Conseguences of soil crude oil pollution on some wood properties of olive trees


 

  Physics | 38 

 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية                                                                   المجلد ) 

Ibn Al-Haitham J. for Pure & Appl. Sci.                                           Vol.30 (1) 2017 

Theoretical Calculations of the Electron Transport 

Parameters in CH4-Ar and CH4-Ne Mixtures Gases Using 

Monte Carlo Method 

 
Enas Ahmed Jawad 

Dept. of Physics /College of Education For Pure Science (Ibn Al-Haitham)/ 

University of Baghdad 

 Received in:5/June/2016 ، Accepted  in:12/December/2016 
 

Abstract 
          The result of concentration varying of mixture methane with argon and neon gas are 

believed to study the change in electrons energy distribution function and then the change of 

the electrons transport parameters including the drift velocity, the mean energy, characteristics 

energy and diffusion coefficient. In the present work,a contemporary developed computer, 

simulation program known as Bolsig
+ 

is being used for calculating the electron transport 

parameters. 

 
Key words: Boltzmann equation, CH4 - Ar,CH4 -Ne gas mixtures, Plasma and Electron 

Discharges, drift velocity, diffusion coefficient, transport parameters, distribution function . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  Physics | 39 

 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية                                                                   المجلد ) 

Ibn Al-Haitham J. for Pure & Appl. Sci.                                           Vol.30 (1) 2017 

Introduction 

         The electron transport parameters of pure and mixtures gas were studied for a wide 

range of applied electric field. These parameters which include the drift mobility, velocity, 

diffusion coefficient, ionization coefficient and mean electron energy, that are described in 

collision cross section and the electron energy distribution function (EEDF) represented the 

backbone of the electron swarm conduct of pure and mixtures gas in discharge of plasma [1,2]. 

       The solution of Boltzmann equation is generally found by utilizing the Lorenz 

approximation in which the initial two terms of the spherical harmonic development are 

considered. The numerical solution of the Boltzmann equation yields the electron energy 

distribution with the electric field E and gas number density N as parameters. Convenient 

integration of the energy distribution function yields the transport and ionizing properties of 

the electron swarm.  
        The electron transport in a gas under the have an effect of an electric field E can be 

simulated with the assist of a Monte Carlo method [3-8]. Each electron, during its transit in 

the gas, performs a succession of free flights punctuated through elastic or inelastic collisions 

with molecules of gas defined by collision cross sections. Throughout the successive 

collisions for each electron, certain facts (velocity, position,  and many others.) is saved to be 

able to calculate.  
        In this paper, we have studied the conduct of electrons in uniform electric fields by a 

Monte Carlo method. Swarm parameters are determined as a function of E/N for various rates 

of increase of the electric field [9]. 

     The aim of this work is to study theoretically the electron energy distribution function and 

electron transport parameters in DC electric discharge processes in methane, Argon and Neon 

gases and their mixtures to various proportions from Monte Carlo simulation program. 

2. Theory 
2.1. Boltzmann equation  
     "The transport Boltzmann equation governing the electron distribution fundamental 

function; this equation can be driven simply by defining a distribution function and inspecting 

its time derivative."  
      From this equation numerous important swarm parameters could be determined that it is 

as yet being utilized as a part of numerous contemporary research projects to model transport 

phenomena. The Boltzmann equation for electrons in an ionized gas is[10,11]. 

 

……....……(1) 

 

 

or 

 
"where ,  (      ) is the electrons distribution function, a  is the acceleration of charges 
particles and v is the velocity of charge particles. 

 
"Fj (Vj ,r ,t) is the neutral species distribution function." 

Vj is the velocity of neutral species. 

"vrj =|    |  is the relative velocity of charges particles" 



 

  Physics | 40 

 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية                                                                   المجلد ) 

Ibn Al-Haitham J. for Pure & Appl. Sci.                                           Vol.30 (1) 2017 

"σ j (θ , vrj )is the differential microscopic cross section of interaction the charges particles 

(electron) with neutral gas species j." 

"d𝝮j = sin dθ d  is the element solid angle, where θ and 𝝓 are the polar and azimuthally angles, 
respectively." 

 

The electron distribution function can be written by utilizing the two-term approximation 

extension as follows [12]: 

 

 (      )     ∑     (      )  (    )
 
   ………………………..…(2) 

 

2.2 Transport parameters  
      The swarm parameters of electrons and collision cross-sections with molecules are 
identified with each other through the medium of the velocity distribution function of the 

swarm.  

