Conseguences of soil crude oil pollution on some wood properties of olive trees Physics | 38 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد ) Ibn Al-Haitham J. for Pure & Appl. Sci. Vol.30 (1) 2017 Theoretical Calculations of the Electron Transport Parameters in CH4-Ar and CH4-Ne Mixtures Gases Using Monte Carlo Method Enas Ahmed Jawad Dept. of Physics /College of Education For Pure Science (Ibn Al-Haitham)/ University of Baghdad Received in:5/June/2016 ، Accepted in:12/December/2016 Abstract The result of concentration varying of mixture methane with argon and neon gas are believed to study the change in electrons energy distribution function and then the change of the electrons transport parameters including the drift velocity, the mean energy, characteristics energy and diffusion coefficient. In the present work,a contemporary developed computer, simulation program known as Bolsig + is being used for calculating the electron transport parameters. Key words: Boltzmann equation, CH4 - Ar,CH4 -Ne gas mixtures, Plasma and Electron Discharges, drift velocity, diffusion coefficient, transport parameters, distribution function . Physics | 39 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد ) Ibn Al-Haitham J. for Pure & Appl. Sci. Vol.30 (1) 2017 Introduction The electron transport parameters of pure and mixtures gas were studied for a wide range of applied electric field. These parameters which include the drift mobility, velocity, diffusion coefficient, ionization coefficient and mean electron energy, that are described in collision cross section and the electron energy distribution function (EEDF) represented the backbone of the electron swarm conduct of pure and mixtures gas in discharge of plasma [1,2]. The solution of Boltzmann equation is generally found by utilizing the Lorenz approximation in which the initial two terms of the spherical harmonic development are considered. The numerical solution of the Boltzmann equation yields the electron energy distribution with the electric field E and gas number density N as parameters. Convenient integration of the energy distribution function yields the transport and ionizing properties of the electron swarm. The electron transport in a gas under the have an effect of an electric field E can be simulated with the assist of a Monte Carlo method [3-8]. Each electron, during its transit in the gas, performs a succession of free flights punctuated through elastic or inelastic collisions with molecules of gas defined by collision cross sections. Throughout the successive collisions for each electron, certain facts (velocity, position, and many others.) is saved to be able to calculate. In this paper, we have studied the conduct of electrons in uniform electric fields by a Monte Carlo method. Swarm parameters are determined as a function of E/N for various rates of increase of the electric field [9]. The aim of this work is to study theoretically the electron energy distribution function and electron transport parameters in DC electric discharge processes in methane, Argon and Neon gases and their mixtures to various proportions from Monte Carlo simulation program. 2. Theory 2.1. Boltzmann equation "The transport Boltzmann equation governing the electron distribution fundamental function; this equation can be driven simply by defining a distribution function and inspecting its time derivative." From this equation numerous important swarm parameters could be determined that it is as yet being utilized as a part of numerous contemporary research projects to model transport phenomena. The Boltzmann equation for electrons in an ionized gas is[10,11]. ……....……(1) or "where , ( ) is the electrons distribution function, a is the acceleration of charges particles and v is the velocity of charge particles. "Fj (Vj ,r ,t) is the neutral species distribution function." Vj is the velocity of neutral species. "vrj =| | is the relative velocity of charges particles" Physics | 40 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد ) Ibn Al-Haitham J. for Pure & Appl. Sci. Vol.30 (1) 2017 "σ j (θ , vrj )is the differential microscopic cross section of interaction the charges particles (electron) with neutral gas species j." "d𝝮j = sin dθ d is the element solid angle, where θ and 𝝓 are the polar and azimuthally angles, respectively." The electron distribution function can be written by utilizing the two-term approximation extension as follows [12]: ( ) ∑ ( ) ( ) ………………………..…(2) 2.2 Transport parameters The swarm parameters of electrons and collision cross-sections with molecules are identified with each other through the medium of the velocity distribution function of the swarm. The electron mean energy is,[13 and 14] ……………………………...……(3) where() is expressed in electron volts. The drift velocity Vd, is [15] ………………………...……(4) "where u is the electron energy in (eV), Sis the number density of molecules (Ns)of species S divided by gas number density N ( ), where is momentum transfer cross section (cm -2 ), the mobility is defined as the proportionally coefficient between the drift charged particle and electric field . The mobility of electrons is: ……………………..……………………….(5) where represents the electron momentum- transfer collision frequency. From the connection between the drift velocity and mobility, we can compute electron mobility equation [16]: ∫ ( ) …………………………………(6) The connection between diffusion coefficient and electron energy distribution function is given by[17]: ∫ ( ) ………………………..…………….(7) Characteristics energy (eV) is given by relation: ….