Microsoft Word - A_58_Kiraly_R.doc


HUNGARIAN JOURNAL 
OF INDUSTRIAL CHEMISTRY 

VESZPRÉM 
Vol. 39(1) pp. 107-112 (2011) 

DETERMINING OPTIMAL STOCK LEVEL 
IN MULTI-ECHELON SUPPLY CHAINS 

A. KIRÁLY1, G. BELVÁRDI2, J. ABONYI1  

1University of Pannonia, Department of Process Engineering, P.O. Box 158., Veszprém H-8200, HUNGARY 
E-mail: abonyij@fmt.uni-pannon.hu 

2IBS Consulting Ltd Szőlősi 16a Siófok H-8600, Hungary 
 

Inventory control of Multi-echelon supply chains is a widely researched area. In most cases researchers choose analytic 
methods to analyze such logistics systems. Simulation is a very useful alternative for analyzing supply chain systems and 
a well-constructed model can provide a better approach and can give more realistic picture of the complex situation. 
In this article the authors introduce an interactive, configurable simulator to analyze stock levels in a complex supply 
chain. This new modeling approach (SIMWARE) is capable to simulate complex multi-echelon supply chains where the 
frequency of stock transfer between the individual levels of the supply chain can be optimized. The authors evaluate different 
optimization strategies and methods. The introduced SIMWARE method can be used to minimize the environmental 
impact of the supply chain by minimizing the transportation between the nodes of the supply chain hierarchy. The model 
provides an optimization methodology where the objective function is the total cost of the supply chain. 

Keywords: supply chain, simulation, safety stock, optimization. 

Introduction 

Supply chains present a complex decision situation for 
management. Supply chain performance impacts the 
financial performance of the company therefore it is 
important to find a way to optimize the performance of 
the supply chain. Simulation provides a way to get closer 
to real life situations and use less simplifications and 
assumptions than you need with analytical solutions.  

Our objective is to build a simulator that can use 
simple building blocks to construct models of complex 
supply chain networks. Supply chains processes can be 
simulated using these models, where parameters of Key 
Performance Indicators are analyzed by sensitivity 
analysis. The result is a decision support tool flexible 
enough to handle complex situations and straightforward 
and simple to use enough for management purposes. 

Literature review 

The research of inventory management or the investigation 
of supply chain is widespread in the scientific literature. 
It is a seriously researched area since the fifties; Simpson 
[6] was the first one who formulated the serial-line 
inventory problem. Graves and Willems extend Simpsons 
work to spanning trees in [2], while in [3] they give a 
comprehensive review of the previous approaches for 
safety stock placement, the same as they propose two 
general approaches and introduce the supply chain 
configuration problem. There exist good overviews in the 

literature for supply chain and inventory management, 
like in [11], where authors give an overview of different 
approaches of supply chain modeling, and outline future 
opportunities. In [9] Lau et al. give an overview of 
various average inventory level (AIL) expressions and 
presents two novel expressions which are simpler and 
more accurate than previous ones. A comprehensive 
overview can be found in [13], where a simulation model 
for a real problem with lost sales is presented, where 
authors consider several types of inventory policies. 

The determination of safety stock in an inventory 
model is one of the key actions in the management, 
Miranda and Garrido include both cycle and safety stock 
in the inventory model in [12], and the resulting model 
in this article has a non-linear objective function. Authors 
in [4] gives a model for positioning safety stock in a 
supply chain subject to non-stationary demand, and they 
show how to extend their former model to find the optimal 
placement safety stocks under constant time service 
(CST) policy. Prékopa in [16] gives an improved model 
for the so called Hungarian inventory control model to 
find the minimal safety stock level that ensures the 
continuous production, without disruption. 

The bullwhip effect is an important phenomenon in 
supply chains, authors in [10] show how a supply chain 
can be modeled and analyzed by colored petri nets (CPN) 
and CPN tools and they evaluate the bullwhip effect, the 
surplus of inventory goods, etc. using the beer game as 
demonstration. More recent research can be found in [1], 
which shows that an order policy applied to a serial 
single-product supply chain with four echelons can reduce 
or amplify the bullwhip effect and inventory oscillation. 



 

 

108

Miranda et al. investigate the modeling of a two 
echelon supply chain system and optimization in two 
steps [15], while a massive multi-echelon inventory 
model is presented by Seo [19], where an order risk 
policy for general multi-echelon system is given, which 
minimizes the system operation cost. A really complex 
system is examined in [20], where it is necessary to 
apply some clustering for similar items, because detailed 
analysis could become impossible considering each item 
individually. 

The simulation-based approach was published only 
in the last decade. Jung et al. [7] make a Monte Carlo 
based sampling from real data, and apply a simulation–
optimization framework while looking for managing 
uncertainty. They use a gradient-based search algorithm, 
while authors in [8] discuss how to use simulation to 
describe a five-level inventory system, and optimize this 
model by genetic algorithm. Schwartz et al. [18] 
demonstrate the internal model control (IMC) and 
model predictive control (MPC) algorithms to manage 
inventory in uncertain production inventory and multi-
echelon supply/demand networks. The stability of the 
supply chain is also a seriously researched area recently, 
[14] shows that a linear supply chain can be stabilized 
by the anticipation of the own future inventory and by 
taking into account the inventories of other suppliers, 
and Vaughan in [21] presents a linear order point/lot 
size model that with its robustness can contribute to 
business process modeling. 

A complex instance of inventory model can be 
found in [5], where orders cross in time considering 
various distributions for the lead time. Sakaguchi in [17] 
investigates the dynamic inventory model in which 
demands are discrete and varying period by period. The 
author gives an algorithm to solve several examples. 

Based on the previous review it is clear that most of 
the multi-echelon supply chain optimization and analysis 
are based on analytical approach. Simulation however 
provides a very good alternative, because it can model 
real life situations with accuracy, more flexible in terms 
of input parameters and therefore it is more easy to use 
in decision support. The simulation results can be 
analyzed with various statistical methods and numerical 
optimization algorithms. To analyze complex, especially 
multi-echelon systems, multi-level simulation models 
can be used, where the results of optimized high level 
model feeds into the lower level more detailed models. 

The structure of the paper is the following: 
Section 2 is a general introduction to the problem 

describing the multi-echelon supply chain and the 
relevant cost structure. Section 3 introduces the flexible 
modeling tool to build complex multi-echelon supply 
chain models using simple, easy to understand modules. 
Section 4 represents the main results through a case 
study, while section 5 concludes our work. The reader 
can follow the solution of a problem and we demonstrate 
the use of sensitivity analysis as a decision support tool. 
Finally we talk about the integration of this methodology 
to a complex decision support system which is part of 
the company Management Information System.  

The proposed method 

Our intent was to create a Monte-Carlo simulator which 
uses probability distributions based on material usage 
data posted in the logistic module of an ERP system. 
This new methodology has two main objectives. 

SIMWARE can be used as a verification tool to 
analyze and evaluate inventory control strategies pinpoint 
problems due to MRP parameter determinations. The 
simulation of “actual” inventory controlling strategies 
provides the most important KPI-s of these strategies. 
On the other hand we can use the simulator as part of 
optimization and determine the optimal values of the 
key inventory control parameters. 

SIMWARE provides a framework to analyze the 
cost structure and optimize inventory control parameters 
based on cost objectives. We are in the process to 
finalize the costing model therefore we used a simple 
cost function at this point. We have minimized the 
inventory holding cost by changing the parameters of 
our operational space while keeping the service level at 
the required value. 

Simple warehouse model 

 
Figure 1: The classic model of inventory control. 
 
In Fig. 1, Q is the theoretical demand over cycle 

time T and this is the Order Quantity; R is the Reorder 
point, which is the maximum demand can be satisfied 
during the replenishment lead time (L). S is the Safety 
stock; this is needed if the demand is higher than the 
expected (line d). We have a special type of Safety stock 
in our example. Utility companies use this stock to cover 
demand due to system failures. 

Now we give a summary of the most important 
parameters of inventory control and their relevance and 
connection to our model. 

Lead time L is the time between the Purchase order 
and the goods receipt. d̄ L denotes the average demand 
during the replenishment lead time. d̄ L = d̄ ·L, where d̄  is 
the daily average demand. Using the same logic dL is a 
special case; it yields consumption if the service level is 
100%. We will use dL to denote the consumption during 
the manuscript. A Cycle time (T) is the time between 
two purchase orders. The Order Quantity is Q where  
Q = d¯·T. This is the ordered quantity in a purchase order. 

Ld

ZS Lσ=

Q

tout
outt

L
LLL tL

d
ZdESdR −+=−+= σ

d
out

L t
L

d
E =



 

 

109

Q is equal to the Expected demand and the Maximum 
stock level. Maximum stock level is the stock level 
necessary to cover the Expected demand in period T; 
therefore it has to be the quantity we order. 

Reorder point is the stock level when the next purchase 
order has to be issued. It is used for materials where the 
inventory control is based on actual stock levels. 

In an ideal case R equals to total of safety stock and 
average demand over lead time: ( SdR L += ). 

S is the Safety stock which is to cover the stochastic 
demand changes and for a given Service Level this is the 
maximum demand can be satisfied over the Lead time. 

Assuming constant demand pattern over the cycle 
time, Average Stock (K) can be calculated as follows. 

 S
Q

K +=
2

 (1) 

It is calculated as a weighted average of stock levels 
over the cycle time.  

Service Level (SL) is the ratio of the satisfied and 
the total demand (in general this is the mean of a 
probability distribution), or in other words it is the 
difference between the 100% and the ration of unsatisfied 
demand: 

 
Q

Rd
SL L

)(
100100

−
−=  (2) 

We assume that all demand is satisfied from stock 
until stock exists. When we reach stock level R the 
demand over the lead time (dL) will be satisfied up to R. 
Consequently if dL > R, we are getting a stock out 
situation and there will be unsatisfied demand therefore 
the service level will be lower than 100%. dL is not 
known and it is a random variable. The probability of a 
certain demand level is P(dL). Based on this, the service 
level is formed as shown in the next equation. 

 
Q

dRddP
SL

d

d
LLL

L

∫ −
−=

max

))((
100100 , (3) 

where dL is continuous random variable, and dmax is the 
maximum demand over Lead time. 

Stochastic model 

Based on our experience in analyzing actual supply chain 
systems we discovered that the probability functions of 
material flow and demand are different from the theoretical 
functions. 

As Fig. 3 shows the distribution function of an actual 
material consumption is significantly different from the 
theoretical one (Fig. 2). This makes us believe that there 
is a difference between the theoretical (calculated) and 
the actual inventory movements, therefore it makes sense 
using an approach based on “actual” distribution function. 
We will demonstrate the results of the simulation using 
this approach. 

 

 
Figure 2: Theoretical Cumulative Distribution function 

 

 
Figure 3: Actual Cumulative Distribution function for a 

raw material based on its consumption data 
 
Inventory movements can be modeled much better 

using stochastic differential equations than modeling 
based on the theoretical assumption that movements are 
following normal distribution. 

We propose the following model: 

 ),,(
1 uiLL

tropxuWxx
ii

+−=
+

, (4) 

where xi is stock level on the i
th week, Wi is a stochastic 

process to represent consumption. This stochastic process 
is based on the empirical cumulative distribution function 
we described in the previous section. u is the quantity of 
material received on week i, based on purchase orders. 
Purchase orders are calculated based on the actual 
inventory level (x), and reorder point (rop), and the 
replenishment lead-time (tu).  

Optimization of the system 

Optimization process is changing the reorder point 
while keeping the service level at the required value. As 
a result we find the optimal reorder point for the given 
service level. This determines an optimal inventory 
level to minimize our current cost objective function. 

In the first phase we created the simulator using the 
Sequential Quadratic Programming (SQP) functionality 
of MATLAB’s Optimization Toolbox. 

During the optimization we calculate the minimum 
value of a restricted non-linear multi-variable function. 
In our case we use the reorder point as optimization 
variable (parameter), we are seeking for the minimum 
of the average days of inventory. Our restriction is the 
required value of the service level. 



 

 

110

In the basic case we use one set random consumption 
data for the optimization therefore the optimum is related 
to this dataset. 

We applied the Monte-Carlo process to overcome 
this problem. This is a robust methodology which 
generates empirical distribution functions of consumption. 
We use these data sets as input for the simulation model 
to simulate the stock movements. We use many random 
paths like this in every optimization step. Based on the 
proven convergence of the Monte-Carlo process the 
calculated stock movements, stock turnover and service 
level are good estimations of the actual process at a 
given reorder point. 

In the current example the optimization process 
executes 100 simulation runs for each parameter set and 
uses the average of the results as objective function or 
constraint. We use the reorder point as optimization 
variable (parameter), we are seeking for the minimum 
of the average days of inventory. Our restriction is the 
required value of the service level. We demonstrate the 
results in the next section. 

Results 

In this chapter we show a complete process for the 
optimization of a 2-echelon supply chain, as well as we 
demonstrate how to solve a more complex problem by 
the help of our proposed SIMWARE program. 

Analysis of a 2-level system 

In this demonstrated example we used the simulator to 
analyze a system with two connected warehouses. The 
simulator is capable to optimize the two warehouses in 
the same time and calculate the optimum for the supply 
chain as a whole. 

The following diagram shows the supply chain, i.e. 
the structure of the analyzed 2-level system. 

 

 
Figure 4: The analyzed 2-level system 

 
Where the objective function is: 

 f(z) = mean(h1) + 1.3*mean(h2), (5) 

i.e. the holding cost in the second Warehouse is 30% 
higher than in the first Warehouse. 

In Fig. 5, the values of the objective function (i.e. 
cost) is presented as a function of the reorder point of 
the two Warehouses. Fig. 6 shows the service level of 
Warehouse 1 in the 2-level system. The constraint for 
the service levels is 95% in this case. 

 

Cost

Reorder point – Storage 2  Reorder point – Storage 1

C
os
t 

  Reorder point – Warehouse 1Reorder point – Warehouse 2  
Figure 5: The values of the objective function for the 

2-level system 
 
 

 

Se
rv
ic
e
 L
ev
el
 

Service Level – Warehouse 1 

Reorder point – Warehouse 1 Reorder point – Warehouse 2   
Figure 6: The values of service level for Warehouse 1. 

 
The figure above shows only the service level for the 

first warehouse, but in the optimization problem both 
service level has to take into consideration as well as the 
constraints. In the next picture, we investigate all of these.  
 

 
Figure 7: The result of the optimization. 

 
Fig. 7 shows the result of the optimization using the 

SQP method. The optimal solution is highlighted with 
the green square. It satisfies the 95% constraints and 
ensures the minimal holding cost in the warehouses. 
The cost function can be seen in Fig. 5. 

The result of the simulation run is presented in the 
next figure. The diagram shows weekly inventory levels 
in the Warehouses at the optimal case. 

 



 

 

111

 
Weeks 

y

 
Figure 8: Inventory levels in the 2-level system. 

 
In the rest of this section, we present a more complex, 

3-level inventory model for illustration. This model can 
be seen in the next figure, which contains 9 warehouses 
in a 3-echelon structure. 

In the SIMWARE program, users have to define the 
structure of the problem, i.e. the connection between the 
warehouses. The parameters of each warehouse has to be 
defined also, e. g. the lead time or the average demand for 
a product as well as the cost values, like the holding cost. 

Fig. 10 represents the results of the simulation for a 
3-level inventory model, where each inventory level is 
depicted by lines with different style. 

 
  WH1 

WH2
 

WH3
 

WH4 

WH43WH42
 

WH41
 

WH31
 

WH21
 

 
Figure 9: The analyzed 3-level system. 

 

Weeks 

In
ve
n
to
ry
 L
e
ve
l 

 
Figure 10: The inventory levels in the 3 level multi-

echelon system. 

Note that we have used separate distribution 
functions for the central warehouse and the other regional 
warehouses to simulate the consumption. We constructed 
these distribution functions based on actual data. The 
central warehouse consumption figures are calculated as 
a total of the downstream warehouse consumptions. 

Using different distribution functions in a multi-
echelon supply chain, or using different consumption 
values for each warehouse is not a trivial, but necessary 
task if we want to construct a more realistic model or 
simulator. The SIMWARE program offers an easy-to-use 
interface to build even complex supply chains, and propose 
a novel component based structure. Using this program, 
users can easily optimize the supply chain, for example 
by an SQP method, but the proposed methodology gives 
a chance to use more effective optimization algorithms. 

Conclusions 

A framework for modeling a multi-echelon supply chain 
has been defined. The MM and WM modules of SAP 
system provide data for the model for the whole supply 
chain. In our project we simulated a central purchasing 
scenario. In this supply chain the central warehouse 
supplies the other companies in the group. Our 
methodology can be used to calculate stock turnover 
ratio and safety stock based on the agreed service level 
of the warehouses. Our methodology can handle the 
stochastic behavior of the replenishment lead time. We 
used Monte-Carlo based simulation to evaluate the results 
and also were able to evaluate the MRP parameters used 
in the ERP system. Extended the model to analyze and 
optimize the inventory levels at the other companies in 
the group as well. The MATLAB simulation model can 
be used to determine the optimal parameters for a 
required service level. The SIMWARE model is available 
at the following website: www.folyamatmernok.hu 
 

ACKNOWLEDGEMENT 

This work was supported by the TAMOP-4.2.1/B-
09/1/KONV-2010-0003 and TAMOP-4.2.2/B-10/1-2010-
0025 projects and the E.ON Business Services Kft. 

 

REFERENCES 

1. G. CALOIERO, F. STROZZI, J. M. Z. COMENGES:  
A supply chain as a series of filters or amplifiers of 
the bullwhip effect, International Journal of 
Production Economics, 114(2), (2008), 631–645 

2. S. C. GRAVES, S. P. WILLEMS: Optimizing strategic 
safety stock placement in supply chains, 
Manufacturing & Service Operations Management, 
2(1), (2000), 68–83 

3. S. C. GRAVES, S. P. WILLEMS: Supply chain design: 
safety stock placement and supply chain configuration. 
Handbooks in operations research and management 
science, 11, (2003), 95–132 



 

 

112

4. S. C. GRAVES, S. P. WILLEMS: Strategic inventory 
placement in supply chains: Nonstationary demand, 
Manufacturing & Service Operations Management, 
10(2), (2008), 278–287 

5. J. C. HAYYA, U. BAGCHI, J. G. KIM, D. SUN: On 
static stochastic order crossover, International Journal 
of Production Economics,114(1), (2008), 404–413 

6. K. F. SIMPSON JR: In-process inventories, Operations 
Research, (1958), 863–873 

7. J. Y. JUNG, G. BLAU, J. F. PEKNY, G. V. REKLAITIS, 
D. EVERSDYK: A simulation based optimization 
approach to supply chain management under demand 
uncertainty, Computers & Chemical Engineering, 
28(10), (2004), 2087–2106 

8. P. KÖCHEL, U. NIELÄNDER: Simulation-based 
optimisation of multi-echelon inventory systems. 
International Journal of Production Economics, 93, 
(2005), 505–513 

9. A. H. L. LAU, H. S. LAU: A comparison of different 
methods for estimating the average inventory level in 
a (q, r) system with backorders, International Journal 
of Production Economics, 79(3), (2003), 303–316 

10. D. MAKAJIC-NIKOLIC, B. PANIC, M. VUJOSEVIC: 
Bullwhip effect and supply chain modeling and 
analysis using CPN tools, Fifth Workshop and 
Tutorial on Practical Use of Colored Petri Nets and 
the CPN Tools, Citeseer, (2004) 

11. H. MIN, G. ZHOU: Supply chain modelling: past, 
present and future, Computers & Industrial 
Engineering, 43(1-2), (2002), 231–249 

12. P. A. MIRANDA, R. A. GARRIDO: Incorporating 
inventory control decisions into a strategic 
distribution network design model with stochastic 
demand, Transportation Research Part E: Logistics 
and Transportation Review, 40, (2004), 183–207 

13. E. P. MUSALEM, R. DEKKER: Controlling inventories 
in a supply chain: a case study, International Journal 
of Production Economics, 93, (2005), 179–188 

14. T. NAGATANI, D. HELBING: Stability analysis and 
stabilization strategies for linear supply chains, 
Physica A: Statistical and Theoretical Physics, 
335(3-4), (2004), 644–660 

15. P. A. MIRANDA, R. A. GARRIDO: Inventory service-
level optimization within distribution network 
design problem, International Journal of Production 
Economics, 122(1), (2009), 276–285 

16. A. PRÉKOPA: On the Hungarian inventory control 
model, European journal of operational research, 
171(3), (2006), 894–914 

17. M. SAKAGUCHI: Inventory model for an inventory 
system with time varying demand rate, International 
Journal of Production Economics, 122(1), (2009), 
269–275 

18. J. D. SCHWARTZ, W. WANG, D. E. RIVERA: 
Simulation-based optimization of process control 
policies for inventory management in supply chains, 
Automatica, 42(8), (2006), 1311–1320 

19. Y. SEO: Controlling general multi-echelon distribution 
supply chains with improved reorder decision 
policy utilizing real-time shared stock information, 
Computers & Industrial Engineering, 51(2), (2006), 
229–246 

20. M. SRINIVASAN, Y. B. MOON: A comprehensive 
clustering algorithm for strategic analysis of supply 
chain networks, Computers & industrial 
engineering, 36(3), (1999), 615–633 

21. T. S. VAUGHAN: Lot size effects on process lead 
time, lead time demand, and safety stock, 
International Journal of Production Economics, 
100(1), (2006), 1–9 

















<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice