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ABSTRACT. In this paper, a machine learning-based framework is developed 
to quickly evaluate the structural safety of trusses. Three numerical examples 
of a 10-bar truss, a 25-bar truss, and a 47-bar truss are used to illustrate the 
proposed framework. Firstly, several truss cases with different cross-sectional 
areas are generated by employing the Latin Hypercube Sampling method. 
Stresses inside truss members as well as displacements of nodes are 
determined through finite element analyses and obtained values are compared 
with design constraints. According to the constraint verification, the safety 
state is assigned as safe or unsafe. Members’ sectional areas and the safety 
state are stored as the inputs and outputs of the training dataset, respectively. 
Three popular machine learning classifiers including Support Vector Machine, 
Deep Neural Network, and Adaptive Boosting are used for evaluating the 
safety of structures. The comparison is conducted based on two metrics: the 
accuracy and the area under the ROC curve. For the two first examples, three 
classifiers get more than 90% of accuracy. For the 47-bar truss, the accuracies 
of the Support Vector Machine model and the Deep Neural Network model 
are lower than 70% but the Adaptive Boosting model still retains the high 
accuracy of approximately 98%. In terms of the area under the ROC curve, 
the comparative results are similar. Overall, the Adaptive Boosting model 
outperforms the remaining models. In addition, an investigation is carried out 
to show the influence of the parameters on the performance of the Adaptive 
Boosting model. 
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INTRODUCTION  
 

ssessing the safety of an existing structure is a common problem in practice. For example, many constructions after 
a long period of use have been seriously degraded. Safety assessment is a key factor in deciding whether to 
rehabilitate or demolish these constructions. A second example might be: a steel structure exposed to a corrosive 

environment needs to be regularly checked the structural safety due to the development of rust. For one more example, a 
structure subjected to an extreme impact, such as seismic loads, fire loads, or blast loads should be evaluated the safety state 
before continuing use. 

A 

https://youtu.be/Z8JbaXOBOSA
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The traditional safety assessment of structural elements is often investigated based on experimental tests and numerical 
simulations. For instance, the research work conducted by Capuzucca and Bonci [1] indicated that the state of damage of 
Carbon Fiber Reinforced Polymer (CFRP) laminate elements can be evaluated by measuring the reduction of vibration 
frequencies. Subsequently, a hybrid approach that combines the proper orthogonal decomposition with radial basis function 
(POD-RBF) and the cuckoo search optimization algorithm to determine the position and dimensions of notches in CFRP 
beams was proposed in Ref. [2]. The proposed approach was validated with experimental results in Ref. [1]. In 2019, a 
technique coupling POD-RBF, the extended isogeometric analysis method, and the Jaya algorithm was developed [3]. This 
technique allows to accurately identify the locations of cracks in a steel plate based on strain readings. In [4], the damages 
in the FRP-strengthened reinforced concrete (RC) beams were investigated using Finite Element Modeling. Recently, a two-
stage approach for detecting damages was introduced, in which the modal strain energy change ratio is used to forecast the 
damages’ locations and the slime mould algorithm is then employed to quantify the damages [5]. This approach is verified 
with the experimental results of a 3D four stories frame. Such methods can accurately evaluate the safety of structures but 
very time-consuming. 
In some cases, there is a need for a model that can rapidly predict the safety state of structures in order to promptly evacuate 
people from the whole structure if it is unsafe. After that, the structure still needs to be exactly re-checked by engineers. 
The rapid safety assessment model can be integrated with the structural health monitoring system, in which information 
obtained from sensors is fed into such model as inputs. The output of the model is a prediction of whether the structure is 
safe or unsafe. This is a kind of binary classification problem and it can be solved by machine learning (ML) algorithms. In 
the literature, there are many previous studies that have applied ML for structural health monitoring. 
In several works, Artificial Neural Networks (ANNs) were used to forecast the damages in the plates instead of solving the 
inverse problem by optimization algorithms [6,7]. Besides, it can be observed that the topic of Deep Learning has been 
received great attention from researchers. Since AlexNet, the winner of the ImageNet challenge, was first introduced in 
2012, the convolutional neural network (CNN) architecture has become extremely popular in the field of computer vision 
and it has been used in many domains. In the field of civil engineering, the CNN architecture and its variations such as U-
Net have been applied to detect cracks on concrete [8-10] as well as welded joints [11], corrosions on steel surfaces [12], 
damages on buildings [13], etc. For handling time series data, the RNN architecture and its variation LSTM are state-of-the-
art [14-16]. 
Obviously, deep learning algorithms like CNN, RNN outperform conventional ML algorithms on unstructured data due to 
their automatic feature extraction capability. However, they don’t work well on tabular data. For such kinds of data, the 
conventional ML algorithms, for example, Decision Tree (DT), Support Vector Machine (SVM), are good choices. Recently, 
ensemble methods have been particularly preferred, shown by their applications in Kaggle data science competitions. The 
concept of ensemble methods is to create a strong classifier from several weak classifiers. Some commonly used ensemble 
methods are Random Forest (RF), Extreme Gradient Boosting (XGBoost), Gradient Tree Boosting (GTB). In the literature, 
Zhang et al. [17] utilized DT and RF for evaluating the structural safety state of RC buildings after an earthquake. In [18], 
the GTB algorithm was used to evaluate the safety of trusses. In addition, a comparative study of ML algorithms for 
predicting the load-carrying capacity of steel frames was conducted [19]. The results showed that two ensemble methods, 
including RF and GTB, achieved better performance than the remaining ones. 
Among ensemble methods, AdaBoost, short for Adaptive Boosting, was the first successful boosting algorithm developed 
for binary classification [20]. This algorithm has been applied to predict the failure modes and the load-bearing capacity of 
RC columns [21], and the compressive strength for concrete [22]. However, according to the literature review, there has not 
been a study related to the application of AdaBoost for classifying the safety of structures. 
This paper aims to investigate the capability of the ensemble method AdaBoost in evaluating the safety of truss structures. 
For this purpose, the performance of AdaBoost is compared with two popular classification algorithms, i.e., ANN and 
SVM, in terms of the accuracy and the area under the ROC curve. The comparison is conducted on three well-known truss 
structures of 10 bars, 25 bars, and 47 bars. Additionally, an investigation on the influence of the parameters on the 
performance of the AdaBoost model is also carried out. 
 
 
CLASSIFICATION OF THE SAFETY STATE OF TRUSSES USING MACHINE LEARNING 
 
Machine Learning-based framework for safety classification of trusses 

he framework for structural safety classification of truss structures using ML is presented in Fig. 1. The main 
characteristics of truss structures are truss members’ sectional areas and these values are used as inputs of the ML 
model. The output is the safety state of structures. The inputs of training data are generated using a sampling method, T 
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which is the Latin Hypercube Sampling (LHS) method in this paper. The cross-sectional areas that have just been created 
are assigned to truss members and the structure is then analyzed using the finite element method (FEM). Based on the 
results obtained from the structural analysis such as stresses inside members and the deflection, design constraints are 
checked. If all constraints are satisfied, this structure is safe. Otherwise, if any constraint is violated, this structure is 
considered unsafe. Inputs and outputs are also saved into the database. Once sufficient data has been collected, the training 
process begins. If the accuracy of the trained model when verifying on the testing dataset is acceptable, this ML model is 
ready to use. 
 

PredictionTraining & TestingData Generation

  Generating n inputs containing 
areas of truss members 

Xi = {Ai,1, Ai,2, …, Ai,p},
i = 1, 2,…, n using LHS

Structural analysis using FEM
& constraint verification

Assigning output:
yi = 1 if “safe”

yi = -1 otherwise
 i = 1, 2,…, n

Dataset
(Xi, yi)

i = 1, 2,…, n

Training 
Dataset

Testing 
Dataset

Training 
model

Testing 
model

The ML 
classification 

model

New input Xnew

Predicted output ynew

“Safe” if ynew = 1
“Unsafe” if ynew = -1

 
 

Figure 1: Overview of the ML-based framework for safety classification of trusses. 
 
