Frontline Learning Research 6 (2014) 15-24 

ISSN 2295-3159  

 

 

Corresponding author: I.Molenaar@pwo.ru.nl 

Doi: http://dx.doi.org/10.14786/flr.v2i4.118  

15 | F L R  
 

Advances in temporal analysis in learning and instruction 

Inge Molenaar
a 

a
 Radboud University Nijmegen 

  

Article received 8 June 2014 / revised 23 September 2014 / accepted 23 September 2014 / available online 23 December 2014 

Abstract 

This paper focuses on a trend to analyse temporal characteristics of constructs important to 

learning and instruction. Different researchers have indicated that we should pay more attention to 

time in our research to enhance explanatory power and increase validity. Constructs formerly 

viewed as personal traits, such as self-regulated learning and motivation, are now conceptualized 

as a series of events that unfold over time. This raises new questions with regard to the temporal 

characteristics of these constructs and their dynamic interplay with learner and context 

characteristics. Even though the value of analyzing temporal characteristics is becoming evident, a 

number of challenges need to be tackled in order to make progress in the field of learning and 

instruction. First, we need to be aware of the paradigm shift that temporal analysis entails. Second, 

a common understanding of different dimensions of time and the position of temporal 

characteristics therein can facilitate our time-related research dialogue. Third, a better 

understanding how to answer time-related questions with appropriate methodological approaches 

needs to emerge. Fourth, researching temporal characteristics requires procedures and guidelines 

for segmenting time units.  Fifth, temporal data are mostly collected at the micro level, whereas 

most theory is defined at a macro level; consequently we need to bridge these differences in the 

granularity used between collecting, coding and theorizing to enhance meaning making.  Finally, 

so far, most examples of time-related research are exploratory or comparative studies; the next step 

is to move toward confirmative studies, which constitute the “Holy Grail” of temporal analysis.  

Keywords: Temporal Analysis; Learning and Instruction; Time; Methodologies  

 



 

I. Molenaar 

    

16 | F L R  
 

1. Introduction 

Learning is defined as the acquisition of skills and knowledge and can be recognized through 

changes in the learners’ behaviour (Mayer 2008; Zimmerman 2002). The concept of time is innate to 

learning, as it takes time to acquire skills and knowledge and to signal changes in behaviour. In learning and 

instruction research, we mostly capture time in pre- and post-test designs. As such we often focus on a 

narrow concept of time, reducing the temporal characteristics of learning to the changes between pre- and 

post-tests which reduces validity and explanatory power of our research. Currently, technological 

advancements increase our ability to gain traces of learners while they are learning, which is an important 

facilitator to overcome this limited focus on time in our field (Greene & Azevedo, 2010; Reimann, 2009; 

Winne, 2010). A steadily growing group of researchers is raising questions that address how different 

constructs act and develop over time (Bannert et al., 2014, Greene & Azevedo, 2010; Molenaar & Chiu, 

2014; Riemann, 2009; Schmitz, 2006; Wise & Chiu, 2011). With this growing interest in temporal 

characteristics of constructs at the heart of learning and instruction research, the need for temporal analysis is 

becoming more prevalent.  

This paper focuses on the developing trend in learning and instruction research to analyze temporal 

characteristics of different constructs. The rationale for temporal analysis in our field is discussed as well as 

the fact that temporal analysis entails a deviation from our main research approach, changing our analysis 

from characteristics of students to attributes of. learning activities (Riemann, 2009; Schmidt, 2006). 

Researchers have conceptualized temporal characteristics of learning and instruction constructs in many 

ways in their research, leading to a diverse set of dimensions of time driving research questions.  It is argued 

that a conceptual framework of temporal characteristics can support transparency and enhance comparability 

in the field. Lastly, a number of challenges are discussed that we, as a field, need to overcome to successfully 

engage in temporal analysis.  

