Microsoft Word - numero_35_art_56 L. Chunjiang et alii, Frattura ed Integrità Strutturale, 35 (2016) 500-508; DOI: 10.3221/IGF-ESIS.35.56 500 Influence of different sizes of concrete and roller compacted concrete on double-K fracture parameters Liu Chunjiang School of Civil Engineering, Chang’an University, Shanxi, Xi’an, 710061, China liuchunjiang23@sina.com Zhang Huabo Shandong Rong Cheng Construction Group Co., Ltd., Shandong, Rongcheng, 264300, China Lv Ninghua Rongcheng Jiu Zhou Project Management Ltd., Shandong, Rongcheng, 264300, China ABSTRACT. Affected by physical properties of various components, characteristics and stress states of junction surface and other multiple factors, concrete, as a kind of multi-phase composite material, has complicated failure mechanism, thus making its fracture mechanism research difficult. But concrete has been widely used in engineering construction, so research on concrete fracture theory is of important realistic significance and construction value. This study discusses influence rule of specimen size and crack-depth ratio (α0/h) on double- K fracture parameters (initial fracture toughness iniICK and unstable fracture toughness un ICK ) and its size effects by using fracture test. Different sizes of concretes and roller compacted concrete (RCC) specimens are adopted to explore influence of specimen size on concrete double-K fracture parameters. Results reveal that initial fracture toughness iniICK and unstable fracture toughness un ICK increase as specimen size enlarges, showing a size effect; besides, subcritical crack extends with the increase of specimen size. With regard to specimens with different crack-depth ratios, its unstable fracture toughness unICK is unrelated to initial crack-depth ratio when crack-depth ratio is more than or equal to 0.4, while initial fracture toughness iniICK is correlated with initial crack-depth ratio, which indicate that double-K fracture parameters can be considered as material constants describing concrete initial fracture, stable expansion and whole process of stability failure. KEYWORDS. Concrete; Fracture; Double-K fracture parameters; Crack-depth ratio. INTRODUCTION o date, fracture mechanics is applied in concrete structure from three aspects [1]: first is research on fracture mechanism of concrete; second is decision of endanger degree of some serious cracks in concrete structure, for example, stability analysis of crack in pier, upstream face crack in massive-head dam and pressure vessel crack of prestressed concrete (PC) in atomic power station; third is improvement of design method of concrete structure, for T Chunjiang et alii, Frattura ed Integrità Strutturale, 35 (2016) 500-508; DOI: 10.3221/IGF-ESIS.35.56 501 instance, decision of stability of various thorough cracks in concrete pouring blocks and calculation of cracking load of reinforced concrete (RC) in diagonal direction, etc. People are expected to improve design methods of gravity dam and arch dam using fracture mechanics [2]. Two-parameter model considers actual crack in combination with micro-crack zone as an effective crack, then obtains results using theory of linear elastic fracture mechanics and combines it with numerical computation method. Its essence lies in using valid crack tip opening displacement (CTOD) to reach critical valid CTOD, i.e., fracture criterion. Xu Shilang [3], a scholar from China, put forward a simple and applicable fracture criterion in 1999, namely, double-K fracture criterion. This criterion, belonging to the first type, not only corrects linear elastic fracture mechanics model based on a complete theory, but also decides its fracture parameters with the help of simple test methods, which is expected to be popularized and applied in practical engineering. Two fracture parameters are introduced into this criterion, initial fracture toughness iniICK and unstable fracture toughness un ICK . Test indicates that those two parameters without size effect under