Microsoft Word - numero_39_art_21 S. K. Kudari et alii, Frattura ed Integrità Strutturale, 39 (2017) 216-225; DOI: 10.3221/IGF-ESIS.39.21 216 3D Stress intensity factor and T-stresses (T11 and T33) formulations for a Compact Tension specimen S. K. Kudari Department of Mechanical Engineering, CVR College of Engineering, Hyderabad, India s.kudari@rediffmail.com K. G. Kodancha Research Centre, Department of Mechanical Engineering, BVB College of Engineering & Technology, Hubli, India krishnaraja@bvb.edu ABSTRACT. The paper describes test specimen thickness effect on stress intensity factor (KI), and T-stresses stresses (T11 and T33) for a Compact Tension specimen. Formulations to estimate 3D KI, T11 and T33 stresses are proposed based on extensive 3D Finite element analyses. These formulations help to estimate magnitudes of 3D KI and T11 and T33 which are helpful to quantify in-plane and out-of- plane constraint effect of the crack tip. The proposed formulations are validated with the similar results available in literature and found to be within acceptable error. KEYWORDS. Constraint effects; 3D Finite element analysis; Stress intensity factor; T-stress; CT Specimen. Citation: Kudari, S. K., Kodancha, K. G., 3D Stress intensity factor and T-stresses (T11 and T33) formulations for a Compact Tension specimen, Frattura ed Integrità Strutturale, 39 (2017) 216-225. Received: 25.09.2016 Accepted: 31.10.2016 Published: 01.01.2017 Copyright: © 2017 This is an open access article under the terms of the CC-BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. INTRODUCTION tress tri-axiality at the crack-tip can alter crack-tip constraint and fracture toughness values of a material. This is the reason transferability of fracture toughness data estimated using laboratory test specimens to a full-scale cracked structure is an important issue in structural integrity assessment of engineering materials. In LEFM non-zero non- singular terms in the series expansion of three-dimensional stress field [1] referred as T-stresses (T11 and T33) can alter the crack-tip stress tri-axiality and are considered as constraint parameters [2]. T11 (the second term of William’s extension acting parallel to the crack plane) plays an important role on the in-plane constraint effect. The thickness at the crack tip contributes to the out-of-plane constraint, T33 (the second term of William’s extension acting along the thickness). To transfer fracture toughness data under different constraints, both in-plane and out-of-plane constraint effect should be considered for the specimens. S http://www.gruppofrattura.it/pdf/rivista/numero39/audio/21.mp3 S. K. Kudari et alii, Frattura ed Integrità Strutturale, 39 (2017) 216-225; DOI: 10.3221/IGF-ESIS.39.21 217 Several researchers [3-13] have shown that the specimen thickness has major effect on the magnitude of stress intensity factor and T stresses. Kwon and Sun [7] have presented 3D FE analyses, to investigate the stress fields near the crack-tip and suggested a simple technique to determine 3D KI at the mid-plane by knowing 2D KI and Poisson’s ratio () of the material using the Eq. (1): D D K K 3 2 2 1 1    (1) For quantifications of in-plane and out-of- plane constraint issues, magnitudes of T11 and T33 stresses are to be computed. But simple formulations such as Eq. (1) to estimate 3D KI, are not available to compute constraint parameters, T11 and T33 stresses. Usually they are obtained by complex 3D numerical methods. The aim of this investigation is to study the variation of KI, T11 and T33 along the crack-front considering a CT specimen geometry having varied thickness, B, crack length to width ratio (a/W) and applied stress, , using 3D elastic FE analysis. Based on the present finite element results an effort is made to formulate approximate analytical equations to estimate the magnitudes of maximum 3D KI, T11 and T33 for a CT specimen. The proposed analytical formulations can be used to estimate the maximum 3D KI, T11 and T33 for the CT specimen, which are helpful in quantifying in-plane and out-of- plane constraint issues in fracture. By means of numerical analyses, it is shown that specimen thickness and crack length play an important role on the constraint