…………………………………………………(8) Physics | 41 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد ) Ibn Al-Haitham J. for Pure & Appl. Sci. Vol.30 (1) 2017 Result and Discussion To calculate the drift velocity of electrons and the others transport parameters utilizing the Monte Carlo simulation program, knowledge of the reliance of the momentum transfer cross section on the electron energy is basis. The drift velocity does not rely on upon electron energy distribution function significantly, especially when the cross section does not fluctuate quickly with electron energy. We present the results of several transport parameters for various mixtures of methane in argon and neon. For range of E/N values (1 Td ≤E/N≤800 Td) the diverse ratios mixtures of (CH4 – Ar) and (CH4 – Ne) gases are recorded in Table (1-8). Tables (1 and 2) clarify the computed results for the drift velocity Vd as a function of E/N , in (CH4 – Ar) and (CH4 – Ne) gases, respectively. Tables (3 and 4) explain the computed results for the electron mean energy, in different ratios of gas mixtures (CH4 – Ar) and (CH4 – Ne) gases, respectively. Tables (5 and 6) clarify the calculated results for the electron characteristics energy, in different ratios of gas mixtures (CH4 – Ar) and (CH4 – Ne) gases, respectively . Tables (7and 8) explain the computed results for the diffusion coefficient ,in various proportions of gas mixtures (CH4 – Ar) and (CH4 – Ne)gases , respectively. Figures (1-3) exhibit the cross sections for electron of methane, argon and neon as a function of electron energy. The impact of different discharge parameters on the electron distribution function is appeared in figures 4 and 5 for (CH4 – Ar) and (CH4 – Ne)gases, respectively. The electron energy distribution function is strongly influenced by changing either the parameter E/N or gas mixtures. Figures (6 -9) clarify the assortment for the mean electron energy and characteristics energy vs. (E/N) in pure methane and mixture with argon and neon gas by taking into consideration various proportion mixing ratios. Figures (10 and 11) show the diffusion coefficient for different ratios of mixtures methane with argon and neon gas. As a function of E/N in different ratios of gas mixture (CH4 – Ar) and (CH4 – Ne) respectively. The drift velocity of electrons in various mixtures of (CH4 – Ar) and (CH4 – Ne) gases are appeared in figures12 and 13 as a function of E/N. It's necessary to note that there are measured experimentally published results that plotted with present work in the aforesaid two figures for comparison as shown in figures 14 and 15 for gases mixture (CH4 – Ar) and (CH4 – Ne) respectively . The results demonstrate a good agreement with the experimental values [18-20]. Conclusion In this study, we have analyzed the conduct of electrons in uniform electric fields using a Monte Carlo simulation. The calculating electron energy distribution function for (CH4 – Ar) and (CH4 – Ne) mixtures with various concentrations has been described. The conduct of the swarm parameters, which are drift velocity and mean kinetic electron energy rely on the proportion of the mixture components, can likely, be demonstrated by a preferential weighting of the elastic and inelastic scattering of the electrons on methane with argon and neon molecules at various estimations of E\N, additionally the results were in great concurrence with the computational work. Physics | 42 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد ) Ibn Al-Haitham J. for Pure & Appl. Sci. Vol.30 (1) 2017 Reference 1. Date, H. and Sakai, H., (1989),"Boltzmann Equation analysis of electron collision cross section and swarm parameters for krypton", J. phys. D: Appl. Phys.,.22,.1478-1481. 2. Dahl Dominik, A .; Teich Timm, H . and Christian Franck M .,(2012), "Obtaining precise electron swarm parameters from a pulsed Townsend setup", J.Phys. D: Appl. Phys. 45,485201 (9). 3. Grapperhaus, M . J. and Kushner, M .J. (1997), "A Semi-analytic Radio Frequency S heath Model Integrated into a two dimensional Hybrid Model for Plasma Processing Reactors", J. Appl. Phys.81(2): 569-577. 4. Tessarotto, M ., White R. B. and J. ZhengL, (1994), Monte Carlo approach to Collisional Transport, Phys. Plasmas 1(8): 2603-2613. 5. Ardehali ,M. (1994).,"Monte Carlo Simulation of Ion Transport through Radio Frequency" Collisional S heathsJ, Vac. Sci. TechnolA. .12(6):3242-3244. 6. Helin ,W., Zuli, L. and Daming, L. (1996). "Monte Carlo Simulation for Electron Neutral Collision Processes in Normal and Abnormal Discharge Cathode S heath Region", Vacuum 47(9)r:0 6s-1072. 7. Stache, J. (1994)."Hybrid Modeling of Deposition Profiles in Magnetron Sputtering Systems" , J. Vac. Sci.Technol A.l2(5);2867-2873. 8. Nathan, S. S., Rao G. M. and Mohan, S. , (1998)."Transport of Sputtered A toms in Facing Targets Sputtering Geometry": A Numerical Simulation Study, J. Appl. Phys.8a(l): 564-571. 9. Rabie, M, Haefliger P, Chachereau A and Franck C M, (2015), "Obtaining electron attachment cross sections by means of linear inversion of swarm parameters", J. Phys. D: Appl. Phys. 48 ,075201 (7). 10. Edward, A. and Eral Mc Daniel, W., (1988), "Transport properties of ions in gases", John Wiely and Sons, Inc. 11. Morgan W.L. and Penetrane B.M., (1990), Computer physics communication CPC,.58,. 127-152. 12. Smith K. and Thomson R. W., (1978), " Computer Modeling of Gas", Plenum Press, New York. 13.Wang Y. &Olthoff J.K., (1999), "Ion energy distributions in inductively coupled radio- frequency discharges in argon, nitrogen, oxygen, chlorine, and their mixtures" , Journal of Applied Physics,.85, 6358-6365. 14. Kondo1 Y., Sekiya2 Y., M. Th. EL-Mohandes3, (2013) "Pulse Townsend Measurement of Electron Swarm Parameters at Low Pressure " International Journal of Emerging Technology and Advanced (ISSN 2250-2459, ISO 9001:(2008) Certified Journal, Volume 3, Issue 11. 15. Morgan W.L,(2002)."Electron collision cross sections for tetraethoxy silane", Journal of Applied Physics,. 92,. 1663-1667. 16. Truesdell C., Chem J.. Phys, 37, 2336,(1962). 17. Makabe T. and Petrovic Z., 2006. "Plasma Electronics: Application in Micro- Electronics Device Fabrication" , Taylor and Francis Group, New York, 18.Piuz F., Nucl. Instrum .Meth. vol. 205, pp. 425-436, (1983). 19. D. K. Davies, L. E. Kline, and W. E. Bies, (1989),J. Appl. Phys.. 65,. 3311-23. 20. Mathieson E. and Hakeem N El 1979." Calculation of electron transport coefficients in counting gas mixtures" Nucl. Instr. Meth. 159, 489. Physics | 43 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد ) Ibn Al-Haitham J. for Pure & Appl. Sci. Vol.30 (1) 2017 Table (1) The data of Drift velocity Vd (cm/s) of electron as a function E/N in different ratio CH4-Ar mixtures. Table ( 2) The data of Drift velocity Vd (cm/s) of electron as a function E/N in different ratio CH4-Ne mixtures. Electric field/gas density E/N (Td=10 -17 V.cm 2 ) Vd ×10 6 pure CH4 Vd×10 6 CH4–Ne (10/90)% Vd×10 6 CH4–Ne (20/80)% Vd×10 6 CH4–Ne (30/70)% Vd×10 6 CH4–Ne (40/60)% Vd×10 6 CH4–Ne (50/50)% Vd×10 6 CH4–Ne (60/40)% Vd×10 6 CH4–Ne (70/30)% Vd×10 6 CH4–Ne (80/20)% Vd×10 6 CH4–Ne (90/10)% 1 4.72 3.23 4.23 4.81 5.14 5.30 5.33 5.26 5.12 4.93 2 4.72 3.17 4.56 5.61 6.44 7.13 7.70 8.19 8.61 4.93 4 1.01 2.84 3.90 4.88 5.78 6.60 7.33 8.11 8.80 9.48 8 7.76 3.41 3.53 3.98 4.52 5.08 5.63 6.18 6.71 7.20 10 6.87 3.92 3.69 3.85 4.22 4.65 5.09 5.54 5.99 6.43 20 4.82 6.64 5.63 4.95 4.53 4.32 4.27 4.33 4.46 4.63 40 4.85 11.8 9.96 8.52 7.46 6.67 6.08 5.64 5.28 5.03 80 7.80 20.7 18.0 15.6 1.36 12.1 10.8 9.89 9.03 8.36 100 9.44 24.8 21.8 19.0 16.7 14.8 13.3 12.0 11.0 10.2 200 1.79 42.6 39.0 34.9 31.2 28.0 25.2 22.9 21.0 19.3 400 35.4 71.1 69.1 64.5 59.3 54.1 49.4 45.2 41.5 38.3 800 72.2 80.3 90 94.0 94.4 92.6 89.4 85.9 81.1 76.6 Electric field/gas density E/N (Td=10 -17 V.cm 2 ) Vd ×10 6 pure CH4 Vd×10 6 CH4–Ar (10/90)% Vd×10 6 CH4–Ar (20/80)% Vd×10 6 CH4–Ar (30/70)% Vd×10 6 CH4–Ar (40/60)% Vd×10 6 CH4–Ar (50/50)% Vd×10 6 CH4–Ar (60/40)% Vd×10 6 CH4–Ar (70/30)% Vd×10 6 CH4–Ar (80/20)% Vd×10 6 CH4–Ar (90/10)% 1 4.72 4.41 6.92 7.32 7.52 7.30 6.86 6.31 5.75 5.21 2 4.72 3.27 5.24 6.74 7.86 8.65 9.21 9.47 5.75 5.21 4 1.01 2.39 3.79 4.97 6.02 6.95 7.77 8.49 9.12 9.68 8 7.76 1.85 2.75 3.50 4.17 4.79 5.36 5.91 6.43 7.27 10 6.87 1.86 2.66 3.35 4.23 4.50 5.06 5.51 5.99 6.44 20 4.82 2.30 2.69 3.02 4.32 3.60 3.87 4.12 4.37 4.59 40 4.85 3.75 4.03 4.25 4.41 4.53 4.62 4.69 4.74 4.81 80 7.80 6.63 6.89 7.12 7.31 7.46 7.58 7.67 7.73 7.78 100 9.44 8.07 8.33 8.57 8.78 8.96 9.11 9.23 9.32 9.38 200 1.79 15.3 15.6 15.9 16.2 16.6 16.8 17.1 17.3 17.0 400 35.4 23.1 164 119 91.3 73.0 60.4 51.4 44.7 39.5 800 72.2 42.4 130 136 127 116 106 95.6 86.8 79.0 Physics | 44 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد ) Ibn Al-Haitham J. for Pure & Appl. Sci. Vol.30 (1) 2017 Table (3) The data of the mean electron Energy (eV) as a function E/N in different ratio CH4 – Ar mixtures. Table (4) The data of the mean electron Energy (eV) as a function E/N in different ratio CH4 – Ne mixtures. Electric field/gas density E/N (Td=10 -17 V.cm 2 ) (eV) pure CH4 (eV) CH4–Ne (10/90)% (eV) CH4–Ne (20/80)% (eV) CH4–Ne (30/70)% (eV) CH4–Ne (40/60)% (eV) CH4–Ne (50/50)% (eV) CH4–Ne (60/40)% (eV) CH4–Ne (70/30)% (eV) CH4–Ne (80/20)% (eV) CH4–Ne (90/10)% 1 0.11 0.41 0.29 0.24 0.21 0.18 0.16 0.15 0.13 0.12 2 0.26 0.91 0.59 0.47 0.41 0.37 0.34 0.31 0.29 0.27 4 0.51 2.07 1.27 0.97 0.81 0.72 0.65 0.6 0.56 0.53 8 0.88 3.65 2.61 1.94 1.56 1.34 1.19 1.08 1 0.93 10 1.05 4.04 3.14 2.43 1.95 1.65 1.45 1.3 1.2 1.11 20 1.87 5.12 4.38 3.9 3.6 3.14 2.78 2.48 2.23 2.03 40 3.29 6.41 5.46 4.94 4.59 4.31 4.08 3.86 3.66 3.47 80 4.43 8.36 6.97 6.22 5.74 5.39 5.13 4.91 4.74 4.57 100 4.76 9.21 7.64 6.77 6.21 5.81 5.51 5.27 5.08 4.91 200 5.99 13.07 10.71 9.28 8.33 7.66 7.16 6.77 6.46 6.2 400 8.11 20.64 17.1 14.5 12.78 11.44 10.42 9.64 9.02 8.52 800 13.33 32.09 28.35 25.23 22.6 20.3 18.49 16.89 15.51 14.34 Electric field/gas density E/N (Td=10 -17 V.cm 2 ) (eV) pure CH4 (eV) CH4–Ar (10/90)% (eV) CH4–Ar (20/80)% (eV) CH4–Ar (30/70)% (eV) CH4–Ar (40/60)% (eV) CH4–Ar (50/50)% (eV) CH4–Ar (60/40)% (eV) CH4–Ar (70/30)% (eV) CH4–Ar (80/20)% (eV) CH4–Ar (90/10)% 1 0.11 0.59 0.39 0.31 0.26 0.22 0.19 0.16 0.14 0.12 2 0.26 0.95 0.69 0.57 0.49 0.43 0.39 0.35 0.32 0.28 4 0.51 1.69 1.21 0.99 0.85 0.76 0.69 0.63 0.59 0.54 8 0.88 2.96 2.2 1.78 1.52 1.34 1.21 1.1 1.02 0.93 10 1.05 3.36 2.58 2.1 1.79 1.57 1.41 1.29 1.19 1.11 20 1.87 4.49 3.96 3.55 3.19 2.87 2.6 2.36 2.17 2.01 40 3.29 5.29 4.89 4.6 4.37 4.16 3.97 3.8 3.63 3.45 80 4.43 6.01 5.75 5.49 5.28 5.1 4.94 4.8 4.67 4.55 100 4.76 6.38 6.06 5.81 5.6 5.41 5.26 5.12 4.99 4.87 200 5.99 7.49 7.25 7.03 6.84 6.66 6.5 6.36 6.23 6.1 400 8.11 19.71 15.63 13.33 11.84 10.79 10.01 9.4 8.89 8.47 800 13.33 27.81 24.56 22.03 20.11 18.5 17.14 15.99 14.98 14.1 Physics | 45 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد ) Ibn Al-Haitham J. for Pure & Appl. Sci. Vol.30 (1) 2017 Table (5) The data of the characteristic energy of electron uch (eV) as a function E/N in different ratio CH4 – Ar mixtures. Electric field/gas density E/N (Td=10 -17 V.cm 2 ) uch (eV) pure CH4 uch (eV) CH4–Ar (10/90)% uch (eV) CH4–Ar (20/80)% uch (eV) CH4–Ar (30/70)% uch (eV) CH4–Ar (40/60)% uch (eV) CH4–Ar (50/50)% uch (eV) CH4–Ar (60/40)% uch (eV) CH4–Ar (70/30)% uch (eV) CH4–Ar (80/20)% uch (eV) CH4–Ar (90/10)% 1 0.08 0.58 0.35 0.26 0.2 0.16 0.14 0.12 0.1 0.09 2 0.08 1.16 0.74 0.55 0.44 0.36 0.31 0.27 0.1 0.09 4 0.43 2.22 1.51 1.16 0.95 0.8 0.69 0.6 0.54 0.48 8 0.97 4.05 2.89 2.32 1.96 1.7 1.5 1.34 1.21 1.06 10 1.25 4.66 3.4 2.75 2.34 2.05 1.82 1.64 1.49 1.36 20 2.51 6.32 5.28 4.57 4.04 3.64 3.32 3.07 2.85 2.67 40 3.81 7.17 6.36 5.76 5.3 4.93 4.63 4.38 4.17 3.97 80 4.49 7.69 7.03 6.49 6.04 5.67 5.36 5.09 4.86 4.67 100 4.65 7.81 7.19 6.67 6.23 5.86 5.55 5.27 5.04 4.83 200 5.19 8.07 7.55 7.12 6.74 6.4 6.11 5.84 5.6 5.38 400 6.17 29.66 14.69 10.12 8.81 7.84 7.25 6.86 6.58 6.36 800 10.87 55.733 75.51 41.29 28.7 22.14 18.12 15.4 13.45 11.99 Table (6) The data of the characteristic energy of electron uch (eV) as a function E/N in different ratio CH4 – Ne mixtures. Electric field/gas density E/N (Td=10 -17 V.cm 2 ) uch (eV) pure CH4 uch (eV) CH4–Ne (10/90) % uch (eV) CH4–Ne (20/80)% uch (eV) CH4–Ne (30/70)% uch (eV) CH4–Ne (40/60)% uch (eV) CH4–Ne (50/50)% uch (eV) CH4–Ne (60/40)% uch (eV) CH4–Ne (70/30)% uch (eV) CH4–Ne (80/20)% uch (eV) CH4–Ne (90/10)% 1 0.08 0.3 0.21 0.17 0.14 0.12 0.11 0.1 0.09 0.09 2 0.08 0.68 0.44 0.35 0.3 0.26 0.24 0.22 0.21 0.09 4 0.43 1.65 1.04 0.81 0.68 0.6 0.54 0.5 0.47 0.45 8 0.97 3.02 2.25 1.78 1.5 1.33 1.21 1.12 1.06 1.01 10 1.25 3.36 2.71 2.23 1.9 1.69 1.55 1.44 1.36 1.31 20 2.51 4.24 3.75 3.47 3.26 3.08 2.92 2.78 2.66 2.57 40 3.81 5.16 4.51 4.23 4.07 3.97 3.9 3.86 3.83 3.82 80 4.49 6.45 5.46 5.01 4.76 4.61 4.53 4.49 4.47 4.47 100 4.65 7 5.88 5.33 5.02 4.84 4.74 4.67 4.64 4.64 200 5.19 9.33 7.69 6.77 6.2 5.81 5.58 5.41 5.3 5.23 400 6.17 14.38 11.59 9.88 8.74 7.93 7.34 6.91 6.58 6.35 800 10.87 34.39 26.46 21.87 18.83 16.64 14.97 13.64 12.55 11.63 Physics | 46 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد ) Ibn Al-Haitham J. for Pure & Appl. Sci. Vol.30 (1) 2017 Table (7) The data of diffusion coefficient (cm 2 /s) of electron as a function E/N in different ratio CH4 – Ar mixtures. Electric field/gas density E/N (Td=10 -17 V.cm 2 ) De×10 3 pure CH4 De×10 3 CH4–Ar (10/90)% De×10 3 CH4–Ar (20/80)% De×10 3 CH4–Ar (30/70)% De×10 3 CH4–Ar (40/60)% De×10 3 CH4–Ar (50/50)% De×10 3 CH4–Ar (60/40)% De×10 3 CH4–Ar (70/30)% De×10 3 CH4–Ar (80/20)% De×10 3 CH4–Ar (90/10)% 1 1.42 9.46 8.43 6.99 5.64 4.48 3.54 2.80 2.22 1.77 2 1.42 7.05 7.25 6.92 6.42 5.86 5.25 4.69 2.22 1.77 4 4.08 4.93 5.32 5.38 5.31 5.16 4.97 4.77 4.55 4.31 8 3.52 3.48 3.70 3.78 3.80 3.79 3.75 3.70 3.63 3.60 10 3.21 3.22 3.37 3.43 3.44 3.43 3.40 3.37 3.32 3.27 20 2.25 2.72 2.64 2.56 2.50 2.44 2.39 2.35 2.32 2.28 40 1.72 2.50 2.39 2.28 2.17 2.08 1.99 1.91 1.84 1.78 80 1.63 2.37 2.25 2.15 2.05 1.97 1.89 1.82 1.75 1.69 100 1.63 2.35 2.23 2.13 3.04 1.95 1.88 1.81 1.74 1.69 200 1.73 2.30 2.19 2.10 2.03 1.96 1.91 1.85 1.81 1.77 400 2.04 63.9 22.4 11.8 7.48 5.33 9.08 3.28 2.73 2.34 800 3.65 115 45.8 26.1 17.0 12.4 8.90 6.85 5.43 4.41 Table (8) The data of diffusion coefficient (cm 2 /s) of electron as a function E/N in different ratio CH4 – Ne mixtures. Electric field/gas density E/N (Td=10 -17 V.cm 2 ) De×10 3 pure CH4 De×10 3 CH4–Ne (10/90)% De×10 3 CH4–Ne (20/80)% De×10 3 CH4–Ne (30/70)% De×10 3 CH4–Ne (40/60)% De×10 3 CH4–Ne (50/50)% De×10 3 CH4–Ne (60/40)% De×10 3 CH4–Ne (70/30)% De×10 3 CH4–Ne (80/20)% De×10 3 CH4–Ne (90/10)% 1 1.42 3.66 3.27 2.99 2.72 2.46 2.22 1.99 1.78 1.59 2 1.42 4.03 3.75 3.63 3.56 3.50 2.44 3.39 3.34 1.59 4 4.08 4.66 3.79 3.66 3.65 3.67 3.72 3.79 3.87 3.97 8 3.52 4.79 3.69 3.29 3.16 3.14 3.17 3.23 3.31 3.40 10 3.21 4.91 3.73 3.20 2.99 2.93 2.90 2.97 3.03 3.11 20 2.25 5.29 3.93 3.20 2.75 2.48 2.32 2.24 2.20 2.22 40 1.72 5.64 4.18 3.33 2.82 2.46 2.21 2.02 1.88 1.79 80 1.63 6.18 4.59 3.63 3.02 2.59 2.28 2.05 1.88 1.74 100 1.63 6.41 4.76 3.77 3.11 2.66 2.34 2.09 1.90 1.75 200 1.73 7.40 5.58 4.40 3.60 3.03 2.62 2.31 2.07 1.88 400 2.04 9.59 7.45 5.94 4.82 3.39 3.37 2.90 2.54 2.26 800 3.65 12.9 11.1 9.57 8.27 7.17 6.22 5.42 4.73 4.15 Physics | 47 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد ) Ibn Al-Haitham J. for Pure & Appl. Sci. Vol.30 (1) 2017 Figure (1) Elastic and inelastic cross section vs electron energy in CH4. Figure (2) elastic and inelastic Cross section vs electron energy in Ar. Figure (3) Elastic and inelastic Cross section vs electron energy in Ne Physics | 48 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد ) Ibn Al-Haitham J. for Pure & Appl. Sci. Vol.30 (1) 2017 Figure (4) The electron energy distribution function versus the electron energy for CH4-Ar( 50/50%) gaseous mixture. Figure (5) The electron energy distribution function versus the electron energy for CH4-Ne( 50/50%) gaseous mixture. Figure (6) The mean electron energy as a function E/N in pure CH4 and mixture with Ar . Physics | 49 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد ) Ibn Al-Haitham J. for Pure & Appl. Sci. Vol.30 (1) 2017 Figure (7) The mean electron energy as a function E/N in pure CH4 and mixture with Ne. Figure (8) The characteristic electron energy as a function E/N in pure CH4 and mixture with Ar . Figure (9) The characteristic electron energy as a function E/N in pure CH4 and mixture with Ne . Physics | 50 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد ) Ibn Al-Haitham J. for Pure & Appl. Sci. Vol.30 (1) 2017 Figure (10) The diffusion coefficient as a function of E/N in different ratio of gas mixture CH4-Ar. Figure (11) The Diffusion Coefficient as a function of E/N in different ratio of gas mixtures. (CH4-Ne). Figure (12) The drift velocity as a function of E/N in different ratio of gas mixtures (CH4-Ar). Physics | 51 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد ) Ibn Al-Haitham J. for Pure & Appl. Sci. Vol.30 (1) 2017 Figure ( 13) The drift velocity as a function of E/N in different ratio of gas mixtures (CH4-Ne). Figure (14) The drift velocity as a function of E/N in gas mixtures (CH4-Ar). Figure (15) The drift velocity as a function of E/N in gas mixture (CH4 -Ne) . Physics | 52 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد ) Ibn Al-Haitham J. for Pure & Appl. Sci. Vol.30 (1) 2017 حسابات وظريه نمعامالت االوتقال االنكترووي نخهيط غازي مه (CH4-Ar) باستعمال طريقة مووتي كارنو و (CH4-Ne) ايىاش احمذ جواد جايعت بغذاد /كهيت انتزبيت نهعهىو انصزفت )ابٍ انهيثى( /قسى انفيشياء 6102/كاوون االول/06قبم في: ,6102/حسيران/ 5:فياستهم انخالصه تاثيز تزاكيش انًختهفه نخهيط انًيثاٌ يع غاس االركىٌ وانُيىٌ تؤخذ بانحسباٌ في دراسه انتغيز في دانت تىسيع طاقت االنكتزوٌ وبانتاني تغيز في يعايالث اَتقال االنكتزوَاث يثم سزعت االَجزاف , يتىسط انطاقت , خصائص انطاقه ايج يحاكاة كىيبيىتز يتطىر وحذيث نحساب يعايالث اَتقال االكتزوٌ. ويكافيء االَتشار . في انعًم انحاني استعًم بزَ َيىٌ , بالسيا وانتفزيغ االنكتزوٌ , سزعت -اركىٌ , ييثاٌ –: يعادنت بىنتشياٌ , خهيط غاس ييثاٌ مفتاحيةانكهمات ان االَجزاف , يعايم االَتشار , يعايالث االَتقال , دانت انتىسيع .