a certain size, as fracture parameters, can be well applied in the analysis of concrete structure crack extension, and have drawn much attention [4-7]. A relevant trial [8] reveals that maximum seam strain is 10 times of average value of ordinary bending ultimate strain, which is exactly a ratio of theoretical strength and breaking stress of a point of concrete material. This thesis aims to explore characteristics of double-K fracture parameters (initial fracture toughness iniICK and unstable fracture toughness unICK ) of concrete using data obtained from test. DESIGN OF CONCRETE FRACTURE STIFFNESS TEST WITH WEDGE SPLITTING METHOD Material Selection and Mix Proportion aterials include tap water for life, 32.5 ordinary Portland cement, fly ash (level II), natural medium sand with particle size of over 5mm, macadam with maximum particle size of 20 mm (level I), high efficiency slushing agent suitable for mass concrete, and mix proportion is shown in Tab. 1. Wedge splitting specimen [14, 15] is adopted in this test (Fig. 1) and Tab. 2 displays specimen parameters. All specimens are divided into two categories containing 12 kinds of working conditions, the quantity of specimen in each working condition is presented in Tab. 2 and testing devices are in Fig. 2. Materials Tap water Cement Fly ash Sand Stones Additives RCC kg/m3 130 134 90 805 1280 0.75% Common concrete kg/m3 203.7 407 0 535 1245 0 Table 1: Mix proportion of roller compacted concrete (RCC) and common concrete. RCC Prefabricated crack Construction structural adhesives Marble Figure 1: Shape and size of specimen. M L. Chunjiang et alii, Frattura ed Integrità Strutturale, 35 (2016) 500-508; DOI: 10.3221/IGF-ESIS.35.56 502 Categories Serial number Quantity Size of specimen (1×h×t/mm) Crack- depth ratio Depth of cracks [mm] Thickness of cracks [mm] RCC RCC1504 12 150×150×150 0.4 60 3 RCC1504 6 150×150×150 0.5 75 3 RCC1504 6 150×150×150 0.6 90 3 RCC1504 6 300×300×150 0.4 120 3 RCC1504 6 400×400×150 0.4 160 3 RCC1504 6 500×500×150 0.4 200 3 Common concrete PC1504 9 150×150×150 0.4 60 3 PC1504 6 150×150×150 0.5 75 3 PC1504 6 150×150×150 0.6 90 3 PC1504 9 300×300×150 0.4 120 3 PC1504 9 400×400×150 0.4 160 3 PC1504 9 500×500×150 0.4 200 3 Table 2: Working conditions of specimen. Testing Devices Testing devices are shown in Fig. 2. Clip-on extensometer Wedge holder Load sensor Top board Signal amplifier Data acquisit ion system Computer Figure 2: Acquisition of test data with wedge splitting method Test Results Specimen over 150×150×150 mm3 is calculated with following formula, and specimen (150×l50×l50 mm3) uses regular computing method [9-11]. Unilateral opening specimen is affected by axial tension, and stress intensity factor (SIF) can be calculated with formula below:  1 /LK af a D  (1) where,  /hP D t   and           2 3 4 / 1.122 0.231 / 10.55 / 21.71 / 30.382 /f a D a D a D a D a D     Chunjiang et alii, Frattura ed Integrità Strutturale, 35 (2016) 500-508; DOI: 10.3221/IGF-ESIS.35.56 503 Unilateral opening specimen is affected by bending moments only, and SIF is:  2 2 6 /L M K a g a D tD  (2) where, 1/ 2 1/ 2h vM P D P e  and           2 3 4 / 1.122 1.4 / 7.33 / 13.08 / 14 /g a D a D a D a D a D     Overlapping formula (1) and (2), SIF expression of crack tip in any load time with wedge splitting geometry is obtained: 1 2I L LK K K  (3) As some problems may exist in part of specimen making and maintenance, here, the quantity of several effective specimens with good surface, basically complete trial curve, small deviation and calculative in double-K fracture parameter is listed in Tab. 3. Arithmetic mean value of initial fracture of 4~6 specimens from each group is taken as trial results. When the difference between single value and average value is over 15% of the average value, this value is excluded, and mean value of the rest of values is considered as trial result. Trial result is:   1 n IC ICj j K K MPa m    (4) Categories Size [mm] P [kN] CMOD [mm] E [GPa] ac [mm] ca [mm] K1 K2 KI PC 300 4.91 141.1 19.45 166.4 46.5 0.432 0.872 1.304 PC 300 5.08 170.3 16.04 165.4 45.3 0.438 0.881 1.319 PC 300 4.61 130.4 18.02 160.5 40.4 0.381 0.771 1.152 PC 300 5.03 133.3 15.77 161.4 41.3 0.416 0.840 1.256 PC 300 4.52 118.0 21.36 165.5 45.3 0.399 0.804 1.203 PC 300 5.03 138.3 17.58 158.4 38.5 0.400 0.810 1.210 PC 400 5.55 183.9 16.53 234.4 74.5 0.466 0.913 1.379 PC 400 5.76 222.1 15.45 240.3 80.2 0.509 0.991 1.500 PC 400 6.60 245.5 16.02 241.6 81.6 0.582 1.131 1.713 PC 400 6.49 252.4 16.89 240.7 80.8 0.569 1.104 1.673 PC 400 6.44 266.9 15.32 245.2 85.3 0.592 1.145 1.737 PC 500 8.16 180.2 16.33 275.4 75.5 0.510 0.997 1.507 PC 500 8.31 210.2 15.78 298.5 98.4 0.615 1.183 1.798 PC 500 7.68 252.4 15.58 300.4 100.7 0.534 1.124 1.658 PC 500 8.26 208.6 20.00 300.1 100.4 0.621 1.193 1.814 RCC 300 4.53 155.0 15.51 174.0 54.2 0.444 0.887 1.331 RCC 300 5.37 226.3 14.91 176.2 56.0 0.525 0.903 1.428 RCC 400 5.58 221.1 16.19 245.0 85.3 0.521 1.010 1.531 RCC 400 5.76 216.3 14.38 248.1 88.1 0.554 1.070 1.624 RCC 400 4.78 200.7 15.33 243.0 83.0 0.457 0.890 1.347 RCC 500 8.30 239.8 15.02 314.2 114.2 0.705 1.039 1.744 RCC 500 6.92 246.4 15.00 309.8 109.9 0.604 1.154 1.758 RCC 500 6.37 257.5 15.09 311.9 112.0 0.546 1.043 1.589 Table 3: Trial results of various working conditions. L. Chunjiang et alii, Frattura ed Integrità Strutturale, 35 (2016) 500-508; DOI: 10.3221/IGF-ESIS.35.56 504 INFLUENCE OF CRACK-DEPTH RATIO ON CONCRETE FRACTURE STIFFNESS edge splitting specimens (crack-depth ratio: 0.3:0.4:0.5:0. 6 and size: 150 mm × 150 mm × 150 mm) are selected for studying influence of a/h on double-K fracture parameter and crack mouth opening displacement (CMODc) and influence rule of crack-depth ratio in concrete fracture process and fracture strength. Test Design Tap water, 32.5 ordinary Portland cement, fly ash (level II), natural medium sand with particle size of over 5mm, macadam with maximum particle size of 20 mm (level I) and high efficiency slushing agent suitable for mass concrete are used in the test and their mix proportions are shown in Tab. 4. Material Tap water Cement Fly ash Sand Stones Additives RCC [kg/m3] 130 134 90 805 1280 0.75% Ordinary concrete [kg/m3] 203.5 407.5 0 535 1245 0 Table 4: Mix proportions of RCC and ordinary concrete. Wedge splitting specimen is applied in the trial, containing two categories (12 kinds of working conditions), and quantity of specimen in each working condition is shown in Tab. 5. Categories Serial number Quantity Size 1×h×t [mm3] Crack-depth ratio Depth of cracks [mm] Thickness of cracks [mm] RCC RCC1504 6 150×150×150 0.4 60 3 RCC1505 4 150×150×150 0.5 75 3 RCC1506 4 150×150×150 0.6 90 3 Ordinary concrete PC1504 6 150×150×150 0.4 60 3 PC1505 2 150×150×150 0.5 75 3 PC1506 3 150×150×150 0.6 90 3 Table 5: Working conditions of specimen. Phenomenological Analysis of Wedge Splitting Test This test is carried out on a 200kN compression-testing machine and adopts formula to calculate valid crack growth quantity. From cracks in damaged trial (Figs. 3, 4), effective subcritical growth quantity can be obviously found in figures, and direction of crack growth is not smooth, which is mainly caused by reasons of concrete itself, as well as various construction aggregates. Cracks will bypass and keep on growing when encountering construction aggregates with large particle size. Figure 3: Damaged cracks of RCC specimen. Figure 4: Damaged cracks of concrete specimen (type 150). W Chunjiang et alii, Frattura ed Integrità Strutturale, 35 (2016) 500-508; DOI: 10.3221/IGF-ESIS.35.56 505 Analysis of Calculation Results P-MOD curve character parameters of wedge splitting specimen are figured out based on test results (Tab. 6). Serial number of specimen Size (mm) Crack-depth ratio Pmax [kN] CMODc [mm] RCC-1 150 0.4 5.29 110 RCC-2 150 0.4 5.08 115 RCC-3 150 0.4 6.13 89 RCC-4 150 0.4 4.52 109 RCC-5 150 0.4 4.70 109 RCC-6 150 0.4 5.13 102 RCC-7 150 0.5 4.62 163 RCC-8 150 0.5 4.69 139 RCC-9 150 0.5 4.65 152 