effects. Figure 1: The geometry of the CT specimen used in the analysis (W=20 mm). FINITE ELEMENT ANALYSIS ommercial FE software ABAQUS 6.5 [14] is used for the 3D FEA. The dimensions of CT specimen have been chosen according to ASTM standard E1820 [15] and the specimen geometry is shown in the Fig.1. One-half of the specimen geometry is modeled due to specimen symmetry. Twenty noded quadratic brick elements available in the ABAQUS are used to discretize the analysis domain. This kind of elements was used in the earlier works [8, 9] available in the literature. Initially, three-dimensional FE analyses on CT specimens were made by varying number of layers in thickness direction (each layer is of element thickness). It is observed that the variation in results of KI is insignificant for 8-14 layers. Consequently, in the present analyses 11 layers along the thickness direction were chosen as it gives ten numbers of elements along the thickness direction to extract the KI and T-stress. Due to half symmetry, the symmetrical boundary conditions have been imposed (ux2=0) along the ligament of the model. Load is applied on approximately 1/3rd portion nodes of the loading-hole circle perpendicular to the ligament. To keep the loading in perfectly Mode-I condition corresponding nodes are arrested except x2-direction. A typical mesh used in the analyses along with boundary conditions is shown in Fig.2. The magnitudes of KI and T-stresses have been extracted by using ABAQUS post processor. The details of extraction of stress 3D stress intensity factor (KI) and T-stresses are discussed elsewhere [11,12,16,17]. The variation of KI and T-stresses along the crack-front has been studied for different specimen thickness (B/W=0.1-1.0) and crack length to width ratio (a/W=0.45-0.70). In this work the magnitude of applied stress, , for the CT specimen is computed using the relation [18]: C S. K. Kudari et alii, Frattura ed Integrità Strutturale, 39 (2017) 216-225; DOI: 10.3221/IGF-ESIS.39.21 218 P W a B W 2 2 ( 2 ) ( )    (2) where, P is applied load, W is width of the specimen, a is crack length. In these finite element calculations, the material behaviour has been considered to be linear elastic pertaining to an interstitial free (IF) steel possessing yield stress y=155MPa, elastic modulus of 197 GPa, Poisson’s ratio=0.30. Figure 2: 3D CT Specimen mesh along with boundary conditions for a/W=0.50: a) B/W=0.1; b) B/W=1. Figure 3: Effect of a/W on normalized stress intensity factor, KI /(a)1/2 along crack-front (x3) for B=10mm. RESULTS AND DISCUSSION Stress Intensity Factor (KI) typical variation of normalized stress intensity factor (KI/(a)1/2) and the distance along the crack front (specimen thickness direction, x3) for specimens having various a/W is shown in Fig.3. The nature of variation of normalized stress intensity factor shown in Fig.3 is in good agreement with the similar results [7,19]. The A S. K. Kudari et alii, Frattura ed Integrità Strutturale, 39 (2017) 216-225; DOI: 10.3221/IGF-ESIS.39.21 219 magnitudes of 3D maximum stress intensity factors (at the center of the specimen) are compared with the analytical 2D value computed by Eq. (3). IK Y a  (3) Typically, such comparison for a specimen with a/W=0.65 is shown in Fig.3. It is estimated that magnitude of 2D KI is about 10% lower than 3D KI. It is well known that variation of stress intensity factor against  a 1/2  for various specimen thickness (B) is linear, slopes of KI-max vs.  a 1/2  obtained for various a/W are plotted in Fig 4. As the relation between KI-max/  a 1/2  and a/W (Fig.4) is nonlinear, the data is fit with a suitable polynomial. In such exercise, it is found that a polynomial equation of third order fits the 3D FEA results with least error (Regression co-efficient=0.998). This polynomial fit (Eq. (4)) is superimposed on the 3D FEA results plotted in Fig.4 and shows an excellent agreement. From this third order polynomial fit, the relation between KI-max, a/W and  can be expressed as: I K a a a W W Wa 2 3 max 4.48287 14.99985 20.44016 3.85185                        (4) Let, a a a C W W W 2 3 1 4.48287 14.99985 20.44016 3.85185                     (5) Figure 4: Variation of slopes, KI-max/  a 1/2  vs. a/W. The Eq. (4) reduces to: IK C amax 1   (6) Eq. (6) is similar to Eq. (3) and the constant C1 shown in Eq. (5) is similar to the geometric factor, Y as used in Eq. (3). Hence, C1 in this work is referred as 3D geometric factor. Eq. (6) can be used to estimate magnitudes of KI-max for the CT specimen. To validate the proposed formulation given in Eq. (6), the computed values of KI-max using Eq.(6) for various a/W are compared with the present 3D FEA results and the results computed by Eq.(1) proposed by Kwon and Sun [7] in Fig.4. The figure shows that the results computed by Eq. (6) are in good agreement with the results obtained by S. K. Kudari et alii, Frattura ed Integrità Strutturale, 39 (2017) 216-225; DOI: 10.3221/IGF-ESIS.39.21 220 present 3D FEA for a/W 0.45 to 0.70 (entire range of study). The values of KI-max estimated from the Eq.(1) [7] are found to in good agreement with the present results for specimens with a/W 0.45 to 0.65, but for a specimen having a/W>0.65 the Eq.(1) [7] is showing higher error. The error analysis between the results obtained by present 3D FEA and the Eq.(6) is conducted. The maximum percentage of error estimated in use of Eq.(6) for B=2 to 20mm and a/W=0.45 to 0.70 is < 2.95 %. Figure 5: A typical variation of T11/ along the crack-front for various B and a/W=0.50. T11-stress The magnitudes of T11 are extracted from 3D FE analysis for varied , B and a/W. A typical variation of T11 along the crack-front for various B, a/W=0.50 and  =86.8 MPa is shown in Fig.5. This figure shows that the variation of T11 along the crack-front (x3) depends on the specimen thickness. It is observed that the magnitude of T11 is maximum at the centre of the specimen than on the surface. However, for the specimen thickness, B<6mm the maximum value of T11 is found to be just below the surface. It is seen from Fig.5 that for specimen with higher thickness, the magnitude of T11 decreases for a short distance from the specimen surface and again increases at the centre of the specimen thickness. Similar kind of variation was observed in the work of Pavel et al. [20]. To study the effect of a/W, a typical variation of T11/ for various a/W, B=10mm and  =86.8 MPa is plotted in Fig.6. The figure illustrates that T11 depends on the specimen a/W, and it is observed to be maximum for higher a/W. The results in Fig.5-6 indicate that the in-plane constraint parameter, T11, is not a unique value (as obtained in 2D analysis) for a specimen thickness, but it varies along the thickness and it is maximum at the centre. The variation of T11 at the center (T11-max) vs. normalized KI (KI-max/(πB)1/2) for various specimen thicknesses is studied. A typical plot of T11-max against KI-max/(πB)1/2 for various a/W and B=10 mm is shown in Fig.7. It is seen from the Fig.7 that the variation of T11-max vs. KI-max/(πB)1/2 is linear and is independent of a/W. The slopes of T11-max vs. KI-max/(πB)1/2 are computed for various a/W by fitting a straight-line equation to all the results shown in Fig.7. The estimated slopes T11- max/(KI-max/(πB)1/2) are plotted against normalized thickness (B/W) for various a/W in Fig. 8. This plot indicates that, the nature of variation of slopes T11max/ (KI-max/(πB)1/2) against B/W is nonlinear and is almost independent of a/W. The result plotted in Fig.8 is used to obtain a relationship between T11-max and KI-max. As there is a small difference is observed in the results presented in Fig.8 for various a/W, the average slope of all a/W for particular B/W is used. The average results are fit by a polynomial equation of third order (Regression Co-efficient=0.994), which give a best fit to all the data. From this third order polynomial fit, the relation between T11-max and KI-max is obtained and can be expressed as: I T B B B K W W W B 2 3 11 max max 0.1477 0.93746 0.87183 0.35186                              (7) S. K. Kudari et alii, Frattura ed Integrità Strutturale, 39 (2017) 216-225; DOI: 10.3221/IGF-ESIS.39.21 221 Figure 6: A typical variation of T11/ along the crack-front for various a/W and B=10mm. Figure 7: Variation of T11-max against KI-max/πB1/2 for various a/W and B=10 mm. Figure 8: Variation of slopes T11-max/(KI-max/(πB)1/2 against B/W for various a/W. Let, B B B C W W W 2 3 2 0.1477 0.93746 0.87183 0.35186                     (8) The Eq. (7) reduces to: IKT C B max 11- max 2        (9) Substituting for KI-max from Eq.