Microsoft Word - 143-154 Chemistry | 143 2017عام ) 1(العدد 30مجلة إبن الھيثم للعلوم الصرفة والتطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 30 (1) 2017 Structure, Attributive and Bacterial Effectiveness Studies for Complexes, Co(II), Hg(II), Ni(II), Cu(II) and Mn(II) with Ligand kind (N2O2) Rehab K. Al- shemary Faeza H. Ghanim Dept. of Chemistry/ College of Education for Pure Science (Ibn -Al-Haitham)/ University of Baghdad Received in:1/March/2016,Accepted in:28/June/2016 Abstract Binuclear copper, nickel, cobalt, manganese and mercury complexes of the Schiff base H2L (C40H28N2O4) obtained by condensation of 2-benzoyl benzoic acid with benzidine. The Schiff base and their complexes have been subjected to[ FT-IR, elemental analysis ,UV-Vis, 1H and 13C NMR ] spectral studies, molar conductivity, magnetic moment and HPLC measurements. All the complexes showed tetrahedral geometries with the general structure [M2(L)2]. Generality of the synthesized components offer antibacterial efficiency to (Staphylococcu saureus), (Escherichia coli),(Bacillus subtilis) and(Pseudomonas aeruginosa). Keywords: Structure, Schiff bases, Attributive, 2-benzoyl benzoic acid and Bacterial effectiveness. Chemistry | 144 2017عام ) 1(العدد 30مجلة إبن الھيثم للعلوم الصرفة والتطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 30 (1) 2017 Introduction The Ligand such as Schiff bases have a substantial part in a many of uses in biochemical and physicochemical[1] biochemical pertinent researches of metal complexes and given broad range of applications such as antipyretic[2],analgesic[3],anti-diabetic[4], anti- inflammatory[5],anti-cancer[6] anti-human immunodeficiency virus activity(HIV)] [7] and anti-bacterial [8]. Coordinating ligands including O and N giver atoms appear wide biological activity of special attention because of the set of ways in which they are bonded to metal ions [9]. It is well known that different Schiff base complexes have Tetra-chelating N,N,O,O-giver Schiff bases in their nickel(II) complex avail as substantial models for enzyme [10].Their binuclear homometallic copper (II),nickel(II) and cobalt(II) complexes avail as model compounds at the active groups of metalloenzymes [12]. Binuclear metal complexes find applications as active appliances for estimation and structure of outer kinds [13].Thus, functional and designing structural binuclear complexes keep a topic of continuous investigation. Tetradentate Schiff bases derived from benzoic acid with benzidine and its derivatives have been extensively explored; while Schiff bases obtained from 2-benzyl benzoic acid with benzidine and its derivatives has been searched very littler [14]. In this paper, we report the preparation, structural, spectral, and description of a new binuclear the copper (II), nickel(II), cobalt(II), mercury (II) and manganese(II)complex [M(L)]2,derived from the [H2L] obtained by condensation of [2-benzoylbenzoic acid and benzidine] (Scheme1). Structure, attributive and bacterial effectiveness studies detect that five metal (II) ions select tetrahedral configurations. Experimental Materials: All chemicals and all metal (II) chlorides 2-benzoyl benzoic acid, solvents and benzidine used in this work were obtained from Merck products. Methods: 1H-, 13C- NMR spectra values of the compound of ligand were registered by DMSO-d6 at [Bruker specrospin ultra shield magnets instrument 300 MHz]. (C, H, and N %) of the made compounds were loaded employing a[CHN Analyzer on Perkin Elmer].Compounds were measured by [FT-IR spectra] were registered on [Shimadzu FTIR– 8400] Fourier Spectrophotometer. Magnetic sensitiveness measurements were got by Bruker BM6 instrument. Conductivities were registered by Philips PW- Digital Conduct meter. for 10 -3 M solutions of complexes. Melting points were studied by utilizing [start melting point Apparatus] Preparation The Ligand The compound was synthesized from the condensation (1mmol) benzidine with (2mmol) 2- benzoylbenzoic acid and (3) drops of glacial acetic acid in 25ml ethanol absolute (scheme 1). This reaction was refluxed at (75◦C) during 5hrs on water bath. A yield isolated out on refrigeration, was filtered off. A product result was got then re-crystallized from a hot solution of [(1ml) distilled water, (3ml) methanol and (2ml) acetone]. This result was then submitted to chromatography “flash” as dry column by ethanol as eluent, yield (0.24g, 79%), m.p. (170)°. Chemistry | 145 2017عام ) 1(العدد 30مجلة إبن الھيثم للعلوم الصرفة والتطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 30 (1) 2017 O OHO NH2H2N+ NN COOH 2 r ef lexed 5hrs Ethanol HOOC Co(II), Mn(II),Cu(II),Hg(II) and Ni(II) Complexes. All the complexes were synthesized employing the same synthetic path way characterized in literature by mixing of H2L (0.6g ,1mmol) in(13mL) ethanol and [0.238 g CoCl2.6H2O, 0.175g CuCl2.2H2O, 0.271 g HgCl2, 0.198 g MnCl2 and 0.237 g NiCl2] in [1 :1 molar proportion]. Then stirring for (30min.) at 55°C.The result instantly produced, filtered off and re-crystallized from (10mL) the hot solvent. Their pureness was proved utilizing (TLC) [thin layer chromatography] and (3:7, v/v) (ethanol / CH2Cl2) as eluent and were displayed, in any case, to consist ( 0.55) of only one component, the complexes in yields (89-74%) (Table1). NN COOH HOOC M NN O OO O N O ONO O M MCl2 2 M+2=Co+2, Ni+2,Cu+2,Mn+2&Hg+2 Study of Biological Efficiency The antibacterial activity for these compounds was evaluated by using method similar with the traditional disc diffusion method [7 and 8], sterile 5 mm filter paper discs (What man, no.1) were soaked in this compound (Disc loaded with the DMSO and allowed until complete evaporation to be used. Then discs were placed onto the surface of the Muller Hinton agar plates at different areas on the surface of each plate, after a 24 hrs. culture of the pathogenic strains(Staphylococcus usurers),(Escherichia coli),(Bacillus btilis) and (Pseudomonas aeruginosa) were spreading with a antiseptic cotton wipe over the surface of Muller Hinton agar plates. The plates were incubated for 24 hrs at 37Co. Products were fixed by registering the diameter in (mm) for a region of restraint on each plate. Chemistry | 146 2017عام ) 1(العدد 30مجلة إبن الھيثم للعلوم الصرفة والتطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 30 (1) 2017 Results and Discussion The 1HNMR spectrum in DMSO of [H2L] offers in δ ppm the next signals at: (12.26) (s, 2H, COOH) ; (6.84-8.44), (m, 6H,C6H5) and 2.48 ( s, 6H ,DMSO) ; [9, 10] (Fig.1). The 13CNMR spectrum of (H2L) appeared the signals at: (40.81, DMSO); (122.12~153.67), (s,DMSO) ;(159.09),(s,COOH); and(161.12), (s, C=N) (Fig.2). The conductance [non-electrolytic nature] specified of the complexes specified [11].The magnetic sensitivity for these complexes (Table 5) in ethanolic which has been adduced for utmost tetrahedral arrangement [12]. The UV- Vis spectra in (10-3 M) ethanolic solution of the ligand offered fundamentally two absorptions at 289 and 343 nm were spotted to the middle energy π→ π* and n→ π* transition Figure (5) [13 and 14]. The UV-Vis spectrum of Mn(II) complex displayed absorptions at (297 and 365 nm) were regarded to L.F and C.T transitions respectively, and other absorptions at 487 and 584 nm were regarded to{6A1→ 4A1(G) and 6A1→ 4E(G)}, separately [15]. The UV-Vis spectrum of Co(II) complex offered absorptions at 292 and 347 nm due to L.F and C.T transitions, other peak at 621 nm regarded to electronic transition type {4A2(F)→ 4T1(P)} .The spectrum of Ni (II) complex displayed absorptions at 284 and 346 nm result to L.F and C.T transition respectively. The peaks at 419 nm and 702 nm were result to (d-d) electronic transition types [16] {3T1 → 3T1 and 3T1 → 3A2} Figure (6). The spectrum of Cu(II) complex showed peaks at 290 and 340 nm result to L.F and C.T transitions respectively, then other peak at 509 nm was described to electronic transition type[17] 2T2→ 2E.The spectrum of complex displayed absorptions at 310 and 388 nm result to C.T transitions. The non-attendance of peaks in the Vis-area specified no (d-d) transitions showed tetrahedral geometry Table 5 [18]. The IR-spectrum of the ligand displayed frequency at 3441 cm-1, which was described to υ (OH) group [19]. This frequency was lost in the spectra of these complexes [20]. A considerable shift in the in position intensity to lower wave number was noticed in all the complexes with metal ion for the strong frequency in the (H2L)spectrum, which shows at 1681 cm-1 described to υ(C=N) group[21].An important change in position to lower wave number and in the intensity was noticed with metal ion on complexation for the strong frequency in the ligand (H2L) spectrum at 1535 cm -1, which appears due to υas(COO -) [22].The band at 1367 cm-1 in the spectrum of the ligand (H2L), which was described to the υs(COO -). These frequencies moved to lower or higher vibrations at (1496 -1525cm-1) and (1367-1404cm-1) for all the complexes, Δυ=(92-132) cm-1 [23]. The occurrence of new bands in the range (484-571)cm-1 are temporarily designated to (Metal-Ligand) υ(M-O) and υ(M-N) frequencies [24], giving to the data gained, a tetrahedral arrangement has been temporarily given these complexes. The antimicrobial efficiencies of the compounds have been examined versus chosen kind of microorganism; the region of suppression of bacterial evolution on the plate. DMSO (which was used as a solvent and Controller) was a good solvent to prepare 1ppm of each tested sample Figure (7) [25 and 26]. Table (6). Chemistry | 147 2017عام ) 1(العدد 30مجلة إبن الھيثم للعلوم الصرفة والتطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 30 (1) 2017 References 1. Usharani, M.;Akila, E.; Ramachanran, S.; Velraj, G. and Rajavel, R. ;(2013)Synthesis, Composition, Geometry And Antibacterial Assay OF Binuclear Schiff Base Metal Complexes Derived From Benzene-1,4-Dicarbaldehyde Arbedehyde, 2-Hydroxy- Benzaldehyde And Pyridine-2,6-Diamine, Int. J. of Pharmacy and Pharmaceutical Sci.,5(2), 640- 647. 2. Lionel, S.; Pierre, T.; Eric R., Shinpei M., Takehiko Y.and Michel E.;(2006) Synthesis, structure and magnetic behaviour of dinuclear uranium(IV)complexes with a ‘calixsalophen’ type macrocycle , New Journal of Chemistry , 7,331,5-17 3. Kara, H.; Elerman, Y.; and Elmali A.; (2003) Synthesis, Crystal Structure and Spectroscopic Properties of a Dinuclear Nickel(II) Complex Bridged by an Alkoxide and a μ-Pyrazolate Ligand, Z. Naturforsch A Journal of Biosciences . 58, 955 – 958 4. Tudor, R.;Simona,P.; Veronica L., Carmen, C.and Raluca C.;(2006)Copper (II) Complexes with Ligands Derived from 4-Amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one: Synthesis and Biological Activity, Molecules, 11, 904-914 5. Ali, H. K. and Islama, A.; (2013)Spectrophotometric Study of Complexation Between Some Salen Type Schiff Bases and Dimethyltin(IV) Dichloride, Chem Sci Trans., 2(1),17- 24. 6. Cusumano, M. A.; Messina, M.; Nicolo, F; Pietro, M., Rotondo, A. and Rotondo,E.;(2009)NMR Study of L-Shaped Quinoxaline Platinum(II) Complexes-Crystal Structure of ] Pt(DMeDPQ) (bipy)](PF6)2,Eur.J. Inorg. Chem., 4710-4717. 7. Kaymakcioglu, B. K. and Rollas, S;(2002)“Synthesis, Characterization and Evalution of Antibacterial Activity of Some Hydrazones”, Farmaco,57,595-599. 8. Loncle, C; Brunel, J. M.; Vidal, N.; Dherbomez, M. and Letourneux, Y; (2004)“Synthesis and Antifungal Activity of Cholesterol-Hydrazone Derivatives” Eur. J. Med. Chem., 39, 1067-1071. 9. Canpolat, E. and Kaya, M.; (2004) Studies on mononuclear chelates derived from substituted Schiff-base ligands (part2) synthesis and characterization of a new 5- bromosalicyliden paminoacetophenone oxime and its complexes with Co(II), Ni(II), Cu(II) and Zn(II) ,J. Coord.Chem. 7,123. 10. Chakravarty,A.R.; Nreddy,A.P.; Santra, B.K. and Thomas, A.M.; Copper Complexes as Chemical Nucleases, 2002; J. Indian. Chem. Sci., 114, 319-401 . 11. Patole, S. D; Padhye, S. and Ratledge, C.; (2006) “Schiff Base Conjugates of P - Aminosalicylic Acid as Antimycobacterial Agents”,Bioorg. Med. Chem. Lett, 16, 1514 - 1517. 12. Lever, A.B.P.;(1968) Crystal Field Spectra, Inorganic Electronic Specroscopy, first ed .Elsevier., Amsterdam, 249. 13. Natesan, M. and Rajavel Dr. R. (2011),Binuclear Copper (II), Ninckel(II) and oxovanadium (IV) Schiff Base ComplexesBearingN2O2 Donors And Their DNA Cileavage And Antibacterial Activity International Journal Of Pharmacy & Technology, 2( 4), 1133-1157. Chemistry | 148 2017عام ) 1(العدد 30مجلة إبن الھيثم للعلوم الصرفة والتطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 30 (1) 2017 14. Shyamapada, S.; Ravish, S. and Tayur, R. N. A;(2014)Dinuclear Cadmium(II)Schiff Base Thiocyanato Complex: Crystal Structure and Fluorescence Acta Chim. Slov, 61, 59-66 15. Hirayama N, Takeuchi I, Honjo T, Kubono K and Kokusen H; (1997)Ion-pairextraction system for the mutual separation of lanthanides using divalent quadridentate schiff bases Anal. Chem., 69, 4814-4818. 16. .Jasim, Sh. S. ;( 2012) Synthesis, Characterization of New Schiff Base and Some Metal Complexes Derived from Glyoxylic acid and O-Phenylenediamine, Ibn-AL-Haitham, J. for Pure and Appl. Sci., 25,264-275. 17. Tajmir, R. ;( 1991) Coordination chemistry of Vitamin C. part (II). Interaction of L- Ascorbic Acid with Zn(II), Cd(II), Hg(II), and Mn(II) Ions in the solid state and in Aqueous Solution, Int. J. Inorg. Biochem, 42, 47-55 18. Geeta,B.and Ravinder, V.; (2011) Synthesis, Characterization and Biological evaluation of mononuclear Co(II) ,Ni(II) and Pd(II) Complexes, with New N2O2Schiff base ligand, Chem., pharm. Bull., 95 (2), 166-171. 19. Tajmir, R. ;(1991) Coordination chemistry of Vitamin C. part (II). Interaction of L- Ascorbic Acid With Zn(II), Cd(II), Hg(II), and Mn(II) Ions in The Solid State and in Aqueous Solution, Int. J. Inorg. Biochem, 42, 47-55. 20. Arif, M.; Qurashi, M. M. R. and Shad, M. A.;(2001) Metal- Based Antibacterial Agents; Synthesis, Characterization and in Vitro Biological Evaluation of Cefixime- Derived Schiff Bases and Their Complexes With Zn (II), Cu (II), Ni (II) and Co (II), J. Coord. Chem. 64, (11), 1914-1930. 21. Choi, K. Y.; Jeon, Y. M.; Lee, K. C.;Ryu ,H.,Suh M.; Park, H. S.; Kim, M. J. and Song,Y. H.;(2004) Preparation and Characterization of a Bidentate Carboxylate Bridged Dinuclear Cadimium (II) Complex With Bis(2-Pyridyl Methyl) Amino-3-Propionic Acid, J.Chem. Cryst., 34 (9), 591-596. 22. Hankare, P.P.; Patil, R.K.; Chavan, S.S.; Jagtap, A.H. and Battase, P.S.;(2001) Synthesis , Characterization and Biological Studies of Bivalent Metal Complexes of Schiff Bases Derived from Aminothiazole and Substituted Azosalicyl aldehyde. Ind. J.Chem., 40A:1326–1329. 23. Mahalakshmi,N; and Rajavel R.;(2011)Synthesis, Spectroscopic Characterization, DNA Cleavage And Antimicrobial Activity Of Binuclear Copper(II), Nickel(II) And Oxovanadium (IV) Schiff Base Complexes, Asian J. of Biochemical and Pharmaceutical Research ,2 (1), 526-543 24. Rajavel, R.;Vedanayaki, S.; Sandhanamalar, D. and Jayaseelan, P.;(2011), Synthesis, Spectroscopic and Antimicrobial Studies of Binuclear Transition Metal Complexes with Tetradentate Schiff Base, Research J. of Pharma., Bio. and Chem.Sci.,3(2), 994-1001. 25. Ruaa M. Al-Juburi ;(2012) Synthesis and Characterization of Some Heterocyclic Compounds (Oxazepine, Tetrazole) Derived from Schiff Bases, J. of Al-Nahrain University 15(4), 60-67. Chemistry | 149 2017عام ) 1(العدد 30مجلة إبن الھيثم للعلوم الصرفة والتطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 30 (1) 2017 26. Maccari, R; Ottana, R. and Vigorita, MG;(2005)“In Vitro Advanced Antimyco- bacterial Screeninig of Isoniazid-Related Hydrazones, Hydrazides and cyanoboranes: Part 14”, Bioorg. Med. Chem . Lett., 15, 2509-2513.   Table (1) Physical properties of the ligand and its complexes.   DMSO 5(aromatic protons)H6CC= proton) (carboxylateH COO- 2.49 6.84-8.44. 12.26 Table (3) 13C-NMR Chemical transfers for (H2L) DMSO 5(aromatic carbons ) H6CC= carbon) (carboxylateOOHC carbon) (imine-=NC 40.81 122.11~153.67 159.09 161.12 Compounds Formula Molecular Weight Colour Wight g, Yeild% M.P. %Elemental Analysis Found % (Calculated) C H N M H2L C40H28N2O4 600.66 yellow 0.24g, 85% 187 79.76 (79.98) 4.78 (4.70) 4.43 (4.66) - [Co(L)]2 C80H52Co2N4O8 1315.16 Brown 0.31g, 77% 220 72.98 (73.06) 4.09 (3.99) 4.42 (4.26) 9.08 (8.96) [Ni(L)]2 C80H52N4Ni2O8 1314.68 Brown 0.31g, 72% 254 72.87 (73.09) 3.67 (3.99) 4.09 (4.26) 8.78 (8.93) [Cu(L)]2 C80H52Cu2N4O8 1324.38 Deep brown 0.23g, 75% 228 72.57 (72.55) 3.52 (3.96) 3.14 (4.23) 3.75 (4.23) [Mn(L)]2 C80H52Mn2N4O8 1307.17 Brown 0.31g, 64% 245 73.12 (73.51) 3.89 (4.01) 4.33 (4.29) 8.32 (8.41) [Hg(L)]2 C80H52Hg2N4O8 1598.47 Off- White 0.31g, 68% 241 59.5 (60.11) 3.64 (3.28) 6.89 (3.51) 25.45 (25.10) Chemistry | 150 2017عام ) 1(العدد 30مجلة إبن الھيثم للعلوم الصرفة والتطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 30 (1) 2017 Table (4) The major hesitations of the compounds (cm-1). Table (5) Conductance measurements magnetic susceptibility and UV-Vis data Compoun ds (B.M) µeff Λm(S.cm 2.mol-1) (10-3M) in ethanol (nm)λma x ABS (cm-1) Wave number L.mol-1.cm- 1€max functions Geometry Ligand - - 288 342 1.981 0.531 34722 29239 1981 531 n→π* π→π* - [Mn2(L)2] 5.64 16 297 365 487 584 2.026 2.127 0.510 0.112 33670 27397 20533 17123 2026 2127 510 112 L.F C.T 6A1→ 4A1(G) 6A1→ 4E(G) Tetrahedral [Co2(L)2] 4.35 15 292 347 621 2.069 2.145 0.032 34246 28818 16103 2069 2145 32 L.F C.T 4A2→ 4T1(P) Tetrahedral [Ni2(L)2] 3.80 12 284 346 419 702 2.016 1.971 1.215 0.016 35211 28901 23866 14245 2016 1971 1215 16 L.F C.T 3T2→ 3T1 3T1→ 3A2 Tetrahedral [Cu2(L)2] 2.2 17 290 340 509 0.056 1.521 0.402 34482 29411 19646 56 1521 402 L.F C.T 2E→2B2 Tetrahedral [Hg2(L)2] Dia. 11 310 388 1.820 0.623 32258 25773 1820 623 C.T C.T Tetrahedral Table (6) Diameter of area of suppression (mm) Compounds υ(OH) υ(C=N) υas(COO -) υs(COO -) Δυas(COO - ).- Δυs(COO - ) υ(M-N) υ(M-O) Ligand(L) 3441 1683 - - - - - [Mn2(L)2] - 1645 1499 1424 99 571 472 [Co2(L)2] - 1651 1502 1389 119 541 469 [Ni2(L)2] - 1662 1509 1372 137 484 440 [Cu2(L)2] - 1637 1507 1366 141 519 483 [Hg2(L)2] - 1660 1510 1378 132 557 445 Hg2(L)2] [Cu2(L)2] [Ni2(L)2] [Co2(L)2] [Mn2(L)2] H2L DMSO control Comp. 7 7 10 4 11 2 - Escherichia. Coli 3 9 5 7 7 6 1 Staphylococcus aureus 5 8 3 1 6 3 1 Bacllus 3 6 1 3 4 7 - pseudmonas Chemistry | 151 2017عام ) 1(العدد 30مجلة إبن الھيثم للعلوم الصرفة والتطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 30 (1) 2017 Figure (1) 1HNMR spectrum of ligand. Figure (2) 13CNMR spectrum of ligand Figure (3) IR spectrum of ligand. Chemistry | 152 2017عام ) 1(العدد 30مجلة إبن الھيثم للعلوم الصرفة والتطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 30 (1) 2017 Figure (4) IR spectrum of Complex [Hg2(L)2] Figure (5) UV of (H2L)   Figure (6) UV of [Ni2(L)2] Chemistry | 153 2017عام ) 1(العدد 30مجلة إبن الھيثم للعلوم الصرفة والتطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 30 (1) 2017 Figure (7) Difference between the antimicrobial activity of (H2L)& metal complexes  0 2 4 6 8 10 12 H2L[Co(L)2][Ni(L)2][Cu(L)2][Mn(L)2][Hg(L)2]    D im e te r  o f  in h ib it io n  z o n Escherichia. Coli Staphylococcus aureus Bacllus Pseudmonas Chemistry | 154 2017عام ) 1(العدد 30مجلة إبن الھيثم للعلوم الصرفة والتطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 30 (1) 2017 ،(II) والنحاس (II) للمعقدات الكوبلت النواة للثنائي الحيوي والنشاط وتشخيص توليف N2O2 نوع شف من قاعدة مع ليكاند (II) والزئبق (II) المنجنيز ،(II) النيكل كاظم آلشمري رحاب . فائزة حسن غانم بغداد جامعة )/الھيثم ابن( الصرفة للعلوم التربية كلية /الكيمياء قسم 2016/حزيران/28:قبل في ،2016/اذار/1:استلم في الخالصة التي H2L (C40H28N2O4) شيف معقدات النحاس والنيكل والكوبالت والمنغنيز والزئبق الثنائي النواة مع قاعدة وقد تم تحليل العناصر لليكاند قاعدة شيف والمعقدات ، . بنزويل حمض البنزويك-2حصلت عليھا من تكثيف البنزينيدين مع الرنين النووي المغناطيسي وقياسات ,واألشعة المرئية وفوق البنفسجية الحمراءالدراسات الطيفية من خالل االشعة تحت وأظھرت جميع المعقدات ھندستھا رباعي السطوح مع . والسائل اللوني عالي األداء التوصيل المولي و العزم مغناطيسي معظم المركبات مستعدة الظھار نشاط مضاد للجراثيم [M2(L)2] .الھيكل العام .(Pesudomonas)و (Staphylococcus aureus) ,(Bacillus),(Escherichiacoli):كترياللب البنزويك، البنزينيدين،معقدات ثنائية السن والفعالية البايولوجية بنزويل حمض- 2تشخيص،قاعدة شف، :مفتاحية الكلمات ال