The electron mean energy is,[13 and 14] 
 

……………………………...……(3) 

 
where() is expressed in electron volts. 

 

The drift velocity Vd, is [15] 

 

 

………………………...……(4) 

 

 
"where u is the electron energy in (eV), Sis the number density of molecules (Ns)of species 

S divided by gas number density N (   
  

 
 ), where   is momentum transfer cross section 

(cm
-2

), the mobility is defined as the proportionally coefficient between the 

drift              charged particle and electric field . The mobility of electrons is: 

   
 

    
  

  

 
 ……………………..……………………….(5) 

where   represents the electron momentum- transfer collision frequency. 

From the connection between the drift velocity and mobility, we can compute electron 

mobility equation [16]: 

     
 

 

  

 
∫

    

  ( )

   

  

 

 
   …………………………………(6) 

The connection between diffusion coefficient and electron energy distribution function is 

given by[17]: 

   
 

 

 

 
∫

    

  ( )

 

 
      ………………………..…………….(7)                                                                                                                       

Characteristics energy (eV) is given by relation: 

      
  

  
….…………………………………………………(8) 



 

  Physics | 41 

 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية                                                                   المجلد ) 

Ibn Al-Haitham J. for Pure & Appl. Sci.                                           Vol.30 (1) 2017 

Result and Discussion 
     To calculate the drift velocity of electrons and the others transport parameters utilizing the 
Monte Carlo simulation program, knowledge of the reliance of the momentum transfer cross 

section on the electron energy is basis. The drift velocity does not rely on upon electron 

energy distribution function significantly, especially when the cross section does not fluctuate 

quickly with electron energy. 

     We present the results of several transport parameters for various mixtures of methane in 

argon and neon. For range of E/N values (1 Td ≤E/N≤800 Td) the diverse ratios mixtures of 

(CH4 – Ar) and (CH4 – Ne) gases are recorded in Table (1-8). 

Tables (1 and 2) clarify the computed results for the drift velocity Vd as a function of E/N , in 

(CH4 – Ar) and (CH4 – Ne) gases, respectively. 

Tables (3 and 4) explain the computed results for the electron mean energy, in different ratios 

of gas mixtures (CH4 – Ar) and (CH4 – Ne) gases, respectively. 

Tables (5 and 6) clarify the calculated results for the electron characteristics energy,  in 

different ratios of gas mixtures (CH4 – Ar) and (CH4 – Ne) gases, respectively . 

Tables (7and 8) explain the computed results for the diffusion coefficient ,in various 

proportions of gas mixtures (CH4 – Ar) and (CH4 – Ne)gases , respectively. 

Figures (1-3) exhibit the cross sections for electron of methane, argon and neon as a function 

of electron energy. 

      The impact of different discharge parameters on the electron distribution function is 

appeared in figures 4 and 5  for (CH4 – Ar) and (CH4 – Ne)gases, respectively. The electron 

energy distribution function is strongly influenced by changing either the parameter E/N or 

gas mixtures. 

Figures (6 -9) clarify the assortment for the mean electron energy and characteristics energy 

vs. (E/N) in pure methane and mixture with  argon and neon gas by taking into consideration 

various proportion mixing ratios. 

Figures (10 and 11) show the diffusion coefficient for different ratios of mixtures methane 

with argon and neon gas. As a function of  E/N in different ratios of gas mixture (CH4 – Ar) 

and (CH4 – Ne) respectively. 

      The drift velocity of electrons in various mixtures of (CH4 – Ar) and (CH4 – Ne) gases are 

appeared in figures12 and 13 as a function of E/N. It's necessary to note that there are 

measured experimentally published results that plotted with present work in the aforesaid two 

figures for comparison as shown in figures 14 and 15 for gases mixture (CH4 – Ar) and (CH4 

– Ne) respectively . The results demonstrate a good agreement with the experimental values 

[18-20]. 

 

Conclusion 
      In this study, we have analyzed the conduct of electrons in uniform electric fields using a 

Monte Carlo simulation. The calculating electron energy distribution function for (CH4 – Ar) 

and (CH4 – Ne) mixtures with various concentrations has been described. 

     The conduct of the swarm parameters, which are drift velocity and mean kinetic electron 

energy rely on the proportion of the mixture components, can likely, be demonstrated by a 

preferential weighting of the elastic and inelastic scattering of the electrons on methane with 

argon and neon molecules at various estimations of E\N, additionally the results were in great 

concurrence with the computational work. 