RCC-10 150 0.5 4.23 155 RCC-11 150 0.6 3.03 215 RCC-12 150 0.6 3.61 186 RCC-13 150 0.6 3.97 189 RCC-14 150 0.6 4.02 229 C-1 150 0.4 7.76 101 C-2 150 0.4 6.70 92 C-3 150 0.4 7.71 98 C-4 150 0.4 5.44 101 C-5 150 0.4 5.53 96 C-6 150 0.4 5.75 93 C-7 150 0.5 6.19 102 C-8 150 0.5 6.20 103 C-9 150 0.6 6.52 101 C-10 150 0.6 6.31 100 C-11 150 0.6 5.98 113 Table 6: Basic test results. L. Chunjiang et alii, Frattura ed Integrità Strutturale, 35 (2016) 500-508; DOI: 10.3221/IGF-ESIS.35.56 506 Tab. 7 makes a list of unstable fracture toughness calculated by initial crack-depth ratio and maximum load Pmax, Serial number of specimen Valid crack growth quantity [cm] Unstable fracture toughness [MPam] Initial fracture toughness [MPam] RCC-1 8.1 0.944 0.415 RCC-2 8.6 1.039 0.316 RCC-3 8.3 1.016 0.420 RCC-4 7.8 0.968 0.351 RCC-5 8.7 0.957 0.344 RCC-6 7.8 0.996 0.486 RCC-7 9.9 0.775 0.385 RCC-8 9.4 0.784 0.360 RCC-9 9.6 0.811 0.407 RCC-10 9.5 0.797 0.359 RCC-11 11.6 0.815 0.361 RCC-12 11.4 0.900 0.307 RCC-13 10.9 0.852 0.305 RCC-14 11.6 0.948 0.269 C-1 8.3 1.01 0.481 C-2 7.7 1.06 0.582 C-3 6.8 1.09 0.555 C-4 8.0 1.05 0.648 C-5 7.9 1.11 0.621 C-6 7.8 1.19 0.648 C-7 8.7 1.18 0.517 C-8 7.6 1.15 0.529 C-9 8.0 1.23 0.514 C-10 9.6 1.21 0.518 C-11 8.6 1.20 0.543 Table 7 Unstable fracture toughness under different working conditions It can be seen from above table that SICK value gets smaller as initial crack-depth ratio increases, so S ICK based on initial crack-depth ratio not only has size effect, but also changes with the changes of initial crack-depth ratio. That indicates that subcritical growth quantity of wedge splitting specimen changes with size, related to initial crack-depth ratio as well, which is different from three-point bending beam. Thus, it is obvious that small specimen has to take stable growth of crack into consideration. Flexibility coefficient applied in calculating valid subcritical crack growth length ( ca ) with double-K fracture criterion is diverse, thereby leading to different ca . After obtaining ca , fracture toughness S ICK and CMODc can be figured out, so valid subcritical crack growth length ( ca ) is believed to be an important parameter [12-13]. In two-parameter model, Chunjiang et alii, Frattura ed Integrità Strutturale, 35 (2016) 500-508; DOI: 10.3221/IGF-ESIS.35.56 507 because unloading point in test is hard to be controlled in a specified point, valid subcritical crack growth length ( ca ) obtained by computer is biased compared with theoretical value. However, double-K fracture criterion is with no need for unloading process and controlling unloading point in test, simply works out valid subcritical crack growth length ( ca ) with Pmax and its corresponding CMODc, and the test results are relatively close to theoretical value. Ordinary concrete has the same change rule of unstable fracture toughness with RCC. Crack-depth ratio has an effect on the fracture toughness of ordinary concrete and RCC, but there are also differences. The fracture toughness of ordinary concrete decreases as crack-depth ratio increases, and this principle is basically suitable for CRR. DISCUSSION t is summarized from analysis of fracture test results of RCC and ordinary concrete wedge-splitting specimens that double-K fracture criterion may have some differences although it is simple, practical and without human distractions. Concrete fracture toughness has size effect, that is to say, concrete fracture toughness increases as size of specimen increases; besides, crack-depth ratio affects concrete fracture toughness to some extent, but the influences are not all consistent. Change rules of unstable fracture toughness of ordinary concrete and RCC are basically the same, and crack-depth ratio plays a role in fracture toughness of ordinary concrete and RCC, but not identical. The rule to ordinary concrete is that concrete fracture toughness is reduced with the increase of crack-depth ratio, and the rule to RCC partially conforms to ordinary