2.  The rationale for temporal analysis 

A number of researchers in the field of computer-supported learning (Kapur, 2011; Reiman, 2009;) 

and self-regulated learning (Greene & Azevedo, 2010; Schmitz, 2006; Schoor & Bannert, 2012) indicate that 

we should pay more attention to time in the learning process. Existing research methods do not “fully” utilize 

the temporal information embedded in the data collected (Kapur, Voiklis & Kinzer, 2008; Wise, Perera, 

Hsiao, Speer & Marbouti, 2012). This reduces the explanatory power of the analysis performed and limits 

the validity of the conclusions drawn (Akhras & Self, 2000; Reimann, 2009). For example, Kuvalja and 

colleagues (2014) show that self-directed speech and self-regulatory behaviour of children with a specific 

language impairment does not differ in frequency; neither the number of self-directed speech and self-

regulatory events during learning, nor the order between the these events as detected by sequential lag 

analysis differed, but there was a difference between the two groups in the co-occurrence of self-directed 

speech and self-regulatory behaviour as detected by temporal patterns analysis (Magnusson, 2000). This 

indicates that without proper temporal analysis, existing differences between groups of learners cannot be 

detected.  

Moreover, a number of constructs, such as self-regulated learning and motivation, that were 

traditionally viewed as a trait of the learner are now conceptualized as a series of events (Bannert et al. 2014; 

Greene & Azevedo, 2009; Schmitz, 2006). Driving this conceptual change are indications that self-report 

data have little relation with the actual student behaviour during learning (Veenman, 2011). These findings 

point towards the need for new conceptualisations of these constructs. A temporal conceptualisation viewing 



 

I. Molenaar 

    

17 | F L R  
 

self-regulated learning as a series of events that act differently over time and changing contexts, might 

overcome these issues (Azevedo et al., 2010; Hadwin & Järvelä, 2011). For example, Malmberg and 

colleagues (2014) show that students use different strategies and learning patterns when working on an ill-

structured task compared to a well-structured task. A series of events can be perceived as a process that 

unfolds over time in a certain order (Reimann, 2009). For example, self-regulated learning processes of 

successful students show a cyclical order among different strategies that repeat over time (Bannert et al. 

2014). Moreover, Molenaar and Chiu (2014) found strong positive predictive relations between different 

learning activities during collaborative learning over time. The changed conceptualization of constructs 

raises new questions with regard to the characteristics of these constructs and their dynamic interplay with 

the learning context.   

Finally, an emerging interest is in connecting different levels of analysis (Hollenstein, 2013; Suthers, 

Teplovs, de Laat, Oshima & Zeini 2011). This investigates of how macro-level phenomena can emerge from 

and/or be constrained by different micro-level dynamics. For example, Chiu (2008) found that micro-

creativity in a group’ mathematical solutions can be sparked by a discourse pattern, namely a wrong idea 

followed by disagreement among the group members. Temporal analysis can help develop an understanding 

of how patterns unfold, providing insights into how learning is taking place (Chiu, 2008; Wise & Chiu, 

2013).  

Take together, the argument for temporal analysis is driven by the realisation that without careful 

attention for temporal characteristics of constructs in learning and instruction research, we are reducing the 

significance of our research and are unable to explain important aspects of learning and instruction. 

3. A paradigm shift 

As touched upon in the introduction, it is important to understand that advanced temporal analysis 

entails a deviation from the traditional research paradigm used in learning and instruction (Reimann, 2009; 

Schmitz, 2006). Often the variable-based approach is applied, which focuses on the analysis of variance 

between independent and dependent variable(s). In contrast, the event-based approach looks at events 

analysing the (dynamic) relations between the events (Reimann, 2009). This approach focuses on 

researching the nature of these relations and their development over time. This reveals the temporal 

characteristics of a construct and/or how different constructs interplay over time. For example, it can indicate 

how a discussion among learners unfolds over time. Consistency and change in the behaviour of constructs 

can be investigated by specifying these temporal characteristics (Schmitz, 2006). 