The above procedure can be applied to all ML algorithms. In this study, three powerful classification algorithms are taken 
for comparison including SVM, ANN, and AdaBoost. The brief introductions of these algorithms are presented in the 
following sections. 
 
Support Vector Machine 
SVM was initially developed to solve binary classification problems. For separating data, the best hyperplane is found by 
maximizing the margin between it and the support vectors as shown in Fig. 2. Other kernel functions such as sigmoid kernel, 
polynomial kernel, or RBF kernel can be used to separate nonlinear data. 
 

margin

support 
vectors

 
 

Figure 2: Support Vector Machine. 
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Artificial Neural Network 
The first ANN model that was introduced in 1958 by Rosenblatt contains only three layers: an input layer, a hidden layer, 
and an output layer. Each layer has some neurons where the activation function is attached to mimic the nonlinear data. 
The state-of-the-art ANNs have more than one hidden layer that allows learning extremely complex data. Fig. 3 presents a 
typical architecture of an ANN model with multiple hidden layers. 
 

Hidden layers Output layerInput layer

...

... ... ...... ...

Output 1

Output m

Input 1

Input 2

Input n

 
 

Figure 3: Artificial Neural Network. 
 
Adaptive Boosting 
The base classifier used in the AdaBoost model is often a decision tree. However, a deep decision tree can be overfitted on 
a specific dataset. To overcome this problem, the AdaBoost model uses several shallow decision trees which are sequentially 
trained by the weighted data. Each decision tree is assigned a weight based on its accuracy. The final prediction is determined 
by using the weighted majority voting method. The AdaBoost algorithm is illustrated in Fig. 4. 
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Figure 4: Adaptive Boosting. 
 
 
DATASETS 
 

hree well-known truss structures are used in this study. All these problems were initially expressed using the imperial 
system. In this study, the imperial units are kept without affecting the final results. 
The first structure is a planar 10-bar truss which is displayed in Fig. 5. All members are made of the same material 

having the modulus of elasticity E=10,000 ksi and the density =0.1 lb/in3. The cross-sectional areas of truss members 
range from 6 to 35 in2. The allowable stress inside all members is 25 ksi, and the allowable displacement for all nodes is 
2 in. 
The second structure is a spatial 25-bar truss as presented in Fig. 6. This structure is fabricated from the same material as 
the 10-bar truss. There are eight groups of members with corresponding stress limits shown in Tab. 1. Members in the same 

T 
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group have the same cross-sectional area varying from 0.6 to 3.5 in2. The limitation of displacements along horizontal 
directions is 0.35 in. This structure subjects to two load cases independently. The first load case contains two point loads 
P1 = (0, 20, -5) and P2 = (0, -20, -5) acting on the node (1) and the node (2), respectively. The second load case consists of 
four point loads P1 = (1, 10, -5), P2 = (0, 10, -5), P3 = (0.5, 0, 0), and P6 = (0.6, 0, 0) acting on the node (1), (2), (3), and (6), 
respectively. 
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Figure 5: 10-bar truss structure. 
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Figure 6: 25-bar truss structure. 
 

The final structure is a planar truss as schematized in Fig. 7. This structure contains 47 members which are divided into 27 
groups as shown in Tab. 2. All members in a group are assigned a cross-sectional area range from 0.1 to 35 in2. The modulus 
of elasticity of the material used in this structure E=30,000 ksi and the material density =0.3 lb/in3. This tower is subjected 
to one of three independent load cases. The first load case (LC1) consists of two loads of 14 kips and 6 kips applying to the 
node (17). The second load case (LC2) has two loads of 14 kips and 6 kips acting on the node (22). The third load case 
(LC3) is the sum of the two above load cases (LC1) and (LC2). 
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Group Member Maximum compressive stress Maximum tensile stress 

1 1 35.092 40.0 

2 2, 3, 4, 5 11.590 40.0 

3 6, 7, 8, 9 17.305 40.0 

4 10, 11 35.092 40.0 

5 12, 13 35.092 40.0 

6 14, 15, 16, 17 6.759 40.0 

7 18, 19, 20, 21 6.959 40.0 

8 22, 23, 24, 25 11.082 40.0 
 

Table 1: Limitation of stresses for eight groups of the 25-bar truss structure - unit: ksi. 
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Figure 7: 47-bar truss structure. 
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Group Members Group Members Group Members

