
On scripting GRASS GIS: Building
location-independent command line tools

Peter Loewe
RapidEye AG, Molkenmarkt 30, 14476 Brandenburg an der Havel, Germany

loewe@rapideye.de

Keywords: GRASS GIS, GRASS Scripting, FOSS GIS Workflows, Embedded GIS, Bash,
Python

Abstract

This paper discusses scripting techniques within the context of GRASS GIS. After an overview
over scripting for interactive GRASS sessions, it is shown how GRASS GIS-provided func-
tionality can be used for external applications. This approach of external scripting allows for
the application of GRASS GIS-based functionality to be used for standalone applications and
embedding in larger automated workflows.

On Scripting

What’s in a GRASS Script

Scripting allows to to re-use workflows which have been previously developed in interactive
sessions of a user (expert) and a GIS by automatization. The Geographic Resources Analysis
Support System (GRASS) GIS, a Free and Open Source (FOSS) application consists of a
variety of independent software modules, each of them providing a unique GIS processing
capability. During an interactive GRASS session, the GRASS modules are applied to the
designated set of geodata (”GRASS location”) by the user (expert). So a script in GRASS
GIS is a control structure which orchestrates the execution of underlying GRASS GIS modules.
The control structure is wrapped around the GRASS modules and accesses them via their
defined interfaces. Examples are provided in [1] and [2].

Scripts are an integral part of GRASS GIS: A significant amount of the available GRASS
GIS functionality is actually provided by scripts, instead of modules consisting of compiled
binary code. The number of GRASS modules which are scripts can be checked by examining
the ”scripts” directory of a GRASS GIS distribution. An overview over currently available
GRASS scripts beyond the scope of the standard GRASS GIS distribution is available in [3].

Geinformatics FCE CTU 2009 55

Loewe P.: On scripting GRASS GIS: Building location-independent command
line tools

New GRASS functionality can most effectively be implemented on sourcecode level, using the
GRASS libraries and C-API. However, this approach requires a good understanding of the
internals of GRASS GIS. By comparison, scripting allows for fast prototyping and does not
require source-code-level knowledge. The downside is a generally slower execution speed than
compiled C-code.

Kinds of GRASS Scripts

On a high level, GRASS scripts fall in two general categories: Module-Scripts, like those
included in every GRASS GIS distribution, provide additional GIS functionality to the user by
combining multiple pre-existing GRASS modules. The other category are workflow-scripts.
These provide for bulk tasks like the repeated use of processing chains (i.e. ”apply the same
computation on [1 .. n] data layers”).

One exception to the rule is the g.mremove script [4], which falls in both categories: Being
part of the standard GRASS distribution makes it a module script. But it is also a workflow-
script, as it allows for bulk removal of data layers, instead of the repeated use of the module
g.remove.

Languages for Scripting

While Unix-Shells and Perl have been previously the most widely used programming languages
for scripting, Python has been recently adopted as the preferred object-oriented scripting
language by the GRASS community: Starting with GRASS 7.0, all scripts included in the
standard GRASS GIS distributions are coded in Python. Add-on scripts provided by the
user community continue to be formulated in various programming languages [3]. For the
examples given in this paper, the Bourne Again Shell (bash) is still used. The code can be
easily translated into Python commands.

The Joy of Boilerplating

The effort to create a script is only justified by adequate savings in time, effort and ease when
re-using the workflow. For this, two factors are crucial: Obviously, the primary requirement is
the correct implementation of the algorithm, but equally important are standard-conforming
”friendly” user interfaces. GRASS started out 25 years ago as a system to be accessed via
a (unix)shell as a command line interface (CLI). During the evolution of GRASS, graphical
user interfaces (GUI) have been added to allow interaction via graphical icons and visual
indicators. Therefore, GRASS scripts should support support both means of interaction (CLI
and GUI). This can be easily provided by the g.parser module [5]. It provides standardized
input/output interfaces and help-page templates, both for the use of the module of a CLI and
GRASS GUIs. This approach is colloquially referred to as ”boilerplating”, as it provides a
convenient means to create a high-quality front-end for the users with little effort. Further, a
script can also be started by a mouseclick if it is integrated in an overall GRASS GUI-Manager
(like Tcl/Tk or wxPython) by including it to the GUI configuration scripts.

Geinformatics FCE CTU 2009 56

Loewe P.: On scripting GRASS GIS: Building location-independent command
line tools

Automating GRASS GIS

Apart from applying GRASS scripts during interactive GRASS sessions, it is possible to
automatically deploy GRASS scripts without user interaction. This allows for automated
GRASS-based processing without the need for user interaction.

During the startup of a GRASS session, the GRASS environment has to be linked to the
current geodata work environment (GRASS term: ’location’) and its metadata (i.e. projec-
tion). This information is defined by a set of environment variables. The setting of these shell
variables is automated, but can also be done manually or within scripts. The latter technique
will be put to use in the External Scripting Section.

Scripted GRASS Sessions

Since the release of GRASS 6.3, a GRASS session can be automatically started to execute a
preselected script: After setting a specific environment variable (i.e. GRASS BATCH JOB)
[9] to the path of an external GRASS script, this script will be executed when the next GRASS
session is started, implicitly assuming the availability of a GRASS location. This approach
can not be used in situations when no GRASS locations have been set up before.

External Scripting

External scripting invokes GRASS functionality outside of an interactive or scripted GRASS
session. This allows to create stand-alone scripts and has been available since GRASS Version
5.x : ’Once a minimum number of environment variables have been set, GRASS commands
can be integrated into shell, CGI, PERL, PHP and other scripts’ [2, p.290]. Initially, his
approach appears less convenient than variable-controlled scripted GRASS sessions. However,
it enables full control over the location settings. This allows to start computations literally
’from scratch’, creating GRASS locations in the process.

Example: External Scripting

The following example showcases the necessary steps required for an external script to ini-
tialize a GRASS session. It demonstrates how to proceed from an unprojected location to a
projected one.

External GRASS Initialisation

To invoke GRASS without a proper location available in the filesystem, a temporary mock-up
has to be created. This is done in a user-defined folder, by setting up the following direc-
tory structure: On the highest level, the location directory ($THE LOCATION), provides
metadata and projection information. For each explicitly named region of interest (GRASS
term: mapset), a subfolder is created within the location-directory. As each GRASS lo-
cation is required to contain one mapset named PERMENENT, this is the recommended
name for the intitial mapset to be created. In the following code fragment, the directories
are referred to by the variables $THE LOCATION and $THE MAPSET while the variable

Geinformatics FCE CTU 2009 57

Loewe P.: On scripting GRASS GIS: Building location-independent command
line tools

$GRASS DBASE EXAMPLE refers to the temporary directory. In addition to the described
folder stucture, a file is required by GRASS GIS to contain the location’s metadata. This
ASCII file, by default named ’WIND’, is set up for an location lacking projection informa-
tion (’proj:0’), defining an area of singular extent. These settings serve as placeholders to
be updated during the following steps. The file is also copied into a second instance (’DE-
FAULT WIND’). In a last step, the database driver is defined by creating the file ’VAR’.

Create a WIND file with minimal information and no projection:

echo "proj: 0

zone: 0

north: 1

south: 0

east: 1

west: 0

cols: 1

rows: 1

e-w resol: 1

n-s resol: 1

top: 1

bottom: 0

cols3: 1

rows3: 1

depths: 1

e-w resol3: 1

n-s resol3: 1

t-b resol: 1

" > ${GRASS_DBASE_EXAMPLE}/$THE_LOCATION/$THE_MAPSET/WIND

Copy WIND-file to DEFAULT_WIND:

cp ${GRASS_DBASE_EXAMPLE}/$THE_LOCATION/$THE_MAPSET/WIND \

${GRASS_DBASE_EXAMPLE}/$THE_LOCATION/$THE_MAPSET/DEFAULT_WIND

Set default database driver:

echo "DBF_DRIVER: dbf

DB_DATABASE : $GISDBASE/$LOCATION_NAME/$MAPSET/dbf/

" > ${GRASS_DBASE_EXAMPLE}/$THE_LOCATION/$THE_MAPSET/VAR

[Code Snippet 1: First step of GRASS GIS initialization]

When GRASS is started without a reference to a specific location, it attempts to refer to the
last previously used location. This mechanism is exploited to point GRASS to the mock-up
location. The following code snippet demonstrates how the required references are stored in
an ASCII file. The standard file used for this is named ’.grassrc6’ (for GRASS versions 6.x)
but in the mock-up case, any arbitrary name can be used because the filename is stored in a
shell variable in the last step.

echo "GISDBASE: ${GRASS_DBASE_EXAMPLE}

LOCATION_NAME: $THE_LOCATION

MAPSET: $THE_MAPSET

" > ${GRASS_DBASE_EXAMPLE}/$THE_GRASSRC

[Code Snippet 2: Second step of GRASS GIS initialization: Creation of the GRASSRC-file]

As a final step, the shell variables required for GRASS have to be set to match the newly
created directories and files.

$GISBASE points to the GRASS installation to be used:

export GISBASE=/opt/grass

Extend $PATH for the default GRASS scripts:

export PATH=$PATH:$GISBASE/bin:$GISBASE/scripts

Geinformatics FCE CTU 2009 58

Loewe P.: On scripting GRASS GIS: Building location-independent command
line tools

Add GRASS library information:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$GISBASE/lib

use process ID (PID) as lock file number:

export GIS_LOCK=$$

Backup previously existing GRASS references

export GISRC_BACKUP=${GISRC}

path to GRASS settings file:

export GISRC=${GRASS_DBASE_EXAMPLE}/$THE_GRASSRC

db.connect driver=dbf database=’$GISDBASE/$LOCATION_NAME/$MAPSET/dbf/’

[Code Snippet 2: Third step of GRASS GIS initialization: Export of paths and settings]

At this point, a fully operational GRASS GIS environment has been established within the
script.

Auto-generating a location from external data

After the initialization stage, GRASS modules can be used within the mock-up location. Geo-
data can be imported, inluding the generation of additional locations based on the projecton
information derived from the input data. The GRASS module r.in.gdal [6] is used for raster
data while the module v.in.ogr [10] is used for vector import.

Read the raster data stored in the GeoTIFF "example.tif" in directory /tmp

into to the layer ’raster_layer’ in the new location ’raster_location’

r.in.gdal -e input=/tmp/example.tif output=raster_layer location=raster_location

Read the line-vectors stored in the shapefile "example.shp" in directory /tmp

into to the layer ’vector_layer’ in the new location ’vector_location’

v.in.ogr -e dsn=/tmp output=vector_layer layer=example.shp type=line location=vector_location

Switching over to the new location is achieved by setting the shell variables accordingly. By
default, the data is stored in the newly created location within the mapset ’PERMANENT’.

If the external data is lacking proper projection information (i.e. a Shapefile is provided
without a .prj-file), the approach described in the next section can be used to explictly define
the projection.

Projection Changes within a Script

Using the module g.proj [15] allows to advance from the initial mock-up location to a pro-
jected location: The necessary parameters can either be provided to the g.proj module or a
European Petroleum Survey Group (EPSG) [13] numeric code can be used. It must be noted
that g.proj will only work on the PERMANENT mapset of a location.

The example uses the EPSG code ”4326”, which refers to geographical coordinates using the
WGS84 ellipsoid:

Override the current projection setting

g.proj --quiet -c epsg=4326

Define the extent of the region of interest

g.region --quiet -s n=90 s=-90 w=-180 e=180 res=1

[Code Snippet 4: The usage of g.proj to override the current projection with a EPSG code]

Geinformatics FCE CTU 2009 59

Loewe P.: On scripting GRASS GIS: Building location-independent command
line tools

Shifting the Focus between Multiple Locations

After a projected location containing data has been established, either by definition in the
script or external data, it might become necessary to write out data in another projection. For
this, it is necessary to transfer the results into an additional location in the output projection,
using r.out.gdal [7] and v.out.ogr [11] to finally export the actual data.

The export location is created as described before: The sequence of defining a GISRC-file
pointing to the location and mapset, exporting the GIS LOCK variable and finally pointing
the GISRC-Variable to the new GISRC-file is repeated, thereby changing the focus of the
GRASS session to the addedd location. Once this has been accomplished, the reprojection
modules r.proj [8] and v.proj [12] can be used to transfer the data into the location.

After providing the required output data products, all locations can be safely removed from
the file system. Care should be taken to restore the cached value of the variable $GRASSRC
for upcoming interactive GRASS sesssions.

Fields of Applications

The approach of External Scripting of GRASS GIS is beneficial for all repetitive processing
tasks without the need of user interaction. Such tasks can be either stand alone applications
or part of larger workflows, where geospatial processing is only a subtask.

GRASS scripting also provides alternatives to the set-up of up Open Web Services (OWS),
like Web Mapping Service (WMS) or Web Processing Service (WPS) to provide automated
geospatial map-products or to do geoprocessing. Such GIS-produced maps can be used to
regularly update Webpages. A classic example by Neteler [14] provides a global map of
earthquake epicenters. This is accomplished by importing and processing external earthquake
information in a GRASS-based externally scripted workflow.

Another noteworthy aspect about using automated scripts is the option to reduce the func-
tionality and thereby to minimize the footprint of the GIS: The footprint of a contemporary
”off the shelf” GRASS GIS installation on the filesystem is about 50Mb. If GRASS func-
tionality is implemented in an automated workflow, GRASS can be reduced to exactly those
modules which are required in the workflow. All other GRASS modules would be a waste of
potentially critical ressources. This approach is especially useful when implementing work-
flows on embedded systems, such as environmental sensors with limited system ressources.

Conclusion

This paper provided a technical overview on the current options to deploy scripts based
on GRASS modules. It was demonstrated how inherent GRASS GIS-functionality can be
wrapped in scripts to be applied beyond the scope of an interactive GRASS GIS session.

Beyond the technical challenge to ”think script”, the significance of being able to provide
ready-to-use tools to a wide audience is emphasized: The empowering of audiences lacking

Geinformatics FCE CTU 2009 60

Loewe P.: On scripting GRASS GIS: Building location-independent command
line tools

previous FOSS GIS exposure to perform challenging geospatial tasks (while hiding the com-
plexities of the actual GRASS GIS solution) is expected to broaden the user base and overall
impact of Free and Open Source Softare (FOSS) GIS applications.

References

1. Löwe P: Niederschlagserosivität: Eine Fallstudie aus Südafrika, basierend auf Wetter-
radar und Open Source GIS, VDM Verlag, 2008, ISBN 978-3-8364-5018-8

2. Neteler, M. and Mitášová H.: Open Source GIS: A GRASS GIS Approach, Kluwer
Academic Publishers Group, 2002, ISBN 1-4020-7088-8

3. GRASS AddOns
http://grass.osgeo.org/wiki/GRASS AddOns

4. GRASS GIS module to remove data base element files from the user’s current mapset.
http://grass.fbk.eu/grass64/manuals/html64 user/g.mremove.html

5. GRASS module to provide canonic interfaces for scripts
http://grass.itc.it/grass64/manuals/html64 user/g.parser.html

6. Raster data import
http://grass.itc.it/grass64/manuals/html64 user/r.in.gdal.html

7. Raster data export
http://grass.itc.it/grass64/manuals/html64 user/r.out.gdal.html

8. Reprojection of raster data from other GRASS locations with differing projection
http://grass.itc.it/grass64/manuals/html64 user/r.proj.html

9. Overview over GRASS environment variables and setting options
http://grass.itc.it/grass64/manuals/html64 user/variables.html

10. Vector data import
http://grass.itc.it/grass64/manuals/html64 user/v.in.ogr.html

11. Vector data export
http://grass.itc.it/grass64/manuals/html64 user/v.out.ogr.html

12. Reprojection of vector data from other GRASS locations with differing projection
http://grass.itc.it/grass64/manuals/html64 user/v.proj.html

13. Overview over EPSG codes
http://www.epsg.org/Geodetic.html

14. Automated Earthquake Map based on GRASS GIS
http://grass.itc.it/spearfish/php grass earthquakes.php

15. GRASS module to manipulate projection settings
http://www.grass.itc.it/grass64/manuals/html64 user/g.proj.html

Geinformatics FCE CTU 2009 61

http://grass.osgeo.org/wiki/GRASS_AddOns
http://grass.fbk.eu/grass64/manuals/html64_user/g.mremove.html
http://grass.itc.it/grass64/manuals/html64_user/g.parser.html
http://grass.itc.it/grass64/manuals/html64_user/r.in.gdal.html
http://grass.itc.it/grass64/manuals/html64_user/r.out.gdal.html
http://grass.itc.it/grass64/manuals/html64_user/r.proj.html
http://grass.itc.it/grass64/manuals/html64_user/variables.html
http://grass.itc.it/grass64/manuals/html64_user/v.in.ogr.html
http://grass.itc.it/grass64/manuals/html64_user/v.out.ogr.html
http://grass.itc.it/grass64/manuals/html64_user/v.proj.html
http://www.epsg.org/Geodetic.html
http://grass.itc.it/spearfish/php_grass_earthquakes.php
http://www.grass.itc.it/grass64/manuals/html64_user/g.proj.html

Geinformatics FCE CTU 2009 62