Yet often reviewers in learning and instruction immediately ask the next question: can we explain 

learning performance from temporal characteristics of the constructs? This question embodies the ”Holy 

Grail” of temporal analysis and often constitutes a connection between our traditional variable-based 

approach and the event-based approach. However, few (perhaps none) researchers have so far reached the 

“Holy Grail”. Moreover, many of those initially aiming for this connection started to grow a realization that 

there are valuable questions to be answered within analysing temporal characteristics themselves. An 

example of such a research question is: Which sequences of learner actions (discuss, elaborate, summarize) 

occur during collaborative learning? An example of a research question combining temporal characteristics 

with learning performance is: Which sequences of learners’ actions during collaborative learning influence 

learning performance positively? Overall temporal analysis in learning and instruction is innate to our 

intuitive understanding of learning, but the operationalization of this understanding entails a deviation of our 



 

I. Molenaar 

    

18 | F L R  
 

traditional research paradigm. Consequently, the nature of the questions addressed with temporal analysis 

varies from our characteristic research questions in learning and instruction.   

After all, Time is a highly complex construct that has been debated on from physics to philosophy. 

Also within educational research, conceptualizations of different time scales (Lemke, 2000) and the use of 

time in classrooms (Bloome et al., 2009; Mercer, 2008) have been discussed. Still, there is no framework that 

conceptualizes dimensions of time and positions different temporal characteristics within these dimensions. 

Research questions, therefore, focus on different dimensions of time and address conceptually different 

temporal characteristics of constructs. In the next section, different dimensions of time important for learning 

and instruction research are highlighted.  

4. Different dimensions of time 

So far, in our field when addressing temporal characteristics, we have encountered mainly frequency 

analysis indicating the number of occurrences of a variable during a particular time window. This provides 

insights into the prevalence of a construct during learning. For example, students receiving scaffolds during 

learning apply more metacognitive activities compared to students that do not receive scaffolds (Molenaar et 

al., 2011). Although informative, frequency analyses provide limited insights into the individual time-related 

characteristics of the constructs researched. Even though this analysis showed that students perform more 

metacognitive activities, we do not know the importance of their position in the learning process, their 

duration or the rate at which these metacognitive activities occur during learning.  Thus frequency analyses 

treat the learning process as one holistic unit, ignoring the individual time-related characteristics of 

constructs. Using the individual time-related characteristics allows for the analysis  to illustrate how events 

occur within the flow of continuous events in a particular time window. Examples are analyzing the 

significance of the position of events, the duration of particular events and the rate of particular events within 

the learning process (Molenaar & Wise, in prep). For example, planning at the start of a learning task was 

found to be more productive for learning compared to planning latter on (Moos et al. 2008). Also students 

monitor at a higher intensity and longer in more difficult tasks compared to easier tasks (Iiskala et al. 2010). 

The dimension of time described above conceptualizes how constructs behave in a continuous flow of events 

by examining the individual time-related characteristics of these events within the flow.  

Another dimension of time in contrast to analysing events in a continuous flow, is analysing relative 

arrangements of multiple events in time.  Here the focus does not lie on the individual time-related 

characteristics of events in a time window, but on how events are organized among each other. Examples are 

both reoccurring processes and non-reoccurring processes (Molenaar & Wise, in prep). An example of a 

reoccurring process is the cyclical notion of self-regulated learning, which suggests that orientation, 

planning, monitoring and evaluation follow each other (Hadwin & Jarvela, 2013; Zimmerman, 2002). Non-

reoccurring transitions occur only once, for example, students who learn how to read progress from spelling 

letters into the automatic detection of words (Verhoeven, 2004). Apart from reoccurring and non-reoccurring 

patterns which both indicate a form of regular change, irregular change is another form of an arrangement of 

multiple events that can be investigated. The notion of productive failure where collaborating students seem 

to engage in chaotic interaction in the beginning of their collaboration is an example of irregular change 

(Kapur, 2009). This seemingly unstructured process is of essential importance for their later learning.  The 

dimension of time described above conceptualizes how constructs behave in in relative arrangements of 

multiple events by examining the organisation among these events.  



 

I. Molenaar 

    

19 | F L R  
 

Without claiming that the above is a complete overview of temporal characteristics useful for the 

field of learning and instruction, a clear distinction can be made between two dimensions of time, i.e. 

focusing on individual events within the continuous flow of events or on relative arrangements of multiple 

events (Molenaar & Wise, in prep). In order to push the conceptual understanding of time in our field, a 

conceptual framework of looking at time and positioning temporal characteristics therein is important for 

learning and instruction research to articulate and classify time-related research questions. Such a framework 

can support conceptual clarity among researchers engaging in temporal analysis and organize and deepen 

debates. Furthermore, it can be used as a roadmap to articulate temporal research questions, unravelling 

temporal characteristics of different constructs.  

5.  An illustrative example of temporal analysis 

In order to illustrate the above, I provide an example of a temporal analyses used to research socially 

regulated learning. During collaborative learning, students support one another’s learning as they discuss, 

elaborate, argue, confirm and regulate one another’s activities. We know that regulative activities such as 

metacognitive (i.e., planning, monitoring) and relational activities (i.e., confirming, engaging) contribute 

significantly to students’ learning (Molenaar et al., 2011). Yet, we know very little about how the group’s 

socially regulative activities influence students’ cognition at a micro level during collaborative learning. 

Therefore, we explored how sequences of students’ cognitive, metacognitive and relational activities affect 

the likelihood of subsequent cognitive activities during collaborative learning and whether these 

relationships differ across time (Molenaar & Chiu, 2014).  

The data are from 18 triads (54 students) engaged in 51.338 conversation turns over 6 hours of 

learning activities. The triads collaborated face-to-face while working in a computer based learning 

environment. The primary school students were in grades 4, 5, and 6, and aged between 10 and 12. Statistical 

discourse analysis, content and discourse analysis were used to analyse the learning activities. During 

content analysis, each turn in the conversation was coded as cognitive (higher or lower cognition), 

metacognitive (orientation, planning, monitoring and evaluation) or relational (confirm, deny, engage), 

procedural or off task activities. Then, statistical discourse analysis (SDA) was used to examine the 

sequential relations predicting lower and higher cognition (Chiu & Koo, 2005).  

 



 

I. Molenaar 

    

20 | F L R  
 

 

Figure 1. Path diagram of standardized final multivariate outcome, multilevel cross-classification of low cognition 

component. Solid lines indicate positive effects. Dashed lines indicate negative effects. Thicker lines indicate larger 

effect sizes.  *p < .05, **p < .01, ***p < .001. (Molenaar & Chiu, 2014; reproduced with permission) 

We found that high cognitive, low cognitive, metacognitive and relational activities in recent 

conversation turns were linked to the likelihood of low cognition in a conversation turn (see Figure 1). 

Metacognitive activities in the form of planning (in the previous conversation turn or -1), monitoring (-1), 

evaluating (2 conversation turns ago or -2), monitoring (-2), summarizing (-3) and monitoring (-3) all 

increased the likelihood of low cognition, while orientation (-2) reduced it. Higher cognitive activities in 

either of the last two conversation turns or low cognition in any of the last six conversation turns also 

increased the likelihood of low cognition.  Lastly, relational activities in the form of confirming and 

engaging in any of the last two conversation turns increased the likelihood of low cognition. 

This example analyzes temporal characteristics of arrangement of multiple events to understand how 

these events act within the learning process. This type of analysis illustrates how different learning activities 

alternate and fluctuate among collaborating students and emerge into socially regulated learning. The 

findings show recurrent sequential relationships between cognitive, metacognitive and social relational 

activities. Moreover, this analysis indicates that these patterns are rather stable over time.  