concrete rule. In addition, crack-depth ratio of specimen also has a great influence on fracture toughness, and varies non-uniformly; when 0 / 0.4a h  , S ICK increases as 0 /a h rises; it decreases as 0 /a h rises when 0 / 0.4a h  , and reaches maximum when 0 / 0.4a h  , i.e., unstable value. REFERENCES [1] Mingyong, C., The application of fractal theory in rock material damage, J. Sci., 36 (2007) 64. [2] Zuyi, C., Lihong, C., Discussions on the wedge stability analysis method specified in the gravity dam design code, J. Journal of Hydroelectric Engineering, 2 (2002) 101-108. DOI:10.3969/j.issn.1003-1243.2002.02.014. [3] Zhimin, W., Shilang, X., Jinlai, W., Double-K fracture parameters based on the fictitious crack model, In: The 1st International Joint Symposium between Chuangnam National University and Dalian University of Technology, Korea, 111 (1998) 29-34. DOI:10.3321/j.issn:1000-8608.2000.03.027. [4] Zhimin, W., Shilang, X., Xijing, L., Influence of initial crack-depth ratio of specimen on silicon double-K fracture parameters, J. Journal of Hydraulic Engineering, 4 (2000) 35-39. DOI:10.3321/j.issn:0559-9350.2000.04.007. [5] Zhimin, W., Shilang, X., Jinlai, W., Research on concrete double-K fracture parameters and its size effect with three- point bending beam, J. Journal of Hydroelectric Engineering, 4 (2000) 16-23. DOI:10.3969/j.issn.1003-1243.2000.04.002. [6] Zhimin, W., Shilang, X., Shenggen, D., Xijing, L., Yining, D., Jiayi, L., The double-K fracture parameter of concrete for non-standard three-point bending beam specimens, J. Engineering Science, 3 (2001) 76-81. [7] Shaowei, H., Zhengxiang, M., Experimental study on double-K fracture characteristics of standard reinforced concrete three-point beam, J. Journal of Building Structures, 34(3) (2013) 152-157. [8] Shilang, X., Hougui, Z., Hongbo, G., Shouyang, Z., An experimental study on double-K fracture parameters of concrete for dam construction with various grading aggregates, J. China Civil Engineering Journal, 39(11) (2006) 50- 62. [9] Xiufang, Z., Shilang, X., Hongbo, G., Superposition calculation of double-K fracture parameters of concrete using wedge splitting geometry and boundary effect, J. Journal of Dalian University of Technology, 46(6) (2006) 867-874. [10] Weilian, Q., Lijun, L., Ming, L., Calculation of the maximum stress intensity factor of 3-D fatigue crack in engineering structures, J. Earthquake Engineering and Engineering Vibration, 27(6) (2007) 58-63. [11] Dongfeng, L., Guoqiang, L., Research on Relationship between stress intensity factor and strain energy releasing rate of type II crack, J. Journal of Water Resources Architectural Engineering, 11(1) (2013) 184-186. [12] Xiangqian, F., Shaowei, H., Jun, L., Experimental research on double-K fracture toughness of non-standard three- point bending concrete beam, J. Journal of Building Structures, 33(10) (2012) 152-157. [13] Shilang, X., Jianmin, W., Crack propagation in a concrete dam under water pressure and determination of the double- K fracture parameters, J. China Civil Engineering Journal, 2 (2009) 119-125. I L. Chunjiang et alii, Frattura ed Integrità Strutturale, 35 (2016) 500-508; DOI: 10.3221/IGF-ESIS.35.56 508 [14] Xiufang, Z., Shilang, X., Hongbo, G., Superposition calculation of double-K fracture parameters of concrete using wedge splitting geometry and boundary effect, J. Journal of Dalian University of Technology, 46(6) (2006) 868-874. [15] Aoshuang, T., Xuezhi, W., Effect of incision shapes of prefabricated crack on fracture energy of concrete wedge splitting specimens, J. Concrete, 8 (2011) 67-69. DOI:10.3969/j.issn.1002-3550.2011.08.022 << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA /BGR /CHS /CHT /CZE /DAN /DEU /ESP /ETI /FRA /GRE /HEB /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN /ITA /JPN /KOR /LTH /LVI /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR /POL /PTB /RUM /RUS /SKY /SLV /SUO /SVE /TUR /UKR /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice