, 
2.85 J and 4.40 J were applied, which correspond to impact velocities of 1 ms-1, 1.29 ms-1 and 1.61 ms-1, respectively. The 
tests were carried out at room temperature and, for each group/condition, five specimens were tested. 
Finally, comparisons between mouthguard materials were made by qualitative analysis of the average energy-time and load-
displacement curves, as well as by comparison of the peak load (N), maximum displacement (mm), impact time (ms) and 
absorbed energy (J) using the Kruskal-Wallis test. 
 
 
RESULTS AND DISCUSSION 
 

rom the impact tests carried out, Fig. 1 shows the typical curves obtained for all materials tested for the impact 
energy of 4.4 J. However, the profile of these curves is representative of all others obtained for 1.72 J and 2.85 J. 
However, it is noted higher energies than 4.4 J for EVA and EVA_Soft, which are a consequence of these materials' 

mechanical properties. In fact, the plates produced with these materials have a very elastic behaviour. Consequently, the 
displacement is superior, producing, in this case, higher energy values. 
Fig. 1a) shows typical energy-time curves, which show that the impact energy was not high enough to promote full 
penetration, because the impactor sticks into specimens and rebound always. The beginning of the plateau is coincident 
with the loss of contact between the striker and the specimen. Hence, this energy coincides with the absorbed energy by the 
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specimen [20, 21]. Therefore, the difference between this energy and the energy at peak load is the elastic energy. On the 
other hand, Fig. 1b) shows typical load-displacement curves, where it is possible to observe that the load increases up to a 
maximum value (Pmax) followed by a drop after the peak load. This drop is due to the loss of contact between the striker 
and specimen. During unloading it is possible to see the influence of the different foils structure. 
Based on the results obtained in these tests, Tab. 2 presents the maximum load, maximum displacement, contact time and 
absorbed energy, in terms of average values and standard deviation for all materials. A statistical analysis was also performed 
resorting to IBM SPSS® Statistics version 23. Group comparisons were made with the Kruskal-Wallis test and all post-hoc 
comparisons considering Bonferroni correction. The significance level was set at 0.05. Statistically significant differences 
were found in the energy absorbed (p=0.001), regardless of the impact energy.  
 

 
 
 
 
 

Fig. 2. Impact test with 4.40 J (a) variation of energy in time; (b) relation between load and displacement. 

 
 
 
 
 
 
 
 
 

Figure 1: For all materials, typical: a) energy versus time curves; b) load versus displacement curves. 
 
 

Group/Material Peak Load [N] Max Displacement [mm] Contact time [ms] Absorbed energy [J] 

EVA 511.8 (±25.6)a 20.1 (±0.6)a 18.8 (±0.5)a 3.5 (±0.3) 

EVA_SOFT 455.5 (±10.5)b,c 23.2 (±0.8)b 21.4 (±0.5)b,c 3.5 (±0.2) 

EVA_HARD 858.3 (±32.4)c 11.9 (±0.6) 12.7 (±0.6)b 4.1 (±0.1)a 

ERKOLOC 1549 (±24.9)a,b 7.2 (±0.1)a,b 6.5 (±0.1) 2.9 (±0.2)a,b 

RESIN_IBT 796.2 (±51.3) 11.9 (±0.9) 11.7 (±0.9)c 4.4 (±0.1)b 

p <0.001* <0.001* <0.001* <0.001* 
 

Values represent average (± ) standard deviation. Similar superscript letters indicate groups that present statistically significant differences at the 0.05 level. 
 

Table 2: Average values of the peak load, maximum displacement, and elastic recuperation at impacts of 4.4 J 
 
Pairwise comparisons indicate that EVA_SOFT is statistically superior to ERKOLOC regarding maximum displacement 
(p=0.006 and p<0.001, respectively) and contact time (p=0.006 and p<0.001, respectively). The EVA_SOFT group 
simultaneously presented the highest contact time and the lowest values of peak impact load. As reported by Verdejo and 
Mills [22] and Mocian et al. [23], soft damping systems, like this laminated foil, tend to increase the contact time of impacts 
and, consequently, spread energy over a larger area, decreasing the damage in a local area. ERKOLOC presents a mean peak 
impact force, statistically superior to EVA (p=0.017) and EVA_SOFT (p<0.001). EVA_HARD and RESIN_IBT presents 
the higher energy absorption by the impactor statistically superior to ERKOLOC (p=0.001 and p<0.001, respectively). 
From Tab. 2, for example, it is possible to find an increase of about 41.4% in the absorbed energy when the EVA_HARD 
material is compared with Erkoloc, but in terms of maximum load there is a decrease around 44.6%.  
This evidence can be reported in Fig. 2, where is shown the impact damage observed on all materials with 4.4 J impact. A 
close observation of the contact area of the impactor reveals barely noticeable permanent deformation in EVA (a) and 
EVA_SOFT (b) foils. EVA_HARD (c) foils were perforated and showed a wide area of delamination surrounding the 
impact. ERKOLOC (d) showed the narrowest area of contact associated with puncture type permanent association. Though 
no permanent deformation was visible on the surface of RESIN_IBT (e) it was clear that the foil fractured.  

(a) (b) 
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Finally, Tab. 3 presents the restored energy for all materials and the impact energies to compare the impact performance in 
a wider range of energies. Of all the tested materials, it is possible to verify that the ones that presented the highest restored 
energy were EVA and Erkolock. Therefore, when comparing them, it appears that for the lowest impact energy (1.72 J) 
Erkoloc presents a restored energy around 7.5% lower than that obtained with EVA. However, when the impact energy 
increases, the restored energy obtained with the Erkolock material is higher than the values observed with EVA. In this 
case, compared to EVA, increases of around 9.7% and 26.7% were observed for Erkolock, respectively, for impact energies 
of 2.85 J and 4.4 J. Therefore, for higher energies, Erkoloc shows more tendency to restore energy after impact. On the 
other hand, it is noticed that for the impact energy of 4.4 J, EVA_SOFT was the second material that presented the highest 
restored energy, which means that these foils have a good impact absorption capacity for impacts with high energy levels. 
These results are in good agreement with those obtained by Mocian et al. [24]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Impact damages observed for an impact energy of 4.4 J and for: (a) EVA; (b) EVA_SOFT; (c) EVA_HARD; (d) ERKOLOC; 
(e) RESIN_IBT. 
 
 

Impact Energy [J] 
Restored energy [%] 

EVA EVA_SOFT EVA_HARD ERKOLOC RESIN_IBT 

1.72 53.4 (±6.4) 31.5 (±3.4) 28.0 (±2.0) 48.6 (±3.4) 7.3 (±0.9) 

2.85 41.4 (±6.3) 25.6 (±5.1) 23.0 (±3.7) 45.0 (±0.7) 11.3 (±1.1) 

4.4 30.2 (±6.5) 31.8 (±3.9) 14.4 (±2.3) 37.8 (±3.3) 7.3 (±0.8) 
 

Table 3: Restored energy obtained for all materials and impact energies. 
 
Possible mechanical improvements in hard layers or their inserts in mouthguards materials have also been studied. In this 
case, when the impact energy increases, the sheet is perforated, which means that the energy is higher than the material can 
absorb. In fact, only very small amounts of energy are absorbed in these cases. Although acetate presents adequate energy 
absorption under low impact energies, delamination of the foil was observed experimentally, which makes this material 
unsafe because, in these conditions, the peak load is transmitted to the oral structures. Green [1], Takeda et al. [25] and 
Westerman et al. [26] also showed that sandwiching hard layers with softer EVA did not improve shock absorption ability. 
In the present study, this phenomenon occurred with an impact energy of 4.4 J in EVA_HARD material.  

10mm 

a b c 

e d 
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Regarding the Erkoloc-pro foils, they contain polyester and thermoplastic polyurethane (TPU). These foils have high 
stability, biocompatibility, good elastomeric properties, good resistance to fatigue loads and low water absorption. For this 
study, 3 mm foils were chosen. Materials that had higher impact loads (as seen on Fig. 1), like ERKOLOC, correspond to 
more brittle materials. The load, in these cases, drops suddenly because of the damage and the material is severely punctured. 
Lower impact load values indicate less impact shock and, therefore, impact attenuation, as reported by Mocian et al. [23], 
Westerman et al. [26] and Alexandra et al. [27]. Although delamination didn’t happen, the lower part of the skin was damaged 
with impacts of 4.4 J. These findings are corroborated by the level of penetration seen in Fig. 2. 
3D printing is becoming popular among clinicians. Mcglumphy et al. [28] and Liang et al. [29], for example, agree that the 
possibility of reducing material waste, costs and improve accuracy make this technology attractive. The material used in this 
study, Ortho Resin IBT, is a monomer based on acrylic esters, and its selection was based on a hardness shore similar to 
EVA (A 85). Therefore, from Tabs. 2 and 3, it is possible to conclude that RESIN_IBT is the material with the highest 
absorbed energy and, consequently, the material with the lowest restored energy (elastic energy). Similar to the study 
developed by Mocian et al. [24], these results indicate that this material has a weak damping capacity. Although no 
delamination is observed, it is noticed a cohesive fracture of the foil. According to the authors' best knowledge, there are 
no data available in the literature for comparison. 
 
 
CONCLUSIONS 
 

t was found that the insertion of an intermediate layer with less stiffness than EVA (EVA_SOFT) is a good option to 
produce customized mouthguards, taking into account its high values of displacement. Rigid and thinner materials 
(ERKOLOC) were found to be unsuitable due to the damage associated, even though they exhibit high levels of elastic 

energy. It was also found that thermoformed foils made with semi-rigid core using acetate suffer delamination and, as the 
three-dimensionally printed materials used in this study, are not suitable for the production of mouthguards. It is important 
to consider that other materials might suit as semi-rigid core and may not suffer delamination, which would make them 
suitable for this purpose. 
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