 

 

 



 

  Physics | 42 

 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية                                                                   المجلد ) 

Ibn Al-Haitham J. for Pure & Appl. Sci.                                           Vol.30 (1) 2017 

Reference 
1. Date, H. and Sakai, H., (1989),"Boltzmann Equation analysis of electron collision cross 

section and swarm parameters for krypton", J. phys. D: Appl. Phys.,.22,.1478-1481. 

2. Dahl Dominik, A .; Teich Timm, H . and Christian Franck M .,(2012), "Obtaining precise 

electron swarm parameters from a pulsed Townsend setup", J.Phys. D: Appl. Phys. 45,485201 

(9). 

3. Grapperhaus, M . J. and Kushner, M .J. (1997), "A Semi-analytic Radio Frequency S heath 

Model Integrated into a two dimensional Hybrid Model for Plasma Processing Reactors", J. 

Appl. Phys.81(2): 569-577. 

4. Tessarotto, M ., White R. B. and J. ZhengL, (1994), Monte Carlo approach to Collisional 

Transport, Phys. Plasmas 1(8): 2603-2613. 

5. Ardehali ,M. (1994).,"Monte Carlo Simulation of Ion Transport through Radio Frequency" 

Collisional S heathsJ, Vac. Sci. TechnolA. .12(6):3242-3244.  

6. Helin ,W., Zuli, L. and Daming, L. (1996). "Monte Carlo Simulation for Electron Neutral 

Collision Processes in Normal and Abnormal Discharge Cathode S heath   Region", Vacuum 

47(9)r:0 6s-1072.  

7. Stache, J. (1994)."Hybrid Modeling of Deposition Profiles in Magnetron Sputtering 

Systems" , J. Vac. Sci.Technol A.l2(5);2867-2873.  

8. Nathan, S. S., Rao G.  M. and  Mohan, S.  , (1998)."Transport of  Sputtered A toms in 

Facing Targets Sputtering Geometry": A Numerical Simulation Study, J. Appl. Phys.8a(l): 

564-571.  

9. Rabie, M, Haefliger P, Chachereau A and Franck C M, (2015), "Obtaining electron 

attachment cross sections by means of linear inversion of swarm parameters", J. Phys. D: 

Appl. Phys. 48 ,075201 (7).  

10. Edward, A. and Eral Mc Daniel, W., (1988), "Transport properties of ions in gases", John 

Wiely and Sons, Inc. 

11. Morgan W.L. and Penetrane B.M., (1990), Computer physics communication CPC,.58,. 

127-152.  

12. Smith K. and Thomson R. W., (1978), " Computer Modeling of Gas", Plenum Press, New 

York. 

13.Wang Y. &Olthoff J.K., (1999), "Ion energy distributions in inductively coupled radio-

frequency discharges in argon, nitrogen, oxygen, chlorine, and their mixtures" , Journal of 

Applied Physics,.85, 6358-6365.  

14. Kondo1 Y., Sekiya2 Y., M. Th. EL-Mohandes3, (2013) "Pulse Townsend Measurement of 

Electron Swarm Parameters at Low Pressure "  International Journal of Emerging Technology 

and Advanced (ISSN 2250-2459, ISO 9001:(2008) Certified Journal, Volume 3, Issue 11. 

15. Morgan W.L,(2002)."Electron collision cross sections for tetraethoxy silane", Journal of 

Applied Physics,. 92,. 1663-1667.  

16. Truesdell C., Chem J.. Phys, 37, 2336,(1962). 

17. Makabe T. and Petrovic Z., 2006. "Plasma Electronics: Application in Micro- Electronics 

Device Fabrication" , Taylor and Francis Group, New York,  

18.Piuz F., Nucl. Instrum .Meth. vol. 205, pp. 425-436, (1983). 

19. D. K. Davies, L. E. Kline, and W. E. Bies, (1989),J. Appl. Phys.. 65,. 3311-23. 

20. Mathieson E. and Hakeem N El 1979." Calculation of electron transport coefficients in 

counting gas mixtures" Nucl. Instr. Meth. 159, 489. 

 

 

 

 

 



 

  Physics | 43 

 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية                                                                   المجلد ) 

Ibn Al-Haitham J. for Pure & Appl. Sci.                                           Vol.30 (1) 2017 

Table (1) The data of Drift velocity Vd (cm/s) of electron as a function E/N in different 

ratio CH4-Ar  mixtures. 