1 1, 3 10 17, 18 19 33 

2 2, 4 11 19, 20 20 34, 35 

3 5, 6 12 21, 22 21 36, 37 

4 7 13 23, 24 22 38 

5 8, 9 14 25, 26 23 39, 40 

6 10 15 27 24 41, 42 

7 11, 12 16 28 25 43 

8 13, 14 17 29, 30 26 44, 45 

9 15, 16 18 31, 32 27 46, 47 
 

Table 2: Group member of the 47-bar tower. 
 
Stresses inside members must be smaller than limit values. The limited tensile and compressive stresses are 20 ksi and -15 
ksi, respectively. The maximum buckling stress of the ith member can be calculated by the following equation: 
 

  i i
cr

i

KEA

L
  (1) 

 
where: K is the buckling constant that is fixed to 3.96 in this study; Ai and Li are the cross-sectional area and the length of 
ith member, respectively. 
For each structure, two separated datasets are independently generated, one for training and one for testing. Each dataset 
contains 1000 data samples. The number of safe samples and unsafe samples in each dataset are shown in Fig. 8. 
 

 
 

Figure 8: Distribution of safe and unsafe samples in the training and the testing datasets. 
 
 
COMPARISON 
 
Setups 

L models for evaluating the safety of truss structures are developed based on the open-source library scikit-learn 
[23]. There are three numerical examples and three classification algorithms used in this work, so a total of 9 
models are developed. The hyperparameters tuning of ML models is conducted by combining the grid search M 
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method and k-fold cross-validation. The training datasets are divided into five parts (k=5), in which four parts are used to 
train and the remaining one is used to validate. The final parameters of each algorithm are summarized in Tab. 3. After 
finding the hyperparameters, the full training datasets are fed into the ML models. When the training process is completed, 
these models are ready to predict the structural safety state of the testing datasets. 
 

Algorithm Hyperparameters 

SVM kernel=’rbf’; C=1000; gamma=0.1 

ANN architecture (100-100-100-2); activation=’relu’; solver=Adam; batch_size=5; max_iter=1000

AdaBoost base_estimator=DecisionTreeClassifier; max_depth=2; n_estimators=100; learning_rate=1 
 

Table 3: Hyperparameters of ML models. 
 
Metrics 
Two evaluation metrics are used in this study. The first metric is the accuracy which can be determined using the following 
equation: 
 




  
TP TN

Accuracy
TP TN FP FN

 (2) 

 
where: TP, TN are the numbers of positive and negative samples that are correctly classified; FP, FN are the numbers of 
positive and negative samples that are misclassified. 
Additionally, the area under the ROC curve (AUC) is also used to compare three algorithms. The ROC curve originally 
developed for operators of military radar receivers is the relationship between True Positive Rate and False Positive Rate. 
 




True Positive Rate
TP

FN TP
 (3) 

 




False Positive Rate
FP

TN FP
 (4) 

 
Results 
Each problem is carried out 30 times. The average accuracies of three ML algorithms are summarized in Tab. 4. It can be 
seen that for two problems of 10-bar truss and 25-bar truss, all three algorithms achieve high accuracy (over 90%). 
Particularly for the 47-bar truss problem, the accuracies of the SVM and the ANN models are quite low (below 70%), while 
the AdaBoost models still retain the high accuracy (97.7%).  
 

Problem Number of features SVM ANN AdaBoost 

10-bar truss 10 0.959 0.937 0.936 

25-bar truss 8 0.974 0.967 0.974 

47-bar truss 27 0.658 0.669 0.976 
 

Table 4: Accuracy comparison of three ML models. 
 
Furthermore, Fig. 9 shows the typical ROC curves of these ML algorithms for three examples. There is a good agreement 
when comparing three algorithms in terms of the accuracy and the AUC metrics. In more detail, all SVM, ANN, and 
AdaBoost obtained the AUC close to one for the first two problems. However, the SVM and the ANN models obtain the 
AUC of 0.69 while the AdaBoost model achieves the AUC=0.99 when classifying on the 47-bar truss testing dataset. 
 



 

T.-H. Nguyen et alii, Frattura ed Integrità Strutturale, 58 (2021) 308-318; DOI: 10.3221/IGF-ESIS.58.23                                                             
 

316 
 

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

False Positive Rate
T

ru
e 

P
os

iti
ve

 R
at

e
False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

(a) (b) (c)

 
 

Figure 9: ROC curves of three ML algorithms for three datasets. (a) 10-bar truss – Testing dataset. (b) 25-bar truss – Testing dataset. 
(c) 47-bar truss – Testing dataset. 
 
Overall, it can be noted that for problems with a small number of features, all three algorithms give accurate results. But for 
problems having a large number of features, the AdaBoost algorithm outperforms the two remaining algorithms. 
 
 
MODEL PERFORMANCE ANALYSIS 
 

ne of the most important parts when building an ML model is the training data. In this study, data is collected 
through conducting a parametric finite element analysis (FEA). For large-scale structures, each FEA consumes 
several hours or days. Performing a large number of FEAs leads to time-consuming. Therefore, in this section, 

the influence of the number of samples of the training dataset is investigated. Besides, the performance of the AdaBoost 
model strongly depends on the number of base classifiers. Thus, the influence of the number of base classifiers is also 
considered in this section. 
 

 

Figure 10: The influence of the training dataset amount on the performance of the AdaBoost model. 
 
Influence of the training dataset amount 
To investigate the influence of the training dataset amount, seven training datasets of the 47-bar truss problem are generated. 
The numbers of samples of seven datasets are 100, 250, 500, 1000, 2500, 5000, and 10000, respectively. The amount of the 
testing dataset remains 1000 samples. The accuracies of seven AdaBoost models are shown in Fig. 10. It can be observed 
that the accuracy of the classification model significantly improves when increasing the number of samples from 100 to 250 
(0.669 for 100 samples and 0.876 for 250 samples). When augmenting the training dataset to 500 samples, the accuracy 
achieves 0.923. The accuracies for 1000, 2500, 5000, 10000 samples are 0.976, 0.986, 0.988, 0.991, respectively. Generally, 
the number of 1000 samples is a good choice when balancing the accuracy and the quantity of the training data. 
 
Influence of the number of base classifiers	
An important key factor of an ensemble model is the number of base classifiers used in this model. In this study, six 
AdaBoost models are compared where the numbers of base classifiers are 5, 10, 50, 100, 500, and 1000, respectively. These 

O 
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models are trained by the same 47-bar truss training dataset of 1000 samples. The prediction results on the 47-bar truss 
testing dataset are presented in Fig. 11. It can be clearly seen that the accuracy of the AdaBoost model is greatly enhanced 
when extending the number of base classifiers from 5 to 50. However, when increasing the number of base classifiers from 
50 to 1000, the model quality does not improve. 
 

 

Figure 11: The influence of the number of base classifiers on the performance of the AdaBoost model. 
 
 
CONCLUSIONS 
 

he rapid evaluation of the structural safety state is an important task for escaping people when a hazard occurs. In 
this study, three machine learning algorithms including Support Vector Machine, Artificial Neural Network, and 
Adaptive Boosting are used to identify the safety state of truss structures. The results of the present work 

demonstrate the potential application of machine learning for structural safety evaluation. The comparative study indicates 
that all three algorithms achieve high accuracy (over 90%) for small-scale structures with few input features. However, for 
large-scale structures having many input features, the AdaBoost algorithm exhibits a strong ability in comparison with other 
algorithms (over 95% for the AdaBoost, about 65% for both the SVM and the ANN). 
Additionally, an investigation on the influence of the training dataset size and the number of base classifiers is implemented. 
The results of the investigation provide a good suggestion when developing machine learning models later. In the future, 
the study can be extended to other structures such as frames, dams, etc. 
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