Even though these analyses reveal important information about micro-level temporal interaction 

among learning activities, an often received question is: “what do these relations among learning activities 

mean for learning, i.e. which sequences should we encourage with instructional designs?” This question 

embodies the “ holy grail” and has not been addressed yet. Although it is an important question, this inquiry 

clearly indicates the need for a paradigm shift within our field. We need to learn to value results of temporal 

analysis in their own right, providing important information about constructs in learning and instruction and 

taking steps to defining micro level temporal theories of how constructs behave over time.  



 

I. Molenaar 

    

21 | F L R  
 

6. Challenges 

Apart from creating the awareness of the need for temporal research questions, there are a number of 

other challenges that need to be addressed to forward temporal analysis in the field of learning and 

instruction. As discussed in section 4, time can be conceptualised differently in our research (Bloome et al., 

2009; Lemke, 2000; Mercer, 2008). A conceptual framework to articulate different dimensions of time to 

frame temporal characteristics and related research questions could enhance conceptual clarity and provide 

ground for in-depth debate about time-related characteristics of individual events in the continues flow of 

events or about the arrangements of multiple events over time. 

Second, although there are many emerging methods such as visualizations (Reimann, 2009), 

sequential lag analysis (Bakeman and Gottman, 1997), statistical discourse analysis (Chiu & Khoo, 2005), 

temporal pattern analysis (Magnusson, 2000), Markov Modeling (Biswas, Kinnebrew & Segedy, 2012), data 

mining (Robero et al. 2010), and dynamic systems (Hollenstein, 2013) used to explore time and order in 

learning processes, we are only starting to explore the commonalities and differences among these methods. 

Understanding about these techniques, as well as which learning and instruction questions can be answered 

by their application, is required. Comparing different methods can enhance our understanding of temporal 

characteristics of constructs in learning and instruction (e.g., via triangulation) and methodological issues 

(e.g., which method is most appropriate for specific research questions?). Collaboration among researchers is 

needed to create guidelines and to work towards a methodological framework for temporal analysis.   

Third, when performing time-related research, we always “cut in time” i.e., we make an artificial 

division in time units. This segmentation of time can be approached differently, that is at the level of 

instructional units, time units or units of time in which a construct is acting homogeneously. For example, 

determining the time window based on the frequency of occurrence of low cognition in the group discourse 

(Molenaar & Chiu, 2014).  Choices made about segmentation have important implications for the results, 

and therefore, clear guidelines towards determining time windows should be formulated. 

Fourth, granularity of our time related-research is an issue. The level at which we collect and code is 

often at a micro level capturing very small units, such as events from electronic learning environments or 

utterances in a dialogue. Our theories are usually defined at a macro level, explaining how different 

constructs act. These different levels of granularity between coding and theory are a challenge for meaning 

making. Aggregation of micro level variables to more macro level constructs can be a solution to this issue. 

Yet, as with segmentation, decisions about granularity used in analysis also impacts results profoundly and 

should therefore follow clear procedures to ensure quality standards.  Moreover, combinations of different 

research traditions, such as ethnographical approaches and data-mining methods, can help make connections 

between macro level theory and micro level coding. A number of researchers have already indicated the need 

for micro level temporal theories of constructs to support temporal analysis (Azevedo, 2014; Bannert et al. 

2014; Molenaar & Chiu, 2014; Molenaar & Järvelä, 2014; Molenaar et al., 2011; Kuvulja et al. 2014; Winne, 

2014). 

Finally, until now, mainly exploratory studies have been done and there is a request from our 

community to move toward to the Holy Grail, that is to establish that particular temporal characteristics 

contribute to learning performance in particular ways. On the one hand, the Holy Grail will help confirm the 

value of temporal analysis for the field of learning and instruction. Yet, as indicated above, linking these 

analysis to learning performance is challenging. Collaboration among researchers is needed to overcome 

these issues and create guidelines to work towards a uniform approach for event-based methods to enhance 

our understanding of the temporal characteristics of learning and instruction. 