(6) S. K. Kudari et alii, Frattura ed Integrità Strutturale, 39 (2017) 216-225; DOI: 10.3221/IGF-ESIS.39.21 222 a T C C B 11 max 1 2. .            (10) a T C C B 11- max 1 2. . (11) where, constant C1 and C2 are referred in this work as 3D geometric factors. The values of C1 for various a/W and C2 for various B/W for the CT specimen are tabulated in Tab.1 and Tab.2 respectively. a/W 0.45 0.50 0.55 0.60 0.65 0.70 C1 1.5211 1.6115 1.7753 2.0094 2.3111 2.6775 Table 1: Values of C1 computed from Eq.(5). B/W 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 C2 0.2331 0.3031 0.3600 0.4057 0.4425 0.4723 0.4974 0.5199 0.5417 0.5652 Table 2: Values of C2 computed from Eq.(8). The above Eq.(11) can be used to estimate T11-max for the CT specimen for a given specimen dimensions and applied load, . A typical plot of T11-max computed from Eq.(11) is superimposed (Red curve) on 3D FEA results shown in Fig. 8. This plot shows a good agreement with the results estimated by Eq.(11) and 3D FEA. An error analysis is carried out between the estimated values from Eq.(11) and the present 3D FEA results. The maximum percentage of error in use of Eq.(11) for various B, a/W and  used in this study is found to be < 5.1%. The proposed analytical Eq.(11) is a simple method to compute T11-max for the CT specimen geometry. Figure 9: Variation of T33/ against B/W for various a/W. T33-stress The magnitudes of T33 are estimated using Eq.(12) by substituting the extracted 33 (strain) from ABAQUS post processor and T11 for varied , B and a/W. T E T33 33 11   (12) S. K. Kudari et alii, Frattura ed Integrità Strutturale, 39 (2017) 216-225; DOI: 10.3221/IGF-ESIS.39.21 223 The variation of T33-max/ against B/W for various a/W is shown in Fig.9. This figure indicates that, T33 strongly depend on B/W. It is observed that the magnitude of T33 is negative for all cases that were considered in this analysis, and approached to zero as B/W increased to 1. For B/W=0.5, ASTM requirement for KIC test specimen [15], it is seen that T33 / is negative indicating loss of out-of-plane constraint. T33 also showed dependence on a/W, for B/W<0.7, T33 is found to be maximum for thinner specimens (B/W=0.1) with higher a/W =0.7. As T33 strongly depends on the specimen thickness, it is not possible to get a simple relation between T33 and specimen geometry as obtained in case of KI and T11. To obtain expressions between T33, specimen geometry and the applied load, the results in Fig.9 are given a polynomial fit to suit the 3D FEA results. In this exercise, it is found that the 5th order polynomial fits the data with least error. A typical equation for estimation of T33–max is given by Eq. (13). The equations for the 3D geometric factors (C3) to compute T33-max for various a/W obtained by fitting 5th order polynomial are tabulated in Tab.3. T C33- max 3 (13) The computed values of C3 for various a/W are given in Tab.4. The maximum percentage of error in the use of equations given in Tab.3 for various B, a/W and  is found to be < 7.8%. Table 3: Polynomial equations for T33. a/W B/W 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.45 -1.7789 -1.1638 -0.8782 -0.7333 -0.6288 -0.5279 -0.4316 -0.3537 -0.2952 -0.2187 0.50 -1.9659 -1.2962 -0.9818 -0.8167 -0.6934 -0.5739 -0.4618 -0.3735 -0.3097 -0.2271 0.55 -2.3066 -1.5136 -1.1231 -0.9112 -0.7573 -0.6148 -0.4825 -0.3758 -0.2971 -0.2078 0.60 -2.6057 -1.6969 -1.2512 -1.0063 -0.8239 -0.6545 -0.5012 -0.3831 -0.3003 -0.1970 0.65 -3.2337 -2.0548 -1.4816 -1.1664 -0.9288 -0.7066 -0.5075 -0.3600 -0.2647 -0.1457 0.70 -3.7325 -2.3393 -1.6366 -1.2367 -0.9384 -0.6721 -0.4449 -0.2855 -0.1895 -0.0644 Table 4: Values of C3 computed from formulations given in Tab.3. a/W Polynomial Equations 0.45 T B B B B B W W W W W 2 3 4 5 33 max 3.02667 16.98748 53.07517 86.44814 68.70629 21.15385                                      0.50 T B B B B B W W W W W 2 3 4 5 33 max 3.32333 18.49597 58.0134 95.41084 76.51515 23.71795                                      0.55 T B B B B B W W W W W 2 3 4 5 33 max 3.858 20.88005 62.97348 100.77273 79.1317 24.10256                                      0.60 T B B B B B W W W W W 2 3 4 5 33 max 4.40067 24.26372 74.31294 121.11772 96.8648 30                                      0.65 T B B B B B W W W W W 2 3 4 5 33 max 5.582 31.84602 98.58275 162.16142 130.62937 40.64103                                      0.70 T B B B B B W W W W W 2 3 4 5 33 max 6.44533 36.53654 110.79021 181.22902 146.36364 45.76923                                      S. K. Kudari et alii, Frattura ed Integrità Strutturale, 39 (2017) 216-225; DOI: 10.3221/IGF-ESIS.39.21 224 To evaluate the worthiness of the analytical expressions to estimate KI-max, T11-max and T33-max proposed in this analysis, the estimated magnitudes KI-max, T11-max and T33-max obtained by Eq.(6), Eq.(11) and Tab.3 are compared with the similar results on the CT specimen presented by Toshiyuki and Tomohiro [12]. The authors [12] have given the variation of T11- max and T33-max for the toughness value of the material (0.55% Carbon Steel) KI-max= 66 MPam1/2. Fig. 10 shows a typical variation of estimated KI-max, T11-max and T33-max at the specimen thickness center against B/W (0.1 -1.0) obtained by proposed analytical expressions (Eq.(6), (11) and Tab.3) for KI-max= 66 MPam1/2 and results of Toshiyuki and Tomohiro [12]. The authors [12] have computed various parameters for B/W=0.25, 0.4 and 0.5 only. According to Fig. 10, the magnitudes of KI-max were not affected by B/W as expected and are in excellent agreement with Toshiyuki and Tomohiro [12]. T11 showed visible dependence on B/W, though the variation was less than 20% and it is in good agreement with the earlier reported results [12]. In summary, the in-plane parameters at the specimen thickness center showed small dependence on B, and are in excellent agreement with the earlier results [12] providing validation for the proposed Eq.(6) and (11). On the other hand, out-of-plane constraint factor, T33 showed strong dependence on B/W. T33 was found negative and approached zero as B/W increased from 0.1 to 1. Fig. 10 shows that the nature of variation of present results of T33 (obtained by Tab.3 expressions) is in similar manner to the one presented by Toshiyuki and Tomohiro [12]. However, some difference in the magnitude of T33 between both the results for B/W=0.25-0.5 is observed. This difference is attributed to the effect of side grooves in the CT specimen used in the work of Toshiyuki and Tomohiro [12]. The side grooves in the specimen affects the strain distribution in the out-of-plane direction and restricts the value of T33 (Ref. Eq.(12)). To study this effect, we have conducted 3D FEA on CT specimen used by Toshiyuki and Tomohiro [12] without side groove and for the same material properties. These computed results are superimposed in Fig.10 by red colored lines for comparison. This plot show that the results (KI-max, T11-max and T33-max) for the specimen without side groove match with the one computed by the analytical expressions (Eq.(6), (11) and Tab.3) proposed in this work. This exercise infers that the use of side grooves in a specimen controls 33 and improves the out-of-plane constraint (Ref.Fig.10: for a/W=0.5, T33 is improved from -150 MPa to -84 MPa (44%) by using 10% side groove [12]). The Fig. 10 provides validation to the proposed analytical formulations to estimate KI-max, T11-max and T33-max. Figure 10: A typical variation of KI-max, T11-max and T33-max against B/W obtained by proposed analytical expressions and results of Toshiyuki and Tomohiro [12]. SUMMARY n this study, stress intensity factor and T-stress (T11 and T33) solutions for CT specimens for wide range of specimen thickness and crack lengths were computed using 3D elastic FEA. It is observed that magnitude of T33 (Ref: Fig.(9)) is highly negative for B/W=0.1 (thin specimens), and almost zero for B/W=1 (thick specimens), indicating that the thick specimens have higher out-of-plane constraint. For B/W=0.5, ASTM requirement for KIC test [15], it is observed I S. K. Kudari et alii, Frattura ed Integrità Strutturale, 39 (2017) 216-225; DOI: 10.3221/IGF-ESIS.39.21 225 that T33 / is negative indicating some loss of out-of-plane constraint. For the specimens with similar a/W and B/W the loss of out-of-plane constraint (T33) is much significant than the in plane constraint (T11) (Ref. Fig.10). This infers that the major constraint loss in a CT specimen is due to the out-of-plane effects. The out-of-plane constraint loss can be corrected to some extent by providing side grooves to a CT specimen. Using the present 3D FEA results, approximate analytical formulations are proposed to evaluate the KI-max, T11-max and T33-max by knowing only applied stress and specimen dimensions. These formulations can be helpful in the analysis of in-plane and out-of-plane constraint issues. REFERENCES [1] Nakamura, T., Parks, D. M., Determination of elastic T-stress along three-dimensional crack fronts using an interaction integral, Int. J. Solids Struct., 29 (1992) 1597–1611. [2] Betegon, C., Hancock, J. W., Two-parameter characterization of elastic–plastic crack tip fields, J Appl Mech., 58 (1991) 104–110. [3] Kudari, S. K., Kodancha, K. G., A new formulation for estimating maximum stress intensity factor at the mid plane of a SENB specimen: Study based on 3D FEA, Frattura ed Integrità Strutturale, 29 (2014) 419-425. [4] Nakamura, T., Parks, D. M., Three-dimensional crack front fields in a thin ductile plate, J. Mech. Phys. Solids., 38 (1990) 787–812. [5] Nevalainen, M., Dodds, R. H., Numerical investigation of 3-D constraint effects on brittle fracture in SE(B) and C(T) specimens, Int. J. Fract., 74 (1995) 131–161. [6] Leung, A. Y. T., Su, R.K.L., A numerical study of singular stress field of 3D cracks, Finite Elem. Anal. Design., 18 (1995) 389–401. [7] Kwon, S. W., Sun, C.T., Characteristics of three-dimensional stress fields in plates with a through -the-thickness crack, Int. J. Fract., 104 (2000) 291-315. [8] Jie, Q., Xin, W., Solutions of T-stresses for quarter-elliptical corner cracks in finite thickness plates subject to tension and bending, Int. J. Pres. Ves. Pip., 83 (2006) 593–606. [9] Moreira, P. M. G. P., Pastrama, S. D., Castro, P. M.. S. T., Three-dimensional stress intensity factor calibration for a stiffened cracked plate, Engng. Fract. Mech., 76 (2009) 298–2308. [10] Kodancha, K. G., Kudari, S. K., Variation of stress intensity factor and elastic T-stress along the crack-front in finite thickness plates. Frattura ed Integrità Strutturale, 8 (2009) 45-51. [11] Toshiyuki, M., Tomohiro, T., Kai, L., T-stress solutions for a semi-elliptical axial surface crack in a cylinder subjected to mode-I non-uniform stress distributions, Engng. Fract. Mech., 77 (2010) 2467-2478. [12] Toshiyuki, M., Tomohiro, T., Experimental T33-stress formulation of test specimen thickness effect on fracture toughness in the transition temperature region, Engng. Fract. Mech., 77 (2010) 867-877. [13] Kai, L., Toshiyuki, M., Three-dimensional T-stresses for three-point-bend specimens with large thickness Variation, Engng. Fract. Mech., 116 (2014) 197-203 [14] ABAQUS V 6.5-1. (2004) Hibbitt, Karlsson & Sorensen, Inc. [15] American Society for Testing and Materials., Standard Test Method for Measurement of Fracture Toughness, (2015) ASTM E1820-15a. [16] Moran, B., Shih, C. F., Crack tip and associated domain integrals from momentum and energy balance. Engng. Fract. Mech., 27 (1987) 615-642. [17] Gosz, M., Dolbow, J., Moran, B., Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks. Int. J Solids Struct., 35 (1998) 1763-1783. [18] Priest, A. H., Experimental methods for fracture toughness measurement, J. Strain Analysis, 10 (1975) 225-232. [19] Fernandez, Z. D., Kalthoff, J. F., Fernandez, C. A ,Canteli, A., Grasa, J., Doblare, M. Three dimensional finite element calculations of crack-tip plastic zones and KIC specimen size requirements, ECF-15, (2005) [20] Pavel, H., Martin, S., Lubos, N., Michal, Z., Stanislav, S., Zdenek, K., Alfonso, F. C., Fracture mechanics of the three- dimensional crack front: vertex singularity versus out of plain constraint descriptions, Procedia Engng., 2 (2010) 2095- 2102. << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA /BGR /CHS /CHT /CZE /DAN /DEU /ESP /ETI /FRA /GRE /HEB /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN /ITA /JPN /KOR /LTH /LVI /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR /POL /PTB /RUM /RUS /SKY /SLV /SUO /SVE /TUR /UKR /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice