IBN AL- HAITHAM J . FO R PURE & APPL. SC I VO L. 23 (1) 2010 Synthesis, Spectroscopic and Dyeing Performance Studies of Some New Heterocyclic Azo Dyes and Their Complexes with Selected Metal Ions T. J.Al-Hasani and A. J.Jarad Departme nt of Chemistry, College of Science,Unive rsity of Baghdad Abstract Coup ling reaction of m-and p- amino acetop henone and p-amino benzoic acid with (L- Hist idine) gave the new bidentate azo ligands (L1, L2 and L3). The p repared ligands were identified by FT -IR, UV-Vis, 1 HNM R and GC- mass sp ectroscop ic technique. Treatment of the p repared ligands with the following metal ions (Co II , Ni II , Cu II , Zn II , Cd II and Hg II ) in aqueous ethanol with a 1:2 M :L ratio and at op timum p H, y ielded a series of n eutral comp lexes of the general formula [M (L)2 Cl2]. The prep ared comp lexes were characterized by using f lame atomic absorp tion, FT-IR, UV-Vis and 1 HNM R sp ectroscop ic methods as well as magnetic suscep tibility and conductivity measurements. Chlorid e ion content was also evaluated by (M ohr method). The nature of the comp lexes formed was st udied following the mole r atio and continuous variation methods, Beer's law ob eyed over a concentration range (1× 10 -4 - 3 × 10 -4 M ). High molar absorbtivity of the comp lex solutions was observed. The st ability constant of the complexes have also been studied. In addition the dy eing p erformance of the p repared ligands and some of their comp lexes was ap p lied on cotton fabric. The dy es were tested for light and detergent fast ness. Biolo gical activity of the ligands and complexes against three selected typ es of bacteria was also e xamined. Some of the co mplexes exhibit good bacterial activities. Introduction A great deal of interest has been simulated to the preparation and studies of organic reagents in the p revious y ears [1-3]. M any of these organic reagents have att racted much att ention as they are sensitive, chromogenic reagents in addition to being interesting comp lexing agents[4,5]. The p resence of substitution group s containing one or more donor atom such as – OH, - CO2H, - SO3H, - NH2 and – N= N-, p rovided coordination sites with the metal ion, formin g st able colored complexes[6,7]. Az o comp ounds with (- N= N-) group , are among the most p rofoundly exp lored classes of or ganic reagent both from the theoretical and p ractical view p oint[8]. T he presence of an azo linkage in aro matic compounds makes t hem high ly imp ortant in dyestuff industry [9- 11], p harmacy and dosimetry [12,13], and more recently[14], in the field of non- linear optics. All these applications depend critically on the p resence of intense absorp tion bands in the visible or near- UV region. In recent y ears [15-18] much studies have been devoted to heterocy clic azo dy estuffs and their related compounds, in which the heterocyclic atom is at least formally involved in coordination with metal atom. By far many imp ortant groups of heterocyclic azo derivatives have been sy nthesized and their ap p lications have also been extensively st udied [19-23]. In this resp ect an attemp t has been made to sy nthesize and characterize three new azo bidentate ligands (L1, L2 and L3), derived from m - and p - amino acetop henone and p- amino IBN AL- HAITHAM J . FO R PURE & APPL. SC I VO L. 23 (1) 2010 benzoic acid as diazo comp onent, and (L- Histidine) as coup ling agent. T he complexes of these ligands with some metal ions has also been st udied and characterized p hy sicochemically . The dy eing p erformance of the ligands and comp lexes was assessed. The biolo gical activities of all the li gands and co mplexes have also been st udied. Experime ntal Instrumentation: UV- Vis sp ectra were recorded on a ( Shimadzu UV- 160A) Ultra Violet-Visible Sp ectrop hotometer. IR- sp ectra were taken on a (Shimadzu, FT I R- 8400s Fourier Transform Infrared) Sp ectrop hotometer (4000- 400)cm -1 with samples p rep ared as KBr discs. The 1 HNM R sp ectra were obtained on a (Jeol Ex270 M HZ, Brucker- 400 MHZ) University of London and on (Brucker- 300 M Hz Ultra Shield) University of Al- al- Bayt- Jordan usin g DM SO as a solvent and (TM S) as a reference. M icroelemental analy sis (C, H, N) were p erformed in Al- al- Bayt University - Jordan using (Euro v ector EA 3000A Elemental Analyser). Conductivities were measured for 10 -3 M of comp lexes in ethanol at 25 о C using (Philip s PW- Digital Conductimeter). M agnetic suscep tibilities were p erformed by using (Brucker M agnet B. M . 6) instrument at 25 o C. M elting Points were obtained using ( Stuart M elting Point App aratus). Materials and Re agents The followin g chemicals were used as r eceiv ed fro m sup p liers; cadmiu m chloride mono hy drate 98%, mercuric chlor ide 98% (Fluka); cobaltous chloride hexahydrate 98.8%, nickel chlor ide hexahydrate 99.9%, copp er chloride 98%, zinc chlor ide 99%, p - amino acetop henone 99% (M erck); m- amino acetop henone 99%, p - amino benzoic acid 98.8%, L- Hist idine 99% (B. D. H). The pH of the medium (4-9) was adjust ed with ammonium acetate –ammonia – glacial acetic acid buffer solution . Solutions were made of L1, L2 and L3 (1X10 -5 -1X10 -3 M ) in absolute ethanol and same concentration ran ge of metals salts in buffer solutions. Prep aration of the Ligands (L1, L2 and L3) 0.002 mole of the app rop riate amine ( m- and p - amino acetop henone and p - amino benzoic acid), was dissolved in a mixture of 2 ml sulp huric acid, 10 ml ethanol and 10 ml distilled water, and d iazotized at 5 o C with sodium nitrite solution. The diazo solution was added drop wise with st irring to a cooled ethanolic solution of 0.387 g 0.002 mole of L- Hist idine. 25 ml of 1 M sodium hy droxide solution was added to the dark colored mixture. The precipitate was filtered off and washed several times with (1: 1) ethanol: water, mixture then left t o dry . The reaction is shown in scheme (1), while (Table- 1) describes color, meltin g p oint, % y ield and weight of amine used. S cheme (1): Preparation of Ligands (L1 , L2 and L3) NH2 B A N B A NHSO4 N B A N N N CH2CHCOOH NH 2 H C O CH 3 ,B =H) COOH,B=H) C O CH3) H2S O4(Conc) L -H istidine L1,(A= L2,(A = L3,(A=H ,B= NaNO2 N aO H IBN AL- HAITHAM J . FO R PURE & APPL. SC I VO L. 23 (1) 2010 Preparation of Metal Complexes (general procedure). An ethanolic solution of the ligand (2m mole) was added gr adually with stirring to (1m mole) of the metal sa lt dissolved in the buffer solution of the required p H. T he mixture was cooled until d ark co lor precipitate was formed, filtered and washed sever al times with (1: 1) water: ethanol then with acetone. (Table-2) consists of the weight of metal salt and ligand required, the p H of the solution and some of the p hy sical p rop erties of the p rep ared comp lexes. Dyeing Method The dy eing p rop erties of the p rep ared ligand and their comp lexes were tested on "Hilla- Fine T extile State Company" using the "Azoic Dy es M ethod"[12] . Dy es were ap p lied on cott on fabric as (1% shade). The dyeing of the fabric was done at (15- 20 o C) for 1 hr and at p H =10. S tudy of Biol ogical Activity Three selected typ es of bacteria were used including, Escherichia Co li (E. Coli) as Gram Negative Bacteria, Staphy lococcus Aurous (Stap h. Aurous) as Gram Positive Bacteria and Pseudomonas Aeruginosa (Ps. Aeruginosa) in Nutrient Agar med ium, usin g (DM SO) as a solvent and as a control, the concentration of the compounds in this solvent was 10 -3 M , by using d isc sensitivity test. This method involves the exp osure of the zone of inhibition toward the diffusion of micro- organism on agar plate. The p lates were incubated for 24hr. at 37 o C. Results and Discussion The ligands (L1, L2 and L3) wer e p repared by coupling L- Hist idine with the approp riate diazotate in alkaline solution. They are sp aringly soluble in water but soluble in organic solvents, st able toward air and moist ure. The sy nthesized ligands were characterized by FT IR, UV- Vis sp ectra; L1 was subjected to ( 1 HNMR) while L2 and L3 were characterized by GC-mass. The mass sp ectrum of ligand L2 and of ligand L3 (Fi g- 1) shows p eaks centered at m/z 303 and 301 corresp onds with ( M + ), C13H13N5O4 and C14H15N5O3 resp ectively. The general p att ern for the fragmentation reveals more than one way for the cleavage, either by losing the azo group as nitrogen molecule or by the cleavage of b enzoic acid- azo bond, the main fragments are summarized in (Table- 3), while scheme (2) shows the fragmentation p attern of ligand L2. IBN AL- HAITHAM J . FO R PURE & APPL. SC I VO L. 23 (1) 2010 HOOC N N N N H C H2CHCOOH NH2 (M) C13 H13 N5O4 -2 CO 2 (4 4 ) -H COO H (46) H N N N N H CH 2CH2 NH2 (3 03) C11H1 3N5 (215) -C2 H7N (45) OOC N N N H N CHCH2 NH 2 C7H 4O2 (1 20) -CO2 (4 4) C5 H7N5 (120 ) -N 2 (28) C6H6 (78) N N CH2C H NH2 C5H6N 3 (108 ) -CH3 (1 5) N N C-N H2 C4H3N3 (93) -CNH2 (2 8) N N C3HN2 (6 5) H N N N N C9H 6N4 (170) -N2 (28) H N H N C9H 7N2 (1 43) H H N N C3HN2C6H6 (7 8) (6 5) S cheme (2): Fragmentation Pattern of Ligand L2 The ( 1 HNMR) sp ectrum of ligand (L1) in (DM SO) (Fig- 2) shows signal for (NH) of imidazole at (δ= 8.87 pp m). The multip let signals at (δ= 8.13-7.79 pp m) refer to aromatic p roton while the (CH) of imidazole shows si gnal at (δ= 6.78 p p m). On the other hand, the aliphatic (CH) and (CH2) app ear as doublet and triplet signals resp ectively in the range (δ= 3.37- 2.43 p p m). Whereas, the sign al at (δ= 1.23 pp m) is assign ed to NH2 and the si gnal peak at (δ= 2.5 pp m) referred to (DM SO)- d6. The three ligands (L1 , L2 and L3) were also characterized by UV- Vis sp ectroscop ic technique. The sp ectra of an ethanolic solution of the ligands (10 -3 M ) disp lay mainly three p eaks, the first and second p eaks were observed within the ranges (223- 245 nm) and (278- 310 nm) resp ectively. These two p eaks were assigned to the moderate energy π- π * transition of the aromatic rings. The third peak (λ m ax) was observed in the range (383- 405 nm) which referred to the π- π * transition of intermolecular charge- transfer taken p lace from benzene to imidazole r ing through the azo group (-N=N) [24]. Interaction of the metal ions (Co II , Ni II , Cu II , Zn II , Cd II and Hg II ) with the three p rep ared ligands has been st udied in solution; aqueous- ethanolic solutions were alway s p erformed over wide molar concentration and acidity range. The colors of these mixed solutions were varied from yellow or y ellowish- brown t o orange or red. IBN AL- HAITHAM J . FO R PURE & APPL. SC I VO L. 23 (1) 2010 The interaction of the metal ion with the ligand manifests itself in the absorp tion sp ectra by the app earance of a peak in the ran ge (431- 442 nm). A gr eat bathochromic shift in the visible region was detected in the comp lex solutions sp ectra with resp ect to that of the free ligand. The high shift in the (λ m ax) gave a good indication for comp lex formation. (Fi g-3) showed a comp arison between the sp ectra of the ligand and (Cd II - L1) mixed solution. From the wide studied range of molar concentration (10 -5 -10 -3 M ) of the mixed solutions, only the concentration of (10 -4 M ) obeyed Lambert- Be er's law and showed intense color. A c alibration curve was p lott ed on absorbance against molar concentration in the range (1×10 -4 - 3×10 -4 M ). Best fit st raight lines were obtained with correlation factor R> 0.998. The optimum concentration which chosen for comp lex solution gave rise to a constant (λ m ax) at different pH. The influence of p H was also st udied at pH range 4 to 9 and the absorbance- p H curves for each metal ion measured at c ertain (λm ax) were plott ed. (Fig- 4) showed a selective p H- absorbance curves. The plateau of the curves represented the comp letion of the reaction and consequently represented the optimum p H. The comp osition of the comp lexes for med in solution was established by mole ratio and job methods. In both cases the results reveal (1:2) metal to ligand r atio. Chosen p lots were represented in (Fig- 5). (Table- 4) summarizes t he results obtained as conditions for the p rep aration of the comp lexes. The apparent stability constant (K) of the (1:2) metal: ligand comp lex was evaluated sp ectroscop ically by using the following equations: and Where c = the concentration of the comp lex solution in mole/ L α = degree of dissociation,As= the absorption of solution containing a st oichiometric amount of ligand and metal ion and Am= the absorp tion of solution containin g the same amount of metal and excess of ligand. The As and Am were measured at (λ m ax) of solution. The values of (As, Am, α, K and log K) were tabulated in (Table- 5). The high v alues of K may reflect the high st ability of the p rep ared comp lexes [25]. The solid comp lexes were p repared by direct reaction of alcoholic solution of the ligands with the aqueous solution of the metal ions at t he optimum pH and in a (M : L) ratio of (1: 2). The (C. H. N) and chloride analy sis with metal contents of these comp lexes were in good agr eements with the calculated values (Table-6). Hi gh meltin g p oints (> 360 °C) were recorded for these comp lexes. The molar conductance of the comp lexes as (10 -3 M ) in DM F and in methanol, lies in the ranges (3.37- 17.53) and (2.12- 14.37) S. cm 2 .mol -1 resp ectively, indicating their non- electrolytic nature[26], therefore, the two (Cl) ions was considered to be coord inated with t he metal ion. The p hy sical and analytical data of the p rep ared comp lexes were given in (Table- 7). The effective magnetic moments of Co(II) comp lexes lie in the range (3.45- 3.70 ) B.M . This value refers to a paramagnetic (high sp in) planar st ructure for these comp lexes. In the case of Ni (II) comp lexes, the magnetic moments lie in the ran ge (2.33- 3.08) B. M which has been r eported for most octahedral nick el (II) comp lexes[27]. The magnetic moments of Cu (II) comp lexes lie in the range of (1.62-1.86) B.M . indicating the p resence of an unp aired electron and the comp lex is not a dimer. The UV- Vis sp ectra of the p repared comp lexes dissolved in methanol (10 -3 M ) have been measured and the data obtained wer e included in (Table- 7).Again the large IBN AL- HAITHAM J . FO R PURE & APPL. SC I VO L. 23 (1) 2010 bathochromic shift of the (λmax) assigned to (π- π * ) transition of the ligand su ggesting the involvement of the ligand in the bond formation with t he metal ion. In order to study the binding mode of the new ligands (L1, L2 and L3) with the metal ions, a comparison was made for the FT IR sp ectra of the free ligands and those of the p rep ared comp lexes and the data was tabulated in (Table- 8). The IR sp ectra of the three ligands exhibited three bands in the ranges (3460- 3406) cm -1 , (3330- 3070) cm -1 and (3260- 3070) cm -1 which were assign ed to the stretching modes of υ(OH), υ(- NH) of the p rimary amine , and υ(-NH) of the imidazole rin g r esp ectively[28,29]. Since no si gnificant ch anges in these bands were noticed, the p ossibility that coordination occurs v ia the donatin g atoms in these group s were excluded. Stron g band in the ligands sp ectra was observed in the range (1639- 1631) cm -1 ascrib ed to t he υ(C= N) for t he imidazole ring [30]. Significant change was observed in this band on coordination with metal ion, it is either d isapp eared or ap p eared as a weak shoulder. This chan ge may confirm the involvement of the imidazole nitro gen in bonding. The st rong characterist ic band in the free ligand sp ectra at (1413- 1409) cm -1 which was assigned to the (-N= N-) st retching [31,32] suffered a great change in the intensity and in p osition, sp litting to lower frequency was also observed on comp lexation with metal ion. This may suggest the p articip ation of the azo nitrogen in this comp lexation. Two new stretching bands wer e noticed around (480- 418) cm -1 which were assignable to the υ(M - N) of the azo group and the imidazole r ing[33,34] Anot her weak new b and was also appeared around 410 cm -1 which att ributed to the υ(M -Cl) mode. The ( 1 HNM R) sp ectra in DM SO (Fig-6),for on e of the p repared comp lexes have be en measured for reason of comparison. The signal belongs to the (NH) of the imidazole was shifted to higher region (lower frequen cy) (δ= 8.38) with resp ect to that of the ligand (δ= 8.87). Change was observed in the shap e and p osition of the multiplet signals belon g to the p rotons of t he benzene ring (δ= 8.16- 7.46). These sign als were observ ed in the ligand sp ectra at (δ=8.13 -7.79). T he (CH) signal of t he imidazole r ing was shifted to lower region (δ=7.13), this was recorder at (δ=6.78) for the free ligand. On the other hand, the triplet(δ= 3.56,2.95 and 2.34) and the doublet (δ= 2.21 and 2.14) refer to alip hatic (CH) and (CH2) and the singlet(δ= 2.33) belongs to (CH3) p rotons of the acety l group , were also undergo shift to high er region, while the (NH2) p roton signal(δ= 1.23) st ay s nearly at same p osition as that of the free ligand. On the basis of these evidences, it is concluded that the ligands (L1, L2 and L3) behave as neutral bidentate molecules coordinatin g through the azo and the imidazole nitrogen. Therefore, the su ggested structure of the prep ared comp lexes can be illustrated as in (Fig-7). The dy eing p erformance of the p repared ligand and some of their complexes was assessed on cotton fabric. The dy es were test ed for li ght and detergent fast ness. T hus all dy es showed very good dy eing p rop erties, they p rovided colors as orange, brown, red and f inally p ink with good brightness and depth on the fabric. Some of the dy eing were shown on (Fig- 8). Finally, the biolo gical activities of the ligand and their comp lexes have also been tested against selected typ e of bacteria.The results show that the Hg-comp lexes and Ni- L1 comp lex show a relatively st rong activating cap acity . Whereas, all the p arents ligands p ossessed no activity towards t he same sp ecimen of bacteria. Re ferences 1.Yoshimura, K.; Toshimitsu, Y. and Ohashi, S. (1980) Talanta., 27:693. 2.M asoud, M.S.; Soliman, E.M .; Elkholy , A.E. and Khalil, E.A. (1988)Thermochimica Acta; 136: 1. 3.Pavon, J.L.P.;Cardero, B.M .; M endz, J.H. and M iranes,J.C. (1989) Analy st; 114: 849. 4.Cornellie, T.M .; Whetstone, P.A.; Fisher, A.J. and M eares, C.F. (2003) J. Am. Chem. Soc., 125: 3436. 5.Cubina, K. F.; Ovehynnikov, V.A.; Amirkhanov, V.M .; Fischer, H.; Stumf ,V.M . R. and Skop enko, V.V; (2000) Z. Naturforsch; 55B:576. 6.M atsuka, S.; Tennichi, Y.; Takehar a,K. and Yoshi mura, K. (1999) Analy st ; 124:717. IBN AL- HAITHAM J . FO R PURE & APPL. SC I VO L. 23 (1) 2010 7.Casellato, U.; Fre gona, D.; Sitran, S. ; Tamburini, S. and Vigato, A. (1985) Inorg. Chim. Acta; 110:161. 8.Holbecher, Z.; Divis, L.; Kra l, M .; Sucha, L. and Vlacil, F. (1976)"Hand Book of Organic Reagents in Organic Analysis", John Wiley and Sons, New York. 9.Bluss, K.; (1995) Dy es and Pigments; 41:149. 10.Kuiki, K. and Loike, Y. (2002) Chem. Rev.; 102:2347. 11.M enek, N.; Turgut, G. and Odabasoglu, M . (1999) Turk. J. Chem., 23: 423. 12. Freeman, H.(1994) National Te xtile Center Annual R eport, September. 13.Sokolowska, G. J.; Freeman, H. and R eife, A.(1994)Textile Res. J; 64 :388. 14. Okamoto, Y.; Nishihara, S.; Nishizaea, Y. ;Tagaya , A. and Koike, Y. (2002) J. Op t. Soc. Am. B/19:1844. 15 Veauthier, J.M .; Schelter, E.J.; Kuehl, C.J.;C lark, A. E. ; John, B. D.; M orris, D.E.; M artin, R.L.; Thompson, J.D.; Kip linger, J.L. and John, K.D. (2005) Inorg. Chem.,44 :5911. 16.M akhova, N.N.; Ovchinnikov, I.V.; Kulikov, A.S.; M olotov, S.I. and Baryhnikova, E.I.; (2004) Pure and App l Chem; 76 :1691. 17. Ovchinnikov, I.V. ; Ep ishina, M .A.; M olotov, S.I.; Strelenko, Y.A.; Lyssenko, K.A. and M akhova, N.N. (2003) M endeleev Commun., 272. 18.M aradia, H.R. and Patel,V. S. (2001) J. Braz. Chem. Soc; 121: 710. 19.Wan g,R.; Liu,H.; Carducci,M .D.; Jin,T.; Zheng,C. and Zheng,Z.(2001) Inorg.Ch em; 40: 2743. 20.Shar, G.A. and Soo mro ,G.A. (2004) T he Nucleus; 41:77. 21. Estonian, P. (2006) Acad. Sci. Ch em; 55:202. 22. Gavazov, K.; Lekora,V. and patronov, G. (2006) Acta. Chem. Slov., 53: 506. 23.M aradiya, H.R.; (2001) Turk.J. Chem., 25: 441. 24.M ahmoud, M . R.; Hamman, A.M . and Ibrahim, S.A. (1984) Z . Phy s. Chem., 265: 203. 25.Cao, H.W. and Zhao,J. Fu. (2003) Cro. Chem. Acta.., 7: 1. 26.Geary, W.J. (1971) '' Coordination Chemistry Reviews '' 7 :110. 27.Khulbe, R. C. and Sin gh, R. P. (1982) Ind. J. of Chemistry ; 22A: 214. 28.Yild iz, E. and Boztp e, H. (2002) Turk. J. Chem; 26: 897. 29. El-Saied, F. A.; Ay ad, M .I.; Issa, R.M . and Ally , S.A.(2001) Polish. J. Chem.; 75: 773. 30. Silv erstein, R.M . and Webster, F.X.(1996) ''Sp ectrometric Identification of Organic Compounds''; 6 th Ed., New York, John Wiley and Sons, Inc, 31.Cabrillo, R. ; Cast ineirars, A.; Covelo g, B.; Nico las, J. and. Vazquez- Lopez, E.N. (2001) Poly hedron; 20: 2415. 32.Pal, J.; M isra, T.K. and Sinha,C. (2000) Transition. M et. Chem.; 25: 333. 33.Gupt a, C. P.; Kanugo, D.K. and M ehta, P.K.(1979) J. Ind. Chem. Soc; 56: 826. 34.Rona, A.K. and Shah, J.R. (1981) J. Ind. Chem. Soc; 58 :1100. IBN AL- HAITHAM J . FO R PURE & APPL. SC I VO L. 23 (1) 2010 Table (1): Physical Properties of the Ligands Table (2): Reaction Conditions and S ome Physical Properties of the Complexes Yield% m. p ◦ c Color Wt. of Amine (g) Name Ligand 81.85 140-142 Deep Brown 0.337 2-(p -Acetop henone azo)-- amino- 1H- imidazole- 4- p rop ionic acid L1 75.32 210-212 Yellowish Orange 0.342 2-(p -Benzoicacid azo)--amino- 1H- imidazole- 4- prop ionic acid L2 83.74 192-194 Orange Brown 0.337 2-(m-Acetop henone azo )-- amino- 1H- imidazole- 4- p rop ionic acid L3 Yield % color p H Wt. of M etal Ion (g) Wt. of Ligand (g) Complexes 72 Reddish Brown 6.5 0.118 0.301 [Co (L1)2 Cl2] 80 Brown 6.5 0.118 0.301 [Ni (L1)2 Cl2] 82 Deep Violet 7 0.085 0.301 [Cu (L1)2 Cl2] 77 Reddish Brown 6.5 0.068 0.301 [Zn (L1)2 Cl2] 73 Orange 7 0.100 0.301 [Cd (L1)2 Cl2] 65 Reddish Orange 6 0.135 0.301 [Hg (L1)2 Cl2] 76 Brown 6 0.118 0.303 [Co (L2)2 Cl2] 74 Reddish Brown 7 0.118 0.303 [Ni (L2)2 Cl2] 71 Yellowish Green 7 0.085 0.303 [Cu (L2)2 Cl2] 84 Yellow 6.5 0.068 0.303 [Zn (L2)2 Cl2] 79 Reddish Orange 6 0.100 0.303 [Cd (L2)2 Cl2] 70 Orange 7 0.135 0.303 [Hg (L2)2 Cl2] 88 Brown 6.5 0.118 0.301 [Co (L3)2 Cl2] 85 Dark Green 6.5 0.118 0.301 [Ni (L3)2 Cl2] 89 Dark Brown 7 0.085 0.301 [Cu (L3)2 Cl2] 86 Reddish Orange 6 0.068 0.301 [Zn (L3)2 Cl2] 78 Reddish Orange 6 0.100 0.301 [Cd (L3)2 Cl2] 89 Reddish Brown 6 0.135 0.301 [Hg (L3)2 Cl2] IBN AL- HAITHAM J . FO R PURE & APPL. SC I VO L. 23 (1) 2010 Table (3): Mass S pectral Data of the Ligands L2 and L3 L2 Fragment m/z Relative abundance Parent Ion 303 7 C11 H13 N5 + 215 2 C9 H6 N4 .+ 170 5 C9 H7 N2 + 143 4 C5 H7 N5 .+ 137 67 C7 H4 O2 .+ 120 88 C5 H6 N3 .+ 108 4 C4 H3 N3 .+ 93 69 C5 H6 + 78 13 C3 HN2 .+ 65 65 L3 Parent Ion 301 9 C5 H5 N3 .+ 135 96 C8 H7O + 120 92 C5 H4N3 .+ 106 4 C5 H2N3 .+ 92 100 C6 H6 + 78 17 C3 HN2 .+ 65 85 Table (4): Conditions for the Preparation of the Comple xes Cu(II) Complexes Ni(II) Complexes Co(II) Complexes Ligand M :L Ratio Opt imum molar Conc.10 - 4 Opt imum p H M :L Ratio Opt imum molar Conc. 10 - 4 Opt imum p H M :L Ratio Opt imum molar Conc. 10 - 4 Opt imum p H 1:2 1.5 7 1:2 2.5 6.5 1:2 2 6.5 L1 1:2 2.5 7 1:2 2 7 1:2 2 6 L2 1:2 2 7 1:2 2 6.5 1:2 2 6.5 L3 Hg (II) Complexes Cd (II) Complexes Zn(II) Complexes Ligand M :L Ratio Opt imum molar Conc.10 - 4 Opt imum p H M :L Ratio Opt imum molar Conc. 10 - 4 Opt imum p H M :L Ratio Opt imum molar Conc. 10 - 4 Opt imum p H 1:2 2.5 6 1:2 3 7 1:2 2 6.5 L1 1:2 2.5 7 1:2 2.5 6 1:2 2.5 6.5 L2 1:2 3 6 1:2 2.5 6 1:2 2 6 L3 IBN AL- HAITHAM J . FO R PURE & APPL. SC I VO L. 23 (1) 2010 Table (5): S tabili ty Constants of the Prepared Complexes L1 Log K K  AM AS Complex 8.033 10 8 ×1.080 0.352 0.173 0.112 Co(II) 7.121 10 7 ×1.322 0.524 0.421 0.200 Ni(II) 8.871 10 8 ×7.440 0.256 0.242 0.180 Cu(II) 7.363 10 7 ×2.309 0.515 0.512 0.248 Zn(II) 7.155 10 7 ×1.430 0.471 0.280 0.148 Cd(II) 7.423 10 7 ×2.652 0.443 0.638 0.355 Hg(II) L2 Log K K  AM AS Complex 6.965 10 6 ×9.228 0.354 0.302 0.195 Co(II) 7.036 10 7 ×1.088 0.347 0.552 0.360 Ni(II) 7.260 10 7 ×1.822 0.271 0.221 0.161 Cu(II) 7.423 10 7 ×2.652 0.443 0.291 0.162 Zn(II) 7.188 10 7 ×1.543 0.506 0.798 0.394 Cd(II) 7.245 10 7 ×1.758 0.490 0.422 0.215 Hg(II) L3 Log K K  AM AS Complex 7.285 10 7 ×1.929 0.537 0.121 0.056 Co(II) 7.395 10 7 ×2.485 0.503 0.173 0.086 Ni(II) 7.681 10 7 ×4.800 0.424 0.205 0.118 Cu(II) 7.956 10 7 ×9.057 0.366 0.243 0.154 Zn(II) 7.475 10 7 ×2.989 0.432 1.281 0.727 Cd(II) 7.440 10 7 ×2.750 0.394 0.543 0.329 Hg(II) IBN AL- HAITHAM J. FO R PURE & APPL. SC I VO L. 23 (1) 2010 Table (6): Elemental Anal ysis Data for the prepared Comple xes Ni (II) Complexes Co (II) Complexes Ligand Cl% M % N% H% C% Cl% M % N% H% C% 9.70 (8.15) 8.02 (7.50) - - - 9.70 (9.37) 8.05 (7.80) - - - L1 9.64 (8.51) 7.97 (7.50) - - - 9.65 (9.20) 8.01 (7.90) - - - L2 9.70 (9.22) 8.02 (7.86) - - - 9.70 (8.50) 8.05 (7.70) - - - L3 Zn (II) Complexes Cu (II) Complexes Ligand Cl% M % N% H% C% Cl% M % N% H% C% 9.62 (9.22) 8.81 (8.43) - - - 9.63 (9.35) 8.68 (8.23) - - - L1 9.57 (9.15) 8.76 (8.49) 18.89 (18.60) 3.50 (3.19) 42.10 (43.08) 9.59 (9.20) 8.64 (8.34) - - - L2 9.62 (9.28) 8.81 (8.62) - - - 9.63 (8.50) 8.68 (8.31) 19.00 (19.33 ) 4.10 (4.11 ) 48.95 (48.95 ) L3 Hg (II) Complexes Cd (II) Complexes Ligand Cl% M % N% H% C% Cl% M % N% H% C% 8.13 (7.80) 22.90 (21.98) - - - 9.04 (8.73) 14.27 (14.30 ) - - - L1 8.10 (7.80) 22.82 (22.63) - - - 9.00 (8.57) 14.20 (14.11 ) - - - L2 8.13 (7.90) 22.90 (22.10) - - - 9.04 (8.75) 14.27 (14.22 ) - - - L3 IBN AL- HAITHAM J . FO R PURE & APPL. SC I VO L. 23 (1) 2010 Compounds (m ax) (nm) Є m ax 10 3 L. M ol. -1 Cm -1 ef f (B.M) m (S.cm 2 . mol -1 ) In DM F In M ethanol [Co (L1)2 Cl2] 455 0.243 3.61 15.32 13.62 [Ni (L1)2 Cl2] 459 0.644 2.33 11.10 8.57 [Cu (L1)2 Cl2] 476 0.155 1.62 12.49 6.63 [Zn (L1)2 Cl2] 461 0.282 - 9.53 6.52 [Cd (L1)2 Cl2] 475 0.415 - 3.37 2.54 [Hg (L1)2 Cl2] 475 1.255 - 4.09 2.30 [Co (L2)2 Cl2] 458 0.512 3.45 5.27 3.43 [Ni (L2)2 Cl2] 463 0.624 2.42 6.12 4.83 [Cu (L2)2 Cl2] 471 0.248 1.86 20.3 13.36 Table (7): UV- Vis, Magnetic Susceptibility and Conductance Me asurements Data [Zn (L2)2 Cl2] 456 0.102 - 8.51 5.74 [Cd (L2)2 Cl2] 467 0.382 - 4.87 2.12 [Hg (L2)2 Cl2] 444 0.279 - 4.85 2.80 [Co (L3)2 Cl2] 519 0.216 3.70 15.84 12.77 [Ni (L3)2 Cl2] 512 0.212 3.08 16.52 14.37 [Cu (L3)2 Cl2] 532 0.970 1.61 10.74 8.77 [Zn (L3)2 Cl2] 587 0.553 - 10.48 8.84 [Cd (L3)2 Cl2] 522 1.254 - 3.84 2.84 [Hg (L3)2 Cl2] 527 0.377 - 3.54 2.54 IBN AL- HAITHAM J . FO R PURE & APPL. SC I VO L. 23 (1) 2010 Table (8) :The Main Fre quencies of the Ligands and Their Complexes(cm -1 ) Comp.  (O-H) (N-H) Prim + (N-H) Imid (C=O) + (C=N) (N-H) prim (N-H) Im id (N=N) (M- Nazo) + (M- NImid) L1 3460 b r. 3231 3175 br.d. 16 31 s. 15 87 v.s 15 00 w. 1409 v.s. - [Co(L1)2 Cl2] 3458 b r. - - 15 95 s. 15 19 w. 1421 m. 48 0 w. [Ni(L1)2 Cl2] 34 44 v.s. - 1640 w .sh. 1595 v .s. 15 19 w. 1420 m. 46 6 w. [Cu(L1)2 Cl2] 34 60 br.s. 3261 3160 Sh.d . 1637 w .sh. 15 98 s. 15 00 w. 14 29 s. 13 75 sh. d. 46 8 w. [Zn(L1)2 Cl2] 3460 b r. 3250 3165 Sh.d . 1635 w .sh. 15 93 s. 15 19 v .w. 14 39 13 85 s.d . 46 8 w. [Cd(L1)2 Cl2] 3450 b r. 3240 3100 br.d. 1640 w .sh. 1589 v .s. 15 18 v .w. 14 11 s. 48 0 w. 43 5 w. [Hg(L1)2 Cl2] 3477 w.br. 3240 3100 v.w .d . 16 43 v.w. sh . 1595 v .s. 15 19 m. 14 26 13 77 s.d . 47 0 w. 44 5 w. L2 3406 m. 3070 br. 16 39 s. 15 95 s. 15 04 v.s. 14 13 s. - [Co(L2)2 Cl2] 3406 m. 3100 br. 16 45 m. 16 00 m. 15 04 s. 14 08 s. 14 00 sh. d. 43 3 w. [Ni(L2)2 Cl2] 3406 b r. 3100 br. 16 29 .sh . 16 00 s. 15 06 m. 14 06 13 99 s.d . 43 5 w. [Cu(L2)2 Cl2] 3406 b r. 3249 3120 br.d 16 42 sh. 16 02 s. 15 02 m. 1402 v.s. 13 68 sh. d. 43 3 w. [Zn(L2)2 Cl2] 3404 m. 31 60sh. 30 72br. d. 16 36 sh. 15 98 v.s. 15 08 s. 1429 v.s. 13 80 sh. d. 46 0 w. 43 0 w. [Cd(L2)2 Cl2] 3404 m. 31 60sh. 30 68br. d. 16 37 m. 1595 v .s. 15 08 m. 1400 v.s. 47 0 w. 45 0 w. [Hg(L2)2 Cl2] 34 06 v.w. 32 189 3070 br.d 16 32 v.w. sh . 15 96 s. 15 08 w. 14 29 13 96 s.d . 48 0 w. 41 8 w. L3 34 44 s. 3330 3260 s.d . 1633 s . 1595 v .s. 15 14 m. 1407 v.s. - [Co(L3)2 Cl2] 3355 b r. 33 30 br. 1637 w .sh. 15 90w. 15 14 m. 14 60 14 27 m.d. 46 0 w. 41 8 w. [Ni(L3)2 Cl2] 3365 b r. 33 30 br. 16 40 sh. 1590 m. 15 12 m. 1440 w. 1421 m. d. 47 0 w. 42 0 w. [Cu(L3)2 Cl2] 3380 b r. - 16 40 sh. 1593 m. 15 06 m. 14 29 14 18 m.d. 47 0 w. 41 8 w. [Zn(L3)2 Cl2] 3508 w. br. 3263 3160 br.d 16 38 sh. 1598 s. 15 08 m. 14 29 13 98 m.d. 48 0 w. 43 0 w. [Cd(L3)2 Cl2] 34 61 s.br. 3344 3160 3080 Sh.T 16 39 v.w.sh . 1593 s. 15 06 w. 14 34 13 96 m.d. 46 8 w. 42 0 w. [Hg(L3)2 Cl2] 34 58 s.br. 3260 3100 s.d . 16 38 v.w.sh . 1596 s. 15 08 w. 14 29 13 96 m.d. 47 0 w. 44 0 w. Pri m = pri ma ry amine , Imid = I midazole, v.s .=very s trong, m= medium, w=wea k, b r=broad , d=doublet, sh = shoulde r. IBN AL- HAITHAM J. FO R PURE & APPL. SC I VO L. 23 (1) 2010 Fig.(1) Mass S pectrum of Ligand L3 Fig. (2) 1 HNMR S pectrum of the Ligand L1 NC O NH 3C N N H CH2 CH CO OH NH 2 IBN AL- HAITHAM J . FO R PURE & APPL. SC I VO L. 23 (1) 2010 Fig. (3): UV- Vis S pectra of a-Free Ligand Fig. (4): Effect of pH on Absor bance at S olution b-Cd II -L1 Mixe d S olution (λmax) for L3 - Comple xes S olutions Fig. (5): Mole ratio and Job Methods for Comple xes S oluti ons 0 0.02 0.04 0.06 0.08 0 .1 0.12 0.14 3 .5 4.5 5 .5 6.5 7.5 8.5 Co(II) Ni(II) Cu(II) PH A b so rb a n ce . 0 0.05 0 .1 0.15 0 .2 0.25 0 .3 0.35 0 .4 3 .5 4 .5 5 .5 6 .5 7 .5 8 .5 Zn(II) Cd(II) Hg(II) PH A b so rb a n ce . L1 0 0.1 0.2 0.3 0.4 0.5 0.6 0 1 2 3 4 5 Mol e (L1) per Mole (Zn +2 ) A b so rb a n ce . 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0 .1 0 .2 0.3 0.4 0 .5 0 .6 0.7 0.8 0 .9 1 A b so rb a n ce . VCd (II) (VCd (II) + VL3) a b IBN AL- HAITHAM J . FO R PURE & APPL. SC I VO L. 23 (1) 2010 Fig. (6) : 1 HNMR S pectrum of the Comple x [Cd(L1)2 Cl 2] Fig. (7) :The Suggested S tructure of the Prepared Complexes N N N N N N N N R H H R A B A B M C l C l C CH3, B=H) O C OH, B=H) O C CH3) O CH2 CH NH2 COOH L1 , (A= L2, (A=L3, (A=H, B= R= M(II)= Co, Ni, Cu, Zn, Cd , Hg IBN AL- HAITHAM J . FO R PURE & APPL. SC I VO L. 23 (1) 2010 Fig. (8): Dyeing of Cotton by S ome Ligands and its Complexes L1 L2 [Co(L2)2Cl [Co(L2)2Cl2 [Cu(L3)2Cl2] 2010) 1( 23مجلة ابن الھیثم للعلوم الصرفة والتطبیقیة المجلد صبغات ازو األیونات الفلزیة المنتخبة مع بعض لمعقداتتحضیر ودراسة طیفیة تابعة ادائها كصبغات ومجدیدة غیر متجانسة الحلقة ثناء جعفر الحسني، عامر جبار جراد عة بغدادقسم الكیمیاء، كلیة العلوم، جام الخالصة امینو –ومیتا –امینو حامض البنزویك وبارا -جدیدة من تفاعل ازدواج بارا L3,L2,L1)(حضرت لیكاندات ،المرئیة - فوق البنفسجیةو تحت الحمراء األشعة أطیافشخصت اللیكاندات المحضرة بوساطة ). الهستدین(اسیتوفینون مع بعض كاندات معیتمت مفاعلة هذه الل .كروموتوغرافیا الغاز –طیف الكتلة و ،الرنین النووي المغناطیسي للبروتونو Hg) ةالمنتخب لفلزیةا یوناتالا II ,Cd II ,Zn II ,Cu II ,Ni II ,Co II وفي 2:1)( دلیكان :فلز ماء وبنسبة - لفي وسط ایثانو ( 10×1(التراكیز من مدى ضبیر –وخضعت محالیل هذه المعقدات لقانون المبرت الدالة الحامضیة المثلى، -4 - 3×10 -4 M( ة الصیغة العام يتم الحصول على سلسلة من المعقدات ذو[M (L)2Cl2] . ء واألشعة فوق شخص م تقنیة االمتصاص الذري اللهبي، أطیاف األشعة تحت الحمرا ت هذه المعقدات باستخدا ة المرئیة وطیف الرنین النووي المغناطیسي للبروتون فضال عن ق –البنفسجیة یاسات الحساسیة المغناطیسیة والتوصیلی ة . كما قدر محتوى الكلور باستخدام طریقة مور.الكهربائیة درست تراكیب المعقدات باستخدام طریقتي النسب المولی مستمرة ،كما حسب .استقراریة المعقدات المحضرة توالمتغیرات ال ة لقد تمت اإلفادة من اللیكاندات والمعقدات قید الدراسة حول إمكانیة استخدامها كأصباغ لصباغة األنسجة القطنی مقاومة عالیة للغسل والمنظفات ولضوء اوقد تبین أن ألوانها ثابتة وذ.نظرا لما تتمیز به هذه المركبات من ألوان زاهیة .تخبة من البكتریاالفاعلیة البایولوجیة ووجد أن لهذه المعقدات قابلیة متباینة على قتل األنواع المنت الشمس، كذلك درس