 

 

Table ( 2)  The data of Drift velocity Vd (cm/s) of electron as a function E/N in different 

ratio CH4-Ne  mixtures. 
Electric 

field/gas 

density 

E/N 

(Td=10
-17

 

V.cm
2
 ) 

Vd 

×10
6 

pure  

CH4 

Vd×10
6 

CH4–Ne 

(10/90)% 

Vd×10
6 

CH4–Ne 

(20/80)% 

Vd×10
6 

CH4–Ne 

(30/70)% 

Vd×10
6 

CH4–Ne 

 (40/60)% 

Vd×10
6 

CH4–Ne 

 (50/50)% 

Vd×10
6 

CH4–Ne 

 (60/40)% 

Vd×10
6 

CH4–Ne 

 (70/30)% 

Vd×10
6 

CH4–Ne 

 (80/20)% 

Vd×10
6 

CH4–Ne 

 

(90/10)% 

1 4.72 3.23 4.23 4.81 5.14 5.30 5.33 5.26 5.12 4.93 

2 4.72 3.17 4.56 5.61 6.44 7.13 7.70 8.19 8.61 4.93 

4 1.01 2.84 3.90 4.88 5.78 6.60 7.33 8.11 8.80 9.48 

8 7.76 3.41 3.53 3.98 4.52 5.08 5.63 6.18 6.71 7.20 

10 6.87 3.92 3.69 3.85 4.22 4.65 5.09 5.54 5.99 6.43 

20 4.82 6.64 5.63 4.95 4.53 4.32 4.27 4.33 4.46 4.63 

40 4.85 11.8 9.96 8.52 7.46 6.67 6.08 5.64 5.28 5.03 

80 7.80 20.7 18.0 15.6 1.36 12.1 10.8 9.89 9.03 8.36 

100 9.44 24.8 21.8 19.0 16.7 14.8 13.3 12.0 11.0 10.2 

200 1.79 42.6 39.0 34.9 31.2 28.0 25.2 22.9 21.0 19.3 

400 35.4 71.1 69.1 64.5 59.3 54.1 49.4 45.2 41.5 38.3 

800 72.2 80.3 90 94.0 94.4 92.6 89.4 85.9 81.1 76.6 

Electric 

field/gas 

density 

E/N 

(Td=10
-17

 

V.cm
2
 ) 

Vd 

×10
6 

pure  

CH4 

Vd×10
6 

CH4–Ar 

(10/90)% 

Vd×10
6 

CH4–Ar 

(20/80)% 

Vd×10
6 

CH4–Ar 

(30/70)% 

Vd×10
6 

CH4–Ar 

(40/60)% 

Vd×10
6 

CH4–Ar 

(50/50)% 

Vd×10
6 

CH4–Ar 

 (60/40)% 

Vd×10
6 

CH4–Ar 

 (70/30)% 

Vd×10
6 

CH4–Ar 

 (80/20)% 

Vd×10
6 

CH4–Ar 

 (90/10)% 

1 4.72 4.41 6.92 7.32 7.52 7.30 6.86 6.31 5.75 5.21 

2 4.72 3.27 5.24 6.74 7.86 8.65 9.21 9.47 5.75 5.21 

4 1.01 2.39 3.79 4.97 6.02 6.95 7.77 8.49 9.12 9.68 

8 7.76 1.85 2.75 3.50 4.17 4.79 5.36 5.91 6.43 7.27 

10 6.87 1.86 2.66 3.35 4.23 4.50 5.06 5.51 5.99 6.44 

20 4.82 2.30 2.69 3.02 4.32 3.60 3.87 4.12 4.37 4.59 

40 4.85 3.75 4.03 4.25 4.41 4.53 4.62 4.69 4.74 4.81 

80 7.80 6.63 6.89 7.12 7.31 7.46 7.58 7.67 7.73 7.78 

100 9.44 8.07 8.33 8.57 8.78 8.96 9.11 9.23 9.32 9.38 

200 1.79 15.3 15.6 15.9 16.2 16.6 16.8 17.1 17.3 17.0 

400 35.4 23.1 164 119 91.3 73.0 60.4 51.4 44.7 39.5 

800 72.2 42.4 130 136 127 116 106 95.6 86.8 79.0 



 

  Physics | 44 

 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية                                                                   المجلد ) 

Ibn Al-Haitham J. for Pure & Appl. Sci.                                           Vol.30 (1) 2017 

Table (3) The data of the mean electron Energy (eV) as a function E/N in different ratio 

CH4 – Ar mixtures. 

  

Table (4) The data of the mean electron Energy (eV) as a function E/N in different ratio 

CH4 – Ne mixtures. 
Electric field/gas 

density E/N 

(Td=10
-17

 V.cm
2
 ) 

(eV) 

pure CH4 

(eV) 

CH4–Ne 

(10/90)% 

(eV) 

CH4–Ne 

(20/80)% 

(eV) 

CH4–Ne 

(30/70)% 

(eV) 

CH4–Ne 

(40/60)% 

(eV) 

CH4–Ne 

(50/50)% 

(eV) 

CH4–Ne 

(60/40)% 

(eV) 

CH4–Ne 

(70/30)% 

(eV) 

CH4–Ne 

(80/20)% 

(eV) 

CH4–Ne 

(90/10)% 

1 0.11 0.41 0.29 0.24 0.21 0.18 0.16 0.15 0.13 0.12 

2 0.26 0.91 0.59 0.47 0.41 0.37 0.34 0.31 0.29 0.27 

4 0.51 2.07 1.27 0.97 0.81 0.72 0.65 0.6 0.56 0.53 

8 0.88 3.65 2.61 1.94 1.56 1.34 1.19 1.08 1 0.93 

10 1.05 4.04 3.14 2.43 1.95 1.65 1.45 1.3 1.2 1.11 

20 1.87 5.12 4.38 3.9 3.6 3.14 2.78 2.48 2.23 2.03 

40 3.29 6.41 5.46 4.94 4.59 4.31 4.08 3.86 3.66 3.47 

80 4.43 8.36 6.97 6.22 5.74 5.39 5.13 4.91 4.74 4.57 

100 4.76 9.21 7.64 6.77 6.21 5.81 5.51 5.27 5.08 4.91 

200 5.99 13.07 10.71 9.28 8.33 7.66 7.16 6.77 6.46 6.2 

400 8.11 20.64 17.1 14.5 12.78 11.44 10.42 9.64 9.02 8.52 

800 13.33 32.09 28.35 25.23 22.6 20.3 18.49 16.89 15.51 14.34 

 

 

 

 

Electric 

field/gas 

density E/N 

(Td=10
-17

 

V.cm
2
 ) 

(eV) 

pure CH4 

(eV) 

CH4–Ar 

(10/90)% 

(eV) 

CH4–Ar 

(20/80)% 

(eV) 

CH4–Ar 

(30/70)% 

(eV) 

CH4–Ar 

(40/60)% 

(eV) 

CH4–Ar 

(50/50)% 

(eV) 

CH4–Ar 

(60/40)% 

(eV) 

CH4–Ar 

(70/30)% 

(eV) 

CH4–Ar 

(80/20)% 

(eV) 

CH4–Ar 

(90/10)% 

1 0.11 0.59 0.39 0.31 0.26 0.22 0.19 0.16 0.14 0.12 

2 0.26 0.95 0.69 0.57 0.49 0.43 0.39 0.35 0.32 0.28 

4 0.51 1.69 1.21 0.99 0.85 0.76 0.69 0.63 0.59 0.54 

8 0.88 2.96 2.2 1.78 1.52 1.34 1.21 1.1 1.02 0.93 

10 1.05 3.36 2.58 2.1 1.79 1.57 1.41 1.29 1.19 1.11 

20 1.87 4.49 3.96 3.55 3.19 2.87 2.6 2.36 2.17 2.01 

40 3.29 5.29 4.89 4.6 4.37 4.16 3.97 3.8 3.63 3.45 

80 4.43 6.01 5.75 5.49 5.28 5.1 4.94 4.8 4.67 4.55 

100 4.76 6.38 6.06 5.81 5.6 5.41 5.26 5.12 4.99 4.87 

200 5.99 7.49 7.25 7.03 6.84 6.66 6.5 6.36 6.23 6.1 

400 8.11 19.71 15.63 13.33 11.84 10.79 10.01 9.4 8.89 8.47 

800 13.33 27.81 24.56 22.03 20.11 18.5 17.14 15.99 14.98 14.1 



 

  Physics | 45 

 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية                                                                   المجلد ) 

Ibn Al-Haitham J. for Pure & Appl. Sci.                                           Vol.30 (1) 2017 

Table (5) The data of the characteristic energy of electron uch (eV)  as a function E/N in 

different ratio CH4 – Ar mixtures. 
Electric field/gas 

density E/N 

(Td=10
-17

 V.cm
2
 ) 

uch (eV) 

pure CH4 

uch (eV) 

CH4–Ar 

(10/90)% 

uch (eV) 

CH4–Ar 

(20/80)% 

uch (eV) 

CH4–Ar 

(30/70)% 

uch (eV) 

CH4–Ar 

(40/60)% 

uch (eV) 

CH4–Ar 

(50/50)% 

uch (eV) 

CH4–Ar 

(60/40)% 

uch (eV) 

CH4–Ar 

(70/30)% 

uch (eV) 

CH4–Ar 

(80/20)% 

uch (eV) 

CH4–Ar 

(90/10)% 

1 0.08 0.58 0.35 0.26 0.2 0.16 0.14 0.12 0.1 0.09 

2 0.08 1.16 0.74 0.55 0.44 0.36 0.31 0.27 0.1 0.09 

4 0.43 2.22 1.51 1.16 0.95 0.8 0.69 0.6 0.54 0.48 

8 0.97 4.05 2.89 2.32 1.96 1.7 1.5 1.34 1.21 1.06 

10 1.25 4.66 3.4 2.75 2.34 2.05 1.82 1.64 1.49 1.36 

20 2.51 6.32 5.28 4.57 4.04 3.64 3.32 3.07 2.85 2.67 

40 3.81 7.17 6.36 5.76 5.3 4.93 4.63 4.38 4.17 3.97 

80 4.49 7.69 7.03 6.49 6.04 5.67 5.36 5.09 4.86 4.67 

100 4.65 7.81 7.19 6.67 6.23 5.86 5.55 5.27 5.04 4.83 

200 5.19 8.07 7.55 7.12 6.74 6.4 6.11 5.84 5.6 5.38 

400 6.17 29.66 14.69 10.12 8.81 7.84 7.25 6.86 6.58 6.36 

800 10.87 55.733 75.51 41.29 28.7 22.14 18.12 15.4 13.45 11.99 

 

 

Table (6) The data of the characteristic energy of electron uch (eV)  as a function E/N in 

different ratio CH4 – Ne mixtures. 
Electric 

field/gas 

density E/N 

(Td=10
-17

 

V.cm
2
 ) 

uch (eV) 

pure CH4 

uch (eV) 

CH4–Ne 

(10/90)

% 

uch (eV) 

CH4–Ne 

(20/80)% 

uch (eV) 

CH4–Ne 

(30/70)% 

uch (eV) 

CH4–Ne 

(40/60)% 

uch (eV) 

CH4–Ne 

(50/50)% 

uch (eV) 

CH4–Ne 

(60/40)% 

uch (eV) 

CH4–Ne 

(70/30)% 

uch (eV) 

CH4–Ne 

(80/20)% 

uch (eV) 

CH4–Ne 

(90/10)% 

1 0.08 0.3 0.21 0.17 0.14 0.12 0.11 0.1 0.09 0.09 

2 0.08 0.68 0.44 0.35 0.3 0.26 0.24 0.22 0.21 0.09 

4 0.43 1.65 1.04 0.81 0.68 0.6 0.54 0.5 0.47 0.45 

8 0.97 3.02 2.25 1.78 1.5 1.33 1.21 1.12 1.06 1.01 

10 1.25 3.36 2.71 2.23 1.9 1.69 1.55 1.44 1.36 1.31 

20 2.51 4.24 3.75 3.47 3.26 3.08 2.92 2.78 2.66 2.57 

40 3.81 5.16 4.51 4.23 4.07 3.97 3.9 3.86 3.83 3.82 

80 4.49 6.45 5.46 5.01 4.76 4.61 4.53 4.49 4.47 4.47 

100 4.65 7 5.88 5.33 5.02 4.84 4.74 4.67 4.64 4.64 

200 5.19 9.33 7.69 6.77 6.2 5.81 5.58 5.41 5.3 5.23 

400 6.17 14.38 11.59 9.88 8.74 7.93 7.34 6.91 6.58 6.35 

800 10.87 34.39 26.46 21.87 18.83 16.64 14.97 13.64 12.55 11.63 

 

 

 



 

  Physics | 46 

 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية                                                                   المجلد ) 

Ibn Al-Haitham J. for Pure & Appl. Sci.                                           Vol.30 (1) 2017 

Table (7) The data of diffusion coefficient    (cm
2
/s) of electron as a function E/N in 

different ratio CH4 – Ar mixtures. 
Electric field/gas 

density E/N 

(Td=10
-17

 V.cm
2
 ) 

De×10
3

 

pure CH4 

De×10
3

 

CH4–Ar 

(10/90)% 

De×10
3

 

CH4–Ar 

(20/80)% 

De×10
3

 

CH4–Ar 

(30/70)% 

De×10
3

 

CH4–Ar 

(40/60)% 

De×10
3

 

CH4–Ar 

(50/50)% 

De×10
3

 

CH4–Ar 

(60/40)% 

De×10
3

 

CH4–Ar 

(70/30)% 

De×10
3

 

CH4–Ar 

(80/20)% 

De×10
3

 

CH4–Ar 

(90/10)% 

1 1.42 9.46 8.43 6.99 5.64 4.48 3.54 2.80 2.22 1.77 

2 1.42 7.05 7.25 6.92 6.42 5.86 5.25 4.69 2.22 1.77 

4 4.08 4.93 5.32 5.38 5.31 5.16 4.97 4.77 4.55 4.31 

8 3.52 3.48 3.70 3.78 3.80 3.79 3.75 3.70 3.63 3.60 

10 3.21 3.22 3.37 3.43 3.44 3.43 3.40 3.37 3.32 3.27 

20 2.25 2.72 2.64 2.56 2.50 2.44 2.39 2.35 2.32 2.28 

40 1.72 2.50 2.39 2.28 2.17 2.08 1.99 1.91 1.84 1.78 

80 1.63 2.37 2.25 2.15 2.05 1.97 1.89 1.82 1.75 1.69 

100 1.63 2.35 2.23 2.13 3.04 1.95 1.88 1.81 1.74 1.69 

200 1.73 2.30 2.19 2.10 2.03 1.96 1.91 1.85 1.81 1.77 

400 2.04 63.9 22.4 11.8 7.48 5.33 9.08 3.28 2.73 2.34 

800 3.65 115 45.8 26.1 17.0 12.4 8.90 6.85 5.43 4.41 

 

 

Table (8) The data of diffusion coefficient    (cm
2
/s) of electron as a function E/N in 

different ratio CH4 – Ne mixtures. 
Electric field/gas 

density E/N 

(Td=10
-17

 V.cm
2
 ) 

De×10
3

 

pure CH4 

De×10
3

 

CH4–Ne 

(10/90)% 

De×10
3

 

CH4–Ne 

(20/80)% 

De×10
3

 

CH4–Ne 

(30/70)% 

De×10
3

 

CH4–Ne 

(40/60)% 

De×10
3

 

CH4–Ne 

(50/50)% 

De×10
3

 

CH4–Ne 

(60/40)% 

De×10
3

 

CH4–Ne 

(70/30)% 

De×10
3

 

CH4–Ne 

(80/20)% 

De×10
3

 

CH4–Ne 

(90/10)% 

1 1.42 3.66 3.27 2.99 2.72 2.46 2.22 1.99 1.78 1.59 

2 1.42 4.03 3.75 3.63 3.56 3.50 2.44 3.39 3.34 1.59 

4 4.08 4.66 3.79 3.66 3.65 3.67 3.72 3.79 3.87 3.97 

8 3.52 4.79 3.69 3.29 3.16 3.14 3.17 3.23 3.31 3.40 

10 3.21 4.91 3.73 3.20 2.99 2.93 2.90 2.97 3.03 3.11 

20 2.25 5.29 3.93 3.20 2.75 2.48 2.32 2.24 2.20 2.22 

40 1.72 5.64 4.18 3.33 2.82 2.46 2.21 2.02 1.88 1.79 

80 1.63 6.18 4.59 3.63 3.02 2.59 2.28 2.05 1.88 1.74 

100 1.63 6.41 4.76 3.77 3.11 2.66 2.34 2.09 1.90 1.75 

200 1.73 7.40 5.58 4.40 3.60 3.03 2.62 2.31 2.07 1.88 

400 2.04 9.59 7.45 5.94 4.82 3.39 3.37 2.90 2.54 2.26 

800 3.65 12.9 11.1 9.57 8.27 7.17 6.22 5.42 4.73 4.15 

 

 

 



 

  Physics | 47 

 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية                                                                   المجلد ) 

Ibn Al-Haitham J. for Pure & Appl. Sci.                                           Vol.30 (1) 2017 

 
Figure (1) Elastic and inelastic cross section vs electron energy in CH4. 

 

 
 

Figure (2) elastic and inelastic Cross section vs electron energy in Ar. 

 

 
Figure (3) Elastic and inelastic Cross section vs electron energy in Ne 

 



 

  Physics | 48 

 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية                                                                   المجلد ) 

Ibn Al-Haitham J. for Pure & Appl. Sci.                                           Vol.30 (1) 2017 

 
Figure (4) The electron energy distribution function versus the electron energy 

for CH4-Ar( 50/50%) gaseous mixture. 

 
Figure (5) The electron energy distribution function versus the electron energy 

for CH4-Ne( 50/50%) gaseous mixture. 

 
 

Figure (6) The mean electron energy as a function E/N in pure CH4 and mixture with 

Ar . 

 

 



 

  Physics | 49 

 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية                                                                   المجلد ) 

Ibn Al-Haitham J. for Pure & Appl. Sci.                                           Vol.30 (1) 2017 

 
 

Figure (7) The mean electron energy as a function E/N in pure CH4 and mixture 

with Ne. 

 
 

Figure (8) The characteristic electron energy as a function E/N in pure CH4 and 

mixture with Ar . 

 
 

Figure (9) The characteristic electron energy as a function E/N in pure CH4 and 

mixture with Ne . 

 

 

 



 

  Physics | 50 

 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية                                                                   المجلد ) 

Ibn Al-Haitham J. for Pure & Appl. Sci.                                           Vol.30 (1) 2017 

 
Figure (10) The diffusion coefficient as a function of E/N in different ratio of gas 

mixture CH4-Ar. 

 

 
 

Figure (11) The Diffusion Coefficient as a function of E/N in different ratio of gas 

mixtures. (CH4-Ne). 

 

 
 

Figure (12) The drift velocity as a function of E/N in different ratio of gas 

mixtures (CH4-Ar). 

 



 

  Physics | 51 

 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية                                                                   المجلد ) 

Ibn Al-Haitham J. for Pure & Appl. Sci.                                           Vol.30 (1) 2017 

 
Figure ( 13) The drift velocity as a function of E/N in different ratio of gas 

mixtures (CH4-Ne). 

 

 
Figure (14) The drift velocity as a function of E/N in gas mixtures (CH4-Ar). 

 

 

Figure (15) The drift velocity as a function of E/N in gas mixture (CH4 -Ne) . 

 

 

 

 

 



 

  Physics | 52 

 2012( عام1( العدد ) 30مجلة إبن الهيثم للعلوم الصرفة و التطبيقية                                                                   المجلد ) 

Ibn Al-Haitham J. for Pure & Appl. Sci.                                           Vol.30 (1) 2017 

 حسابات وظريه نمعامالت االوتقال االنكترووي نخهيط غازي مه  

(CH4-Ar) باستعمال طريقة مووتي كارنو و   (CH4-Ne)    
 

    ايىاش احمذ جواد

جايعت بغذاد /كهيت انتزبيت نهعهىو انصزفت )ابٍ انهيثى(  /قسى انفيشياء   

 6102/كاوون االول/06قبم في: ,6102/حسيران/ 5:فياستهم 

 

 انخالصه
تاثيز تزاكيش انًختهفه نخهيط انًيثاٌ  يع غاس االركىٌ وانُيىٌ تؤخذ بانحسباٌ في دراسه انتغيز في دانت تىسيع طاقت      

االنكتزوٌ وبانتاني تغيز في يعايالث اَتقال االنكتزوَاث يثم سزعت االَجزاف , يتىسط انطاقت , خصائص انطاقه 

ايج يحاكاة كىيبيىتز يتطىر وحذيث نحساب يعايالث اَتقال االكتزوٌ. ويكافيء االَتشار . في انعًم انحاني استعًم بزَ  

 

َيىٌ , بالسيا وانتفزيغ االنكتزوٌ , سزعت  -اركىٌ  , ييثاٌ –: يعادنت بىنتشياٌ , خهيط غاس ييثاٌ مفتاحيةانكهمات ان

 االَجزاف , يعايم االَتشار , يعايالث االَتقال , دانت انتىسيع .