 

I. Molenaar 

    

22 | F L R  
 

7. Conclusion 

In the field of learning and instruction, there is an intuitive belief that temporality is important to 

comprehend learning. In order for us, as a field, to make progress in understanding the temporal aspects of 

learning, a number of challenges need to be overcome. The field needs to be aware that temporal analysis 

often departs from the traditional research approach. In order to enhance this advancement, the field must 

embrace a different kind of research question specifically related to temporal aspects of learning and 

instruction.  

Keypoints 

 Time deserves more attention in learning and instruction research 

 Temporal analysis entails a paradigm shift addressing a different type of research question 

 A conceptual framework of time can support framing temporal characteristics and research 
questions 

 We need to advance our understanding of methodologies, time segmentation and meaning making 
of temporal analysis 

Acknowledgments 

The thinking in this paper reflects idea’s developed and discussed during the various workshops “It’s about 

time”. All participants in these workshops have contributed to the construction of this understanding and 

especially my conversations with Alyssa Wise and Ming Ming Chiu. 

References 

Akhras, F. N., & Self, J. A. (2000). Modeling the process, not the product, of learning. In S. P. Lajoie, 

Computers as cognitive tools, volume two: No more walls (pp. 3-28). Mahwah, NJ: Lawrence 

Erlbaum Associates. 

Azevedo, R. (2014). Issues in dealing with sequential and temporal characteristics of self-and socially-

regulated learning. Metacognition and Learning, 9(2), 217-228. http://dx.doi.org/10.1007/s11409-

014-9123-1 

Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis. 

Cambridge: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511527685 
Bannert, M. (2006). Effects of reflection prompts when learning with hypermedia. Journal of Educational 

Computing Research, 4, 359-375. http://dx.doi.org/10.2190/94V6-R58H-3367-G388 
Bannert, M., Reimann, P. & Sonnenberg, C. (2014). Process Mining Techniques for Analysing Patterns and 

Strategies in Students' Self-Regulated Learning. Metacognition and learning, Vol 9, 161-185. 

http://dx.doi.org/10.1007/s11409-013-9107-6 

Segedy, J. R., Kinnebrew, J. S., & Biswas, G. (2012). Supporting student learning using conversational 

agents in a teachable agent environment. In The future of learning: Proceedings of the 10th 

international conference of the learning sciences (ICLS 2012) (Vol. 2, pp. 251-255). 

Bloome, D., Beierle, M. Grigorenko, M. & Goldman, S. (2009). Learning over time: uses of 

intercontextuality, collective memories, and classroom chronotopes in the construction of learning 

opportunities in a ninth-grade language arts classroom. Language and Education, 23(4), pp. 313-

334. http://dx.doi.org/10.1080/09500780902954257 



 

I. Molenaar 

    

23 | F L R  
 

Chiu, M. M., & Khoo, L. (2005). A new method for analyzing sequential processes: Dynamic multi-level 

analysis. Small Group Research, 36, 600-631. http://dx.doi.org/10.1177/1046496405279309 

Chiu, M. M. (2008). Flowing toward correct contributions during groups' mathematics problem solving: A 

statistical discourse analysis. Journal of the Learning Sciences, 17 (3), 415 - 463. 
http://dx.doi.org/10.1080/10508400802224830 

Goldstein, H. (1995). Multilevel statistical models. Sydney: Edward Arnold. 

Günther, C., & Van der Aalst, W. (2007). Fuzzy Mining: Adaptive process simplification based on multi-

perspective metrics. In G. Alonso, P. Dadam & M. Rosemann (Eds.), International Conference on 

Business Process Management (BPM 2007) (pp. 328-343). Berlin: Springer. 

Greene, J. A. & Azevedo, R. (2010). The Measurement of Learners’ Self-Regulated Cognitive and 

Metacognitive Processes while Using Computer-based Learning Environments. Educational 

psychologist, 45, 203 – 209. http://dx.doi.org/10.1080/00461520.2010.515935 

Hadwin, A.F., & Järvelä, S. (2011). Introduction to a special issue on social aspects of self-regulated 

learning: Where social and self meet in the strategic regulation of learning. Teachers College Record, 

113(2), 235-239 

Hollenstein, T. (2013).State Space Grids: Depicting Dynamics Across Development.New York: Springer. 

http://dx.doi.org/10.1007/978-1-4614-5007-8 

Iiskala. T., Vauras, M., Lehtinen, E., & Salonen, P. (2011). Socially Shared Metacognition within Primary 

School Pupil Dyads’ Collaborative Processes. Learning and Instruction, 21, 379-393. 
http://dx.doi.org/10.1016/j.learninstruc.2010.05.002 

Järvelä, S. & Hadwin, A. (2013). New Frontiers: Regulating learning in CSCL. Educational Psychologist, 

48(1), 25-39. http://dx.doi.org/10.1080/00461520.2012.748006 

Lemke, J.L. (2000). Across the Scales of Time: Artifacts, Activities, and Meanings in Ecosocial Systems. 

Mind, Culture and activity, 7(4), 273–290. http://dx.doi.org/10.1207/S15327884MCA0704_03 
Kapur, M., Voiklis, J., & Kinzer, C. (2008). Sensitivities to early exchange in synchronous computer-

supported collaborative learning (CSCL) groups. Computers and Education, 51, 54-66. 
http://dx.doi.org/10.1016/j.compedu.2007.04.007 

Kapur, M. (2011). Temporality matters: Advancing a method for analyzing problem-solving processes in a 

computer-supported collaborative environment. International Journal of Computer-Supported 

Collaborative Learning (ijCSCL), 6,(1), 39-56. http://dx.doi.org/10.1007/s11412-011-9109-9 
Kennedy, P. (2008). A guide to econometrics. Cambridge: Blackwell. 

Kinnebrew, J. S., Segedy J.R. & Biswas, G. (2014). Analyzing the Temporal Evolution of Students' 

Behaviors in Open-Ended Learning Environments. Metacognition and learning, Vol 9, 217-228. 

http://dx.doi.org/10.1007/s11409-014-9112-4 

Kuvalja, M., Verma, M. & Whitebread, D. (2014). Patterns of co-occurring non-verbal behavior and self-

directed speech; a comparison of three methodological approaches. Metacognition and learning, Vol 

9, 87-111. http://dx.doi.org/10.1007/s11409-013-9106-7 
Magnusson, M. S. (2000). Discovering hidden time patterns in behavior: T-patterns and their detection 

Behavior Research Methods, Instruments, & Computers: A Journal of the Psychonomic Society, Inc, 

32(1), 93–110. 

Malmberg, J.,  Järvelä, S. & Kirchner, P. (2014). Elementary school students’ strategic learning: does task-

type matter? Metacognition and learning, Vol 9, p. 113-136. http://dx.doi.org/10.1007/s11409-013-

9108-5 

Mayer, R.E. (2008). Learning and Instruction. Pearson; New Jersey. 

Mercer, N. (2008) The seeds of time: why classroom dialogue needs a temporal analysis. Journal of the 

Learning Sciences, 17, 1, 33-59. http://dx.doi.org/10.1080/10508400701793182 

Molenaar, I., van Boxtel, C.A.M. & Sleegers, P.J.C. & Roda, C. (2011). Attention Management for Self-

Regulated Learning: AtgentSchool. In C. Roda (Ed),  Human Attention in Digital Environments, 

Cambridge University Press: Cambridge, 259 -

280.ttp://dx.doi.org/10.1017/CBO9780511974519.011 

Molenaar, I., Chiu, M. M., van Boxtel, C. & Sleegers, P. J.C. (2011). Scaffolding of small groups’ 

metacognitive activities with an avatar. International Journal of Computer-Supported Collaborative 

Learning, 6, 601-624. http://dx.doi.org/10.1007/s11412-011-9130-z 



 

I. Molenaar 

    

24 | F L R  
 

Molenaar, I., van Boxtel, C.A.M &  Sleegers, P.J.C. (2011). Metacognitive Scaffolding in an Innovative 

Learning Arrangement.  Instructional Science, vol 39(6), 785-803. http://dx.doi.org/10.1007/s11251-

010-9154-1 

Molenaar, I & Chiu M.M. (2014). Dissecting sequences of regulation and cognition: statistical discourse 

analysis of primary school children’s collaborative learning. Metacognition and learning, Vol 9, 137-

160. http://dx.doi.org/10.1007/s11409-013-9105-8 
Molenaar, I. & Järvelä, S. (2014). Sequential and Temporal Characteristics of Self and Social regulated 

Learning. Metacognition and Learning, Vol 9, p. 75-85. http://dx.doi.org/10.1007/s11409-014-9114-2 

Molenaar, I & Wise, A.F. (in prep). Concepts of Time: A Framework for Thinking about Temporal Aspects 

of Learning. 

Moos, D. C., & Azevedo, R. (2008). Self-regulated learning with hypermedia: The role of prior domain 

knowledge. Contemporary Educational Psychology, 33(2), 270-298. 

http://dx.doi.org/10.1016/j.cedpsych.2007.03.001 

Reimann, P. (2009). Time is precious: Variable- and event-centred approaches to process analysis in CSCL 

research, International Journal of Computer-supported Collaborative Learning, 3, 239-257. 
http://dx.doi.org/10.1007/s11412-009-9070-z 

Schegloff, E. A., 2007. Sequence Organization in Interaction: A Primer in Conversation Analysis. 

Cambridge: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511791208 
Schmitz, B. (2006). Advantages of studying processes in educational research. Learning and Instruction. 16, 

433-449. http://dx.doi.org/10.1016/j.learninstruc.2006.09.004 

Schoor, C. & Bannert, M. (2012). Exploring Regulatory Processes during a Computer-Supported 

Collaborative Learning Task Using Process Mining. Computers in Human Behavior. 28(4), 1321-

1331. http://dx.doi.org/10.1016/j.chb.2012.02.016 

Suthers. D., Teplovs, C., de Laat, M., Oshima, J., & Zeini, S. (2011). Connecting levels of learning in 

networked communities. Workshop conducted at the 9th International Conference on Computer 

Supported Collaborative Learning, July 9, 2011, Hong Kong. 

Robero, C., Ventura, S., Pechenizkiy, M., & Baker, R. (Eds.). (2010). Handbook of educational data mining. 

Boca Raton: Chapman&Hall/CRC. 

Veenman, M.V.J. (2011). Learning to Self-Monitor and Self-Regulate. In R. Mayer,& P. Alexander (Eds.), 

Handbook of Research on Learning and Instruction. New York: Routledge. 

Weinberger, A., & Fischer, F. (2006). A framework to analyze argumentative knowledge construction in 

computer-supported collaborative learning. Computers & Education, 46, 71-95. 
http://dx.doi.org/10.1016/j.compedu.2005.04.003 

Winne, P. H. (2014). Issues in researching self-regulated learning as patterns of events. Metacognition and 

Learning, 229-237. http://dx.doi.org/10.1007/s11409-014-9113-3 
Wise, A. F., & Chiu, M. M. (2011). Analyzing temporal patterns of knowledge construction in a role-based 

online discussion. International Journal of Computer-Supported Collaborative Learning, 6(3), 445-

470. http://dx.doi.org/10.1007/s11412-011-9120-1 

Wise, A. F., Perera, N., Hsiao, Y. , Speer, J., & Marbouti, F. (2012). Microanalytic case studies of individual 

participation patterns in an asynchronous online discussion in an undergraduate blended course. The 

Internet and Higher Education, 15(2), 108-117. http://dx.doi.org/10.1016/j.iheduc.2011.11.007 

Zimmerman, B. J. (2002). Becoming a Self-Regulated Learner: an Overview. Theory into Practice, 42(2), 

64-70. http://dx.doi.org/10.1207/s